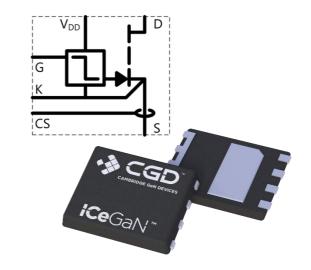


CGD65B200S2 DATASHEET

650 V / 200 mΩ GaN HEMT with ICeGaN™ Gate and Current Sense

DECEMBER 2022



650 V / 200 mΩ GaN HEMT with ICeGaN™ Gate and Current Sense

Key features

- 650 V 8.5 A e-mode GaN power switch
- ICeGaN™ gate technology for high gate threshold and broad gate voltage window compatible with gate-drivers and controllers for Si MOSFETs
- Gate drive voltage 9 V to 20 V
- Current sense function
- $R_{DS(on)} = 200 \text{ m}\Omega$
- Suitable for very high switching frequency
- Kelvin Contact
- Small 5x6 mm² PCB footprint
- Bottom side cooled DFN package

Description

The CGD65B200S2 is an enhancement mode GaN-on-silicon power transistor, exploiting the unique material properties of GaN to deliver high current, high breakdown voltage and high switching frequency for a wide range of electronics applications. The CGD65B200S2 features CGD's ICeGaN™ gate technology enabling compatibility with virtually all gate drivers and controller chips available. The integrated current sense function eliminates a separate current sense resistor and the associated efficiency losses. Because no external sense resistor is needed, the device can be directly soldered to the large copper area of the ground plane, improving the thermal performance and simplifying the thermal design. It comes in a DFN 5x6 SMD package to support high frequency operation while ensuring the highest thermal performance.

Application & Topologies

PSUs, Industrial SMPS and inverters

- Mobile chargers, fast-chargers
- AC adapters
- Notebook adapters, PC power
- Gaming PSUs
- LED lighting
- Class-D Audio
- TV and wireless power
- PV micro-inverters
- SMPS and converters in single-switch and halfbridge topologies with hard- or soft-switching
- DC/DC converters
- Quasi-resonant flyback and Active Clamp flyback
- Totem pole and single-switch PFC
- LLC and high frequency converters
- Class-E inverters

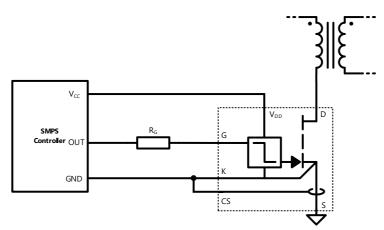
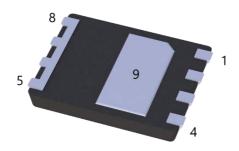



Figure 1. Exemplary Application Circuit

PIN	NAME	DESCRIPTION	
1	Kelvin Source	Kelvin source connection (internally tied to power HEMT source), reference	
		potential for gate voltage.	
2	Gate	Gate signal input.	
		Recommended gate-drive voltage: V_{drive} (V_{GS} in on-state) = 9 V to V_{DD} .	
3	Current Sense	Current sense output, relative to source, non-isolated.	
4	V_{DD}	ICeGaN™ gate supply voltage (recommended at 12 V), relative to source.	
5-8	Drain	Power HEMT drain	
9	Source	Power HEMT source, thermal pad	

Figure 2. Pin Configuration and Functions

Datasheet 1.0 – December 2022

Absolute Maximum Ratings

 T_{case} = 25 °C if not listed.

