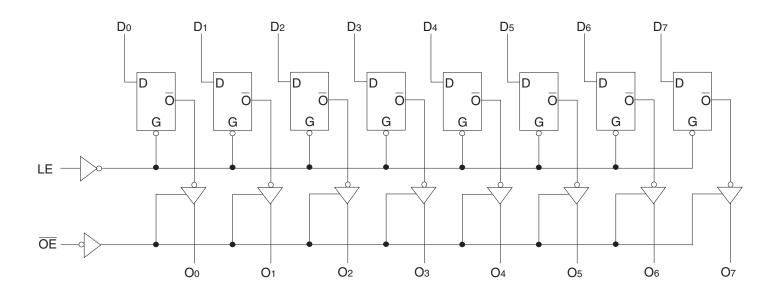


FAST CMOS OCTAL TRANSPARENT LATCH

IDT54/74FCT373T/AT/CT

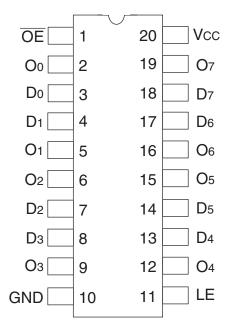

FEATURES:

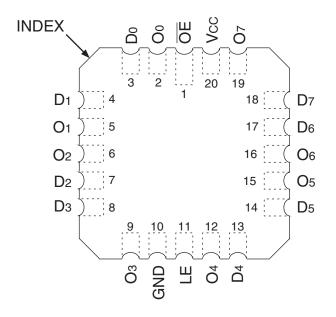
- Std., A, and C grades
- Low input and output leakage ≤1µA (max.)
- CMOS power levels
- True TTL input and output compatibility:
 - VOH = 3.3V (typ.)
 - VOL = 0.3V (typ.)
- High Drive outputs (-15mA IOH, 48mA IOL)
- · Meets or exceeds JEDEC standard 18 specifications
- Military product compliant to MIL-STD-883, Class B and DESC listed (dual marked)
- · Power off disable outputs permit "live insertion"
- Available in the following packages:
- Industrial: SOIC, SSOP, QSOP
- Military: CERDIP, LCC

FUNCTIONAL BLOCK DIAGRAM

DESCRIPTION:

The FCT373Tis an octal transparent latch built using an advanced dual metal CMOS technology. These octal latches have 3-state outputs and are intended for bus oriented applications. The flip-flops appear transparent to the data when Latch Enable (LE) is high. When LE is low, the data that meets the set-up time is latched. Data appears on the bus when the Output Enable (\overline{OE}) is low. When \overline{OE} is high, the bus output is in the high-impedance state.




IDT and the IDT logo are registered trademarks of Integrated Device Technology, Inc.

MILITARY AND INDUSTRIAL TEMPERATURE RANGES

DECEMBER 2016

PIN CONFIGURATION

CERDIP/ SOIC/ SSOP/ QSOP TOP VIEW

ABSOLUTE MAXIMUM RATINGS⁽¹⁾

Symbol	Description	Max	Unit
VTERM ⁽²⁾	Terminal Voltage with Respect to GND	-0.5 to +7	V
VTERM ⁽³⁾	Terminal Voltage with Respect to GND	-0.5 to Vcc+0.5	V
TSTG	Storage Temperature	–65 to +150	°C
Ιουτ	DC Output Current	-60 to +120	mA

NOTES:

- Stresses greater than those listed under ABSOLUTE MAXIMUM RATINGS may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect reliability. No terminal voltage may exceed Vcc by +0.5V unless otherwise noted.
- 2. Inputs and Vcc terminals only.
- 3. Output and I/O terminals only.

CAPACITANCE (TA = +25°C, F = 1.0MHz)

Symbol	Parameter ⁽¹⁾	Conditions	Тур.	Max.	Unit
CIN	Input Capacitance	VIN = 0V	6	10	рF
Соит	Output Capacitance	Vout = 0V	8	12	pF

NOTE:

1. This parameter is measured at characterization but not tested.

PIN DESCRIPTION

Pin Names	Description			
Dx	Data Inputs			
LE	Latch Enable Input (Active HIGH)			
ŌĒ	Output Enable Input (Active LOW)			
Ox	3-State Outputs			

FUNCTION TABLE⁽¹⁾

	Inputs		Outputs
Dx	LE	ŌĒ	Ox
Н	Н	L	Н
L	Н	L	L
Х	Х	н	Z

NOTE:

