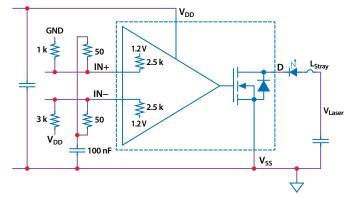

EPC21603 – 40 V, 15 A Peak, eToF[™] Laser Driver IC

EFFICIENT POWER CONVERSION


EPC21603

The EPC21603 is a laser driver that is controlled using LVDS logic at high frequencies of up to 100 MHz to modulate laser driving currents of up to 15 Amps. Full driver integration is achieved using EPC's proprietary GaN IC technology.

Wafer-level chip-scale packaging is used resulting in a BGA package that measures only 1.5×1 mm. The BGA package has low inductance and lays out very well with the laser system.

The EPC21603 uses a 5 V logic supply and is capable of interfacing to digital controllers. It can switch at frequencies exceeding 100 MHz.

Figure 1: Typical Connection Diagram

Absolute Maximum Ratings

Absolute maximum ratings indicate sustained limits beyond which damage to the device may occur. All voltage parameters are absolute voltages referenced to V_{SS} unless indicated otherwise.

Symbol	Definition	MIN	MAX	UNIT
V _D	Drain Voltage		40	
V _{DD}	Low Side Supply Voltage (V _{DD} to GND)	-0.3	5.5 V	
IN	Logic Input	-0.3	5	
I _D	Average Drain Current		1.7 A	
τ	Junction Temperature	-40	125 °C	
T _{STG}	Storage Temperature	-40	150	C


ESD Ratings

(Testing performed at EAG Lab. Need to get the relevant JEDEC specs for ESD ratings)

Symbol	Definition	MIN	UNIT	
HBW	Human-body model	+/-250	-250	
CDM	Charged-device model	n/a	v	

Thermal Characteristics

Symbol	Definition	MIN	UNIT
$R_{\theta JC}$	Thermal Resistance, Junction-to-Case	5.7	
R _{θJB}	Thermal Resistance, Junction-to-Board	23	°C/W
R _{0JA_JEDEC}	Thermal Resistance, Junction-to-Ambient (using JEDEC 51-2 PCB)	130	C/W
R _{0JA_EVB}	Thermal Resistance, Junction-to-Ambient (using EPC9156 EVB)	120	

Die size: 1.5 x 1 mm EPC21603 eGaN® FETs are supplied in passivated die form with solder bumps.

Features

- V_{Laser} operating range up to 30 V
- 15 Amp peak current
- Switching frequency greater than 100 MHz
- Typical voltage switching time 750 ps
- 5 V nominal logic power supply
- LVDS logic compatible input control
- 1.7 ns minimum output pulse width
- 4 ns delay time from input to output

Applications

- Time of flight measurement
- Gesture recognition
- Gaming
- Driver monitoring
- Robotic vision
- Industrial safety
- ToF module using VCEL laser for camera modules, laptops and smart phones

Scan QR code or click link below for more information including reliability reports, device models, demo boards!

https://l.ead.me/EPC21603

Recommended Operating Conditions

For proper operation the device should be used within the recommended conditions. All voltage parameters are absolute voltages referenced to $V_{\rm SS}$ unless indicated otherwise.

Symbol	Definition	MIN	ТҮР	MAX	UNIT
V _{Laser}	Laser Driver Voltage ⁵	5		30	
V _{DD}	Logic Supply Voltage ⁵		5		v

Truth Table

IN	Laser
$V(IN+) \le V(IN-), V_{CM} = 1.2 V$	Off
$V(IN+) > V(IN-), V_{CM} = 1.2 V$	On

Electrical Characteristics

All ratings at T_J = 25 °C. V_{Laser} = 20 V, I_D = 10 A, V_{DD} = 5 V, V_{CM} = 1.2 V, ΔV_{IN} = ±350 mV unless indicated otherwise.

Symbol	Definition	MIN	ТҮР	MAX	UNIT	
Operating	Operating Power Supply, V _{DD}					
I _{DD (Off)}	V _{DD} Quiescent current with laser driver off		10	16 m A		
I _{DD (30 MHz)}	Operating current off V _{DD}		50		mA	
Input Pins						
V _C ¹	Common mode voltage	0.8	1.2	1.4	V	
R _{IN}	Input pulldown resistance		5.5		kΩ	
V _{ITH+}	Positive-going differential input voltage			200		
V _{ITH-}	Negative-going differential input voltage	-200			mV	
Power Sta	ge					
R _{DS(on)} ¹	Drain to Source Resistance		40		mΩ	
I _{D(peak)} 1	Peak Laser Drive Current Capability, $f = 50 \text{ MHz}$	15			A	
C _{OSS} ¹	$V_{DS} = 20 V, V_{IN} = 0 V$		49		pF	
Q _{OSS} ¹	$V_{DS} = 20 V, V_{IN} = 0 V$		1.5		nC	
E _{OSS} ¹	$V_{DS} = 20 V, V_{IN} = 0 V$		13		nJ	
C _{OSS(ER)} 1,2	$V_{DS} = 0$ to 20 V, $V_{IN} = 0$ V		63		ъГ	
C _{OSS(TR)} ^{1,3}	$V_{DS} = 0$ to 20 V, $V_{IN} = 0$ V		73		pF	
Dynamic C	haracteristics					
t _{D(on)} 1	Turn on delay time		4.0	5.0		
t _F ¹	Drain fall time		0.78	1.2		
t _{D(off)} 1	Turn off delay time		3.4	4.0		
t _R ^{1,4}	Drain rise time		0.32		7	
t _{dPW} ¹	Pulse width distortion	-2.0	-0.7	0.7	ns	
t _{in(min(on))} ¹	Minimum input pulse width		2.5			
t _{On(Max)} ¹	Minimum drain pulse width		1.7			
t _{Off(Max)} ¹	Maximum on time		500			
f _{Max} ¹	Maximum frequency, 0 °C to 100 °C		100		mHz	

Pinout Description

Pin	Description	
V _{DD}	Input Voltage Supply (Decouple to GND with small, low inductance capacitor)	
IN+	Differential (LVDS) non-inverting input	
IN-	Differential (LVDS) inverting input	
D	Power Drain	
V _{SS}	Power Source and Signal Return, Internally Connected to Substrate	

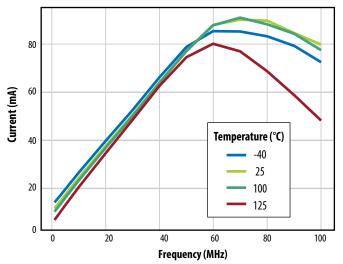
Notes:

1. Guaranteed by design, but not tested

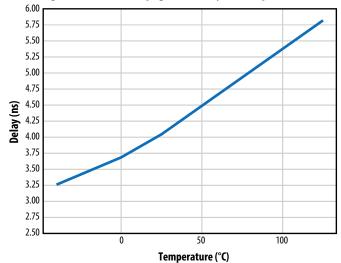
2. C_{OSS(ER)} is a fixed capacitance that gives the same stored energy as C_{OSS} while V_{DS} is rising from 0 to 50% BV_{DSS}

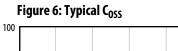
3. C_{OSS(TR)} is a fixed capacitance