PARAMETER		VALUE	UNIT
Operating Junction Temperature	TJ	-55 to +150	°C
Storage Temperature Range	Ts	-55 to +150	°C
Drain-to-Source Voltage	V _{DS}	650	V
Drain-to-Source Voltage - transient 1	V _{DS(transient)}	750	V
Gate-to-Source Voltage	V _{GS}	-1 to +20	V
		and V _{GS} ≤ V _{DD}	
Gate-to-Source Voltage - transient ²	V _{GS(transient)}	-1.5 to +21.5 and	V
		$V_{GS} \leq V_{DD} + 1.5$	
Current Sense Voltage	V _{CS}	-1.5 to 1.5	V
ICeGaN™ Gate Supply Voltage	V _{DD}	0 to +20	V
Continuous Drain Current (T _{case} = 25 °C)	I _D	8.5	A

The recommended range of operation for V_{drive} (V_{GS} in on-state) and V_{DD} is 9 V to 20 V, enabling simple integration with a large variety of control chips and gate drivers.

Recommended maximum operating case temperature: T_{case} = 125 °C.

_

 $^{^{1}}$ Non-repetitive pulsed conditions, < 1 ms.

 $^{^{\}rm 2}$ Non-repetitive pulsed conditions.

Electrical Characteristics

Values at $T_J = 25$ °C, $V_{DD} = 12$ V if not listed. To turn the device on the recommended gate voltage range is $V_{GS} = 9$ V to V_{DD} . To turn the device off set $V_{GS} = 0$ V. An integrated Miller Clamp eliminates the need for negative gate voltages.

STATIC CHARACTERISTICS

PARAMETER		CONDITIONS	MIN	TYP	MAX	UNIT
Drain-to-Source Blocking Voltage	BV _{DS}	$V_{GS} = 0 \text{ V}, I_{DSS} = 5.5 \mu\text{A}$	650			V
Drain-to-Source On Resistance	R _{DS(on)}	$V_{GS} = 12 \text{ V}, I_D = 0.6 \text{ A}$		200	280	mΩ
Drain-to-Source On Resistance	R _{DS(on)}	T _J = 150 °C		530		mΩ
		$V_{GS} = 12 \text{ V}, I_D = 0.6 \text{ A}$				
Source-to-Drain Voltage	V _{SD(on)}	$V_{GS} = 0 \text{ V}, I_{D} = 0.6 \text{ A}$		2.0	3.7	V
Gate-to-Source Threshold	V _{GS(th)}	$V_{DS} = 0.1 \text{ V}, I_{D} = 2.75 \text{ mA}$	2.2	2.9	4.2	V
Gate-to-Source Threshold	V _{GS(th)}	T _J = 150 °C		2.6		V
		$V_{DS} = 0.1 \text{ V}, I_{D} = 2.75 \text{ mA}$				
Gate-to-Source Current	I _{GS}	$V_{GS} = 12 \text{ V}, V_{DS} = 0 \text{ V}$		2.8	3.7	mA
Gate-to-Source Current	I _{GS}	T _J = 150 °C		2.5		mA
		$V_{GS} = 12 \text{ V}, V_{DS} = 0 \text{ V}$				
V _{DD} current	I _{VDD}	$V_{GS} = 12 \text{ V}, V_{DS} = 0 \text{ V}$		1.8	2.8	mA
V _{DD} current	I _{VDD}	T _J = 150 °C		1.1		mA
		$V_{GS} = 12 \text{ V}, V_{DS} = 0 \text{ V}$				
Drain-to-Source Leakage Current	I _{DSS}	$V_{GS} = 0 \text{ V}, V_{DS} = 650 \text{ V}$		0.1	5.5	μΑ
Drain-to-Source Leakage Current	I _{DSS}	T _J = 150 °C		6		μΑ
		$V_{GS} = 0 \text{ V}, V_{DS} = 650 \text{ V}$				