- X = Don't Care
- L = LOW Voltage Level
- Z = High Impedance

^{1.} H = HIGH Voltage Level

DC ELECTRICAL CHARACTERISTICS OVER OPERATING RANGE

Following Conditions Apply Unless Otherwise Specified:

Industrial: TA = -40° C to $+85^{\circ}$ C, Vcc = 5.0V $\pm 5\%$; Military: TA = -55° C to $+125^{\circ}$ C, Vcc = 5.0V $\pm 10\%$

Symbol	Parameter	Test Conditions ⁽¹⁾		Min.	Typ. ⁽²⁾	Max.	Unit
Vih	Input HIGH Level	Guaranteed Logic HIGH Leve	I	2	—	—	V
VIL	Input LOW Level	Guaranteed Logic LOW Level		_	_	0.8	V
Іін	Input HIGH Current ⁽⁴⁾	Vcc = Max.	VI = 2.7V	_	_	±1	μA
lıL	Input LOW Current ⁽⁴⁾	Vcc = Max.	VI = 0.5V	_	_	±1	μA
Іоzн	High Impedance Output Current	Vcc = Max	Vo = 2.7V	_	_	±1	μA
Iozl	(3-State output pins) ⁽⁴⁾		Vo = 0.5V		—	±1	
li	Input HIGH Current ⁽⁴⁾	Vcc = Max., VI = Vcc (Max.)		_	_	±1	μA
Vik	Clamp Diode Voltage	Vcc = Min, IIN = -18mA		—	-0.7	-1.2	V
Vн	Input Hysteresis	—		—	200	_	mV
lcc	Quiescent Power Supply Current	VCC = Max., VIN = GND or V	cc	—	0.01	1	mA

OUTPUT DRIVE CHARACTERISTICS

Symbol	Parameter	Test Conditions ⁽¹⁾		Min.	Typ. ⁽²⁾	Max.	Unit
Vон	Output HIGH Voltage	Vcc = Min	IOH =6mA MIL	2.4	3.3	—	
		VIN = VIH or VIL	Iон = -8mA IND				V
		Іон = –12mA MIL		2	3	—	
		Iон = –15mA IND					
Vol	Output LOW Voltage	Vcc = Min IoL = 32mA MIL		—	0.3	0.5	V
		VIN = VIH or VIL IOL = 48mA IND					
los	Short Circuit Current	$VCC = Max., VO = GND^{(3)}$		-60	-120	-225	mA
IOFF	Input/Output Power Off Leakage ⁽⁵⁾	VCC = 0V, VIN or VO \leq 4.5V		_	_	±1	μA

NOTES:

1. For conditions shown as Min. or Max., use appropriate value specified under Electrical Characteristics for the applicable device type.

2. Typical values are at Vcc = 5.0V, $+25^{\circ}C$ ambient.

3. Not more than one output should be tested at one time. Duration of the test should not exceed one second.

4. The test limit for this parameter is $\pm 5\mu A$ at TA = $-55^{\circ}C$.

5. This parameter is guaranteed but not tested.

POWER SUPPLY CHARACTERISTICS

Symbol	Parameter	Test Condition	ons ⁽¹⁾	Min.	Typ. ⁽²⁾	Max.	Unit
Δlcc	Quiescent Power Supply Current TTL Inputs HIGH	Vcc = Max. $VIN = 3.4V^{(3)}$		—	0.5	2	mA
ICCD	Dynamic Power Supply Current ⁽⁴⁾	Vcc = Max. Outputs Open $\overline{OE} = GND$ One Input Toggling	VIN = VCC VIN = GND	_	0.15	0.25	mA/ MHz
Ic	Total Power Supply Current ⁽⁶⁾	50% Duty Cycle Vcc = Max. Outputs Open fi = 10MHz	VIN = VCC VIN = GND	-	1.5	3.5	mA
		50% Duty Cycle	VIN = 3.4V VIN = GND	-	1.8	4.5	
		Vcc = Max. Outputs Open fi = 2.5MHz	VIN = VCC VIN = GND	-	3	6 ⁽⁵⁾	mA
		$\frac{50\%}{OE} = GND$	VIN = 3.4V VIN = GND	-	5	14(5)	
		LE = Vcc Eight Bits Toggling					

NOTES:

1. For conditions shown as Min. or Max., use appropriate value specified under Electrical Characteristics for the applicable device type.