DYNAMIC CHARACTERISTICS

PARAMETER		CONDITIONS	MIN	TYP	MAX	UNIT
Output Capacitance	Coss	$V_{DS} = 400 \text{ V}, V_{GS} = 0 \text{ V}$		14		pF
		f = 100 kHz				
Output Charge	Qoss	$V_{DS} = 400 \text{ V}, V_{GS} = 0 \text{ V}$		14		nC
Total Gate Charge ³	Q _G	$V_{DS} = 400 \text{ V}, V_{GS} = 012 \text{ V}$		1.4		nC
		I _D = 2.75 A, I _G =15 mA				
Reverse Recovery Charge	Q _{RR}	$I_S = 8 A, V_{DS} = 400 V$		0		nC
Turn-on delay time	t _{d(on)}	See Figure 17 and Figure 18		5		ns
Turn-off delay time	t _{d(off)}	See Figure 17 and Figure 18		13		ns
Rise time	t _r	See Figure 17 and Figure 18		4		ns
Fall time	t _f	See Figure 17 and Figure 18		4		ns

³ Turn-on gate charge value is listed. Turn-off gate charge value is lower, because ICeGaN™ gate discharges the gate internally.

_

Datasheet 1.0 – December 2022

CURRENT SENSING

Please refer to the application note CG-AN2206: Current Sensing with ICeGaN™. Please contact CGD for advice on the use of the current sense function.

ESD RATING

PARAMETER		CONDITIONS	MIN	TYP	MAX	UNIT
ESD withstand rating	НВМ	Human Body Model	2000			V
		(per JEDEC JS-001-2017)				

Thermal Characteristics

Typical values unless otherwise specified.

PARAMETER		CONDITIONS	VALUE	UNIT
Thermal resistance, junction to case	R _{th(JC)}		2.5	°C/W
Maximum reflow soldering temperature	T _{reflow}	MSL 1	260	°C

Figures

Figures at $T_J = 25$ °C, $V_{DD} = 12$ V if not specified.

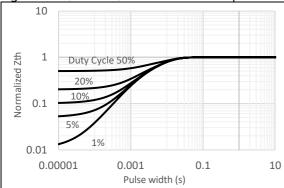


Figure 3. Normalized thermal transient impedance ($Z_{th,JC}$) as a function of pulse width.

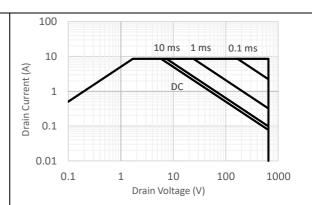


Figure 4. Safe Operating Area (SOA) based on thermal impedance $Z_{th,JC}$ at $T_{CASE} = 25$ °C.

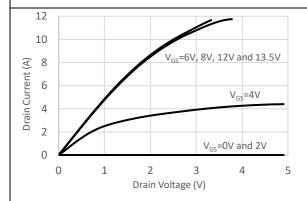


Figure 5. Forward output characteristics at $T_J = 25$ °C.

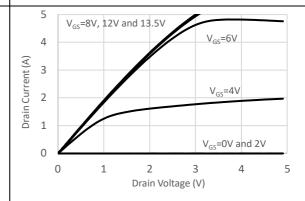
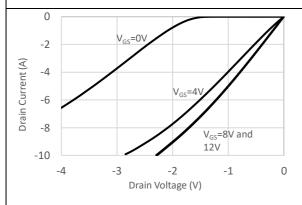



Figure 6. Forward output characteristic at $T_J = 150$ °C.

*Figure 7. Reverse output characteristics at T*_J = 25 °C.

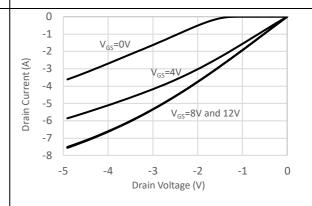


Figure 8. Reverse output characteristics at $T_J = 150$ °C.

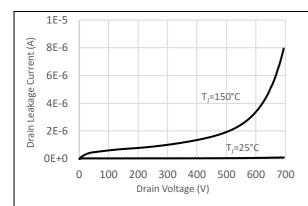


Figure 9. Drain leakage current characteristics at $T_J = 25$ °C and $T_J = 150$ °C.

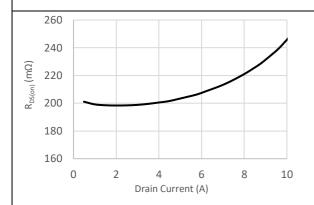
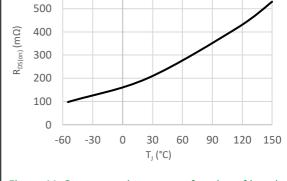



Figure 10. On-state resistance as a function of drain current at $T_J = 25$ °C.

600

Figure 11. On-state resistance as a function of junction temperature at $V_{GS} = 12 \text{ V}$.

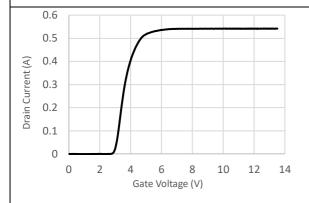


Figure 12. Transfer characteristics at $V_{DS} = 0.1 \text{ V}$, $T_J = 25 \text{ }^{\circ}\text{C}$.

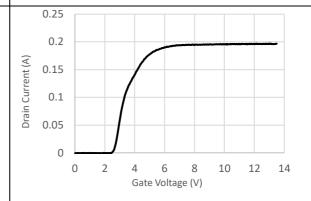


Figure 13. Transfer characteristics at $V_{DS} = 0.1 \text{ V}$, $T_J = 150 \text{ }^{\circ}\text{C}$.

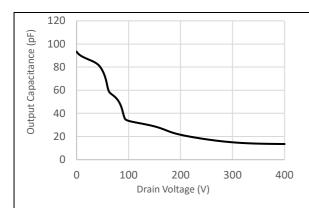


Figure 14. Typical output capacitance Coss vs. VDs at 100 kHz, $T_{J} = 25 \, {}^{\circ}\text{C}.$

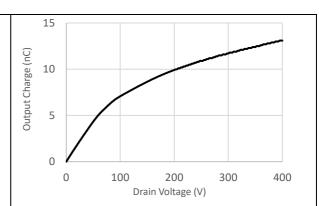


Figure 15. Typical output charge Qoss vs. VDs at 100 kHz, $T_{J} = 25 \, ^{\circ}\text{C}.$

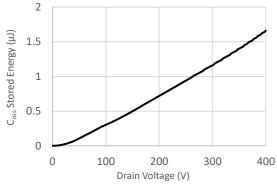
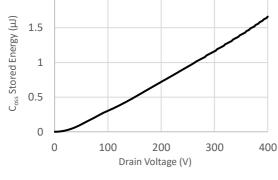



Figure 16. Typical Coss stored energy Eoss vs. V_{DS} at $T_J = 25$ °C.

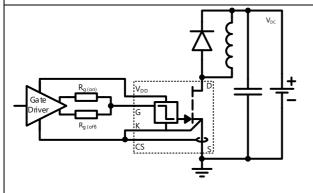


Figure 17. Inductive switching circuit. $I_D = 6$ A, $R_{g(on)} = 15 \Omega$, $R_{g(off)}=2~\Omega,~V_{DD}=12~V,~V_{DC}=400~V,~L=125~\mu H,$ diode = IDH04G65C5.

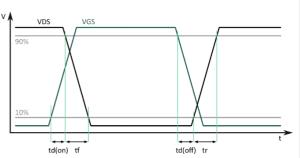


Figure 18. Switching waveform timing definitions.

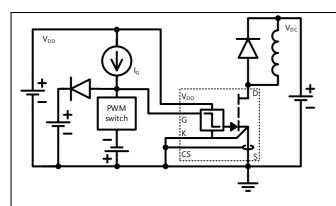


Figure 19. Q_G gate charge characterization circuit. I_G =15 mA, V_{DC} = 400 V, V_{DD} =12V, L = 125 μ H, freewheeling diode = IDH04G65C5.