2. Typical values are at Vcc = 5.0V, +25°C ambient.

3. Per TTL driven input; (VIN = 3.4V). All other inputs at Vcc or GND.

4. This parameter is not directly testable, but is derived for use in Total Power Supply Calculations.

5. Values for these conditions are examples of Δ Icc formula. These limits are guaranteed but not tested.

6. IC = IQUIESCENT + INPUTS + IDYNAMIC

- $\text{IC} = \text{ICC} + \Delta \text{ICC} \text{ DHNT} + \text{ICCD} \text{ (fcp/2+ fiNi)}$
- Icc = Quiescent Current
- ΔIcc = Power Supply Current for a TTL High Input (VIN = 3.4V)
- $\mathsf{D}\mathsf{H}$ = Duty Cycle for TTL Inputs High
- $\mathsf{N}\mathsf{T}$ = Number of TTL Inputs at $\mathsf{D}\mathsf{H}$

ICCD = Dynamic Current caused by an Input Transition Pair (HLH or LHL)

- fcp = Clock Frequency for Register Devices (Zero for Non-Register Devices)
- fi = Output Frequency
- Ni = Number of Outputs at fi

All currents are in milliamps and all frequencies are in megahertz.

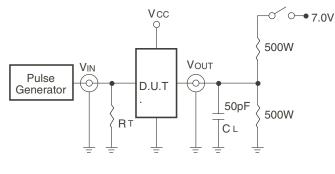
SWITCHING CHARACTERISTICS OVER OPERATING RANGE - INDUSTRIAL

			74FCT373AT		74FCT	373CT	
Symbol	Parameter	Condition ⁽¹⁾	Min. ⁽²⁾	Max.	Min.(2)	Max.	Unit
tPLH	Propagation Delay	CL = 50pF	1.5	5.2	1.5	4.2	ns
tPHL	Dx to Ox	$RL = 500\Omega$					
tPLH	Propagation Delay		2	8.5	2	5.5	ns
tPHL	LE to Ox						
tРZH	Output Enable Time		1.5	6.5	1.5	5.5	ns
tPZL							
tPHZ	Output Disable Time		1.5	5.5	1.5	5	ns
tPLZ							
ts∪	Set-up Time HIGH or LOW, Dx to LE		2	—	2	—	ns
tH	Hold Time HIGH or LOW, Dx to LE		1.5	—	1.5	_	ns
tw	LE Pulse Width HIGH ⁽³⁾		5	—	5	—	ns

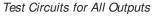
SWITCHING CHARACTERISTICS OVER OPERATING RANGE - MILITARY

			54FCT373T		54FCT373AT 54FCT373CT				
Symbol	Parameter	Condition ⁽¹⁾	Min. ⁽²⁾	Max.	Min. ⁽²⁾	Max.	Min.(2)	Max.	Unit
tPLH	Propagation Delay	CL = 50pF	1.5	8.5	1.5	5.6	1.5	5.1	ns
t PHL	Dx to Ox	$RL = 500\Omega$							
tPLH	Propagation Delay		2	15	2	9.8	2	8	ns
t PHL	LE to Ox								
tРZH	Output Enable Time		1.5	13.5	1.5	7.5	1.5	6.3	ns
tPZL									
tPHZ	Output Disable Time		1.5	10	1.5	6.5	1.5	5.9	ns
tPLZ									
ts∪	Set-up Time HIGH or LOW, Dx to LE		2	—	2	—	2	—	ns
tH	Hold Time HIGH or LOW, Dx to LE		1.5	—	1.5	—	1.5	—	ns
tw	LE Pulse Width HIGH ⁽³⁾		6	—	6	—	6	—	ns

NOTES:


1. See test circuit and waveforms.

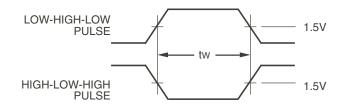
2. Minimum limits are guaranteed but not tested on Propagation Delays.


3. This parameter is guaranteed but not tested.

IDT54/74FCT373T/AT/CT FASTCMOSOCTALTRANSPARENTLAT(

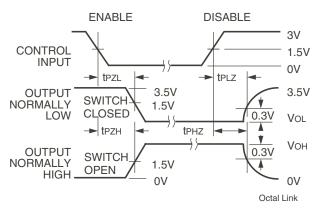
TEST CIRCUITS AND WAVEFORMS

Octal Link



Test	Switch
Open Drain	
Disable Low	Closed
Enable Low	
All Other Tests	Open

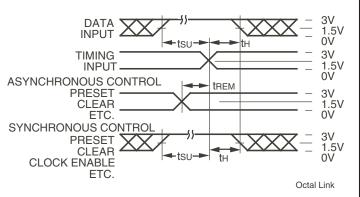
DEFINITIONS:


CL = Load capacitance: includes jig and probe capacitance.