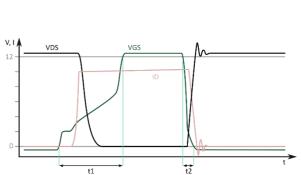
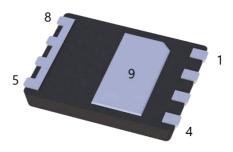
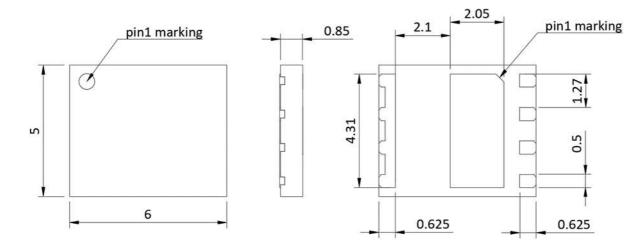


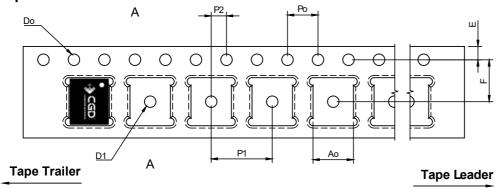
Figure 20. Q_G gate charge characterisation waveform at $I_G = 15$ mA and $V_{DD} = 12$ V. Time intervals t1 and t2 indicate the integration boundaries to calculate Q_G from I_G at turn-on and turn-off. Turn-off gate charge is lower than turn-on gate charge.

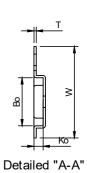



Packaging

DFN 5x6 mm.

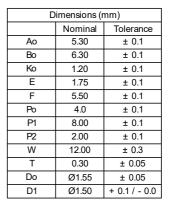
PIN NUMBER	NAME	
1	Kelvin Source	
2	Gate	
3	Current Sense	
4	V_{DD}	
5-8	Drain	
9	Source	

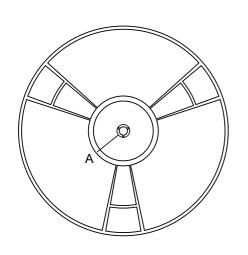


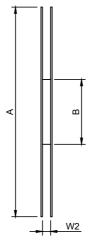


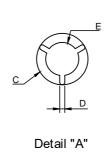
Like any unwanted electronic device, CGD components should be recycled or otherwise disposed of in accordance with local laws and regulations.

Tape and Reel Information






Tape Trailer - a minimum length of 160mm empty cavities sealed with cover tape. Tape Leader - a minimum length of 400mm empty cavities sealed with cover tape.


Isometric View

W1

13" Reel Dimensions (mm)							
	Min	Max					
W1		18.2					
W2	12.3	13.1					
Α	328.0	332.0					
В	100.0	104.0					
С	20.2						
D	1.5	2.5					
E	12.8	13.5					

Version History

This version is 1.0

THIS VERSION IS 1.0								
VERSION	DESCRIPTION	DATE	ВҮ					
1.0	Initial Release	December 2022	MA, AB, JZ					

Dare to innovate differently

Cambridge GaN Devices Limited Jeffreys Building, Suite 8 St John's Innovation Park Cambridge CB4 0DS

Disclaimer

Information presented here by Cambridge GaN Devices Limited is believed to be correct and accurate. Cambridge GaN Devices Limited shall not be liable to any recipient or third part for any damages, including (but not limited to) personal injury, property damage, loss of profits, loss of business opportunity, loss of use, interruption of business, or indirect, special, incidental or consequential damages of any kind in connection with, or arising from, the use or performance of the data herein.

No obligation or liability to the recipient or third part shall arise from Cambridge GaN Devices Limited providing technical or other services. CGD reserves the right to modify the products and/or specifications described herein at any time and at Cambridge GaN Devices' sole discretion. All information in this document, including descriptions of product features or performance, is subject to change without notice.