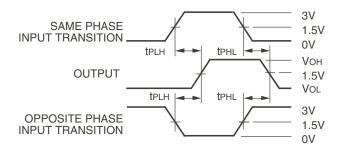
RT = Termination resistance: should be equal to ZOUT of the Pulse Generator.

Pulse Width

Octal Link

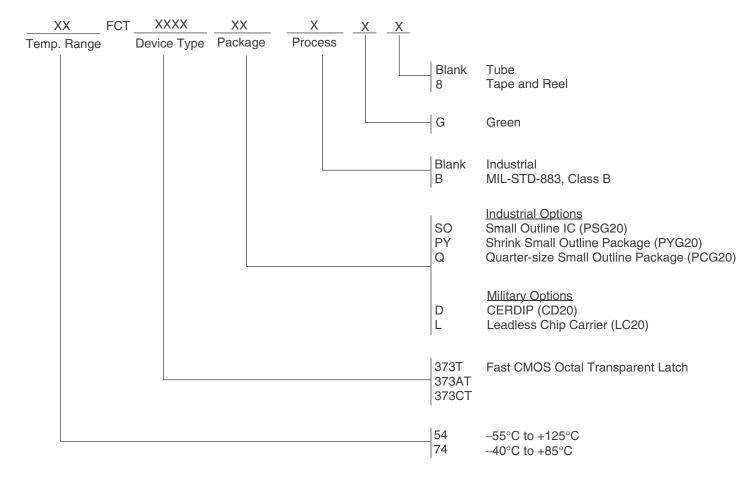


Enable and Disable Times


NOTES:

Octal Link

- 1. Diagram shown for input Control Enable-LOW and input Control Disable-HIGH.
- 2. Pulse Generator for All Pulses: Rate \leq 1.0MHz; tF \leq 2.5ns; tR \leq 2.5ns.



Set-Up, Hold, and Release Times

Propagation Delay

ORDERINGINFORMATION

Datasheet Document History

Pg. 7

Pg. 7

10/03/2009 12/01/2016 Updated tl

Updated the ordering information by removing the "IDT" notation and non RoHS part. Updated the ordering information by adding detailed package information and Tape & Reel.

IMPORTANT NOTICE AND DISCLAIMER

RENESAS ELECTRONICS CORPORATION AND ITS SUBSIDIARIES ("RENESAS") PROVIDES TECHNICAL SPECIFICATIONS AND RELIABILITY DATA (INCLUDING DATASHEETS), DESIGN RESOURCES (INCLUDING REFERENCE DESIGNS), APPLICATION OR OTHER DESIGN ADVICE, WEB TOOLS, SAFETY INFORMATION, AND OTHER RESOURCES "AS IS" AND WITH ALL FAULTS, AND DISCLAIMS ALL WARRANTIES, EXPRESS OR IMPLIED, INCLUDING, WITHOUT LIMITATION, ANY IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, OR NON-INFRINGEMENT OF THIRD PARTY INTELLECTUAL PROPERTY RIGHTS.

These resources are intended for developers skilled in the art designing with Renesas products. You are solely responsible for (1) selecting the appropriate products for your application, (2) designing, validating, and testing your application, and (3) ensuring your application meets applicable standards, and any other safety, security, or other requirements. These resources are subject to change without notice. Renesas grants you permission to use these resources only for development of an application that uses Renesas products. Other reproduction or use of these resources is strictly prohibited. No license is granted to any other Renesas intellectual property or to any third party intellectual property. Renesas disclaims responsibility for, and you will fully indemnify Renesas and its representatives against, any claims, damages, costs, losses, or liabilities arising out of your use of these resources. Renesas' products are provided only subject to Renesas' Terms and Conditions of Sale or other applicable terms agreed to in writing. No use o any Renesas resources expands or otherwise alters any applicable warranties or warranty disclaimers for these products.

(Disclaimer Rev.1.0 Mar 2020)

Corporate Headquarters

TOYOSU FORESIA, 3-2-24 Toyosu, Koto-ku, Tokyo 135-0061, Japan www.renesas.com

Trademarks

Renesas and the Renesas logo are trademarks of Renesas Electronics Corporation. All trademarks and registered trademarks are the property of their respective owners. **Contact Information**

For further information on a product, technology, the most up-to-date version of a document, or your nearest sales office, please visit: <u>www.renesas.com/contact/</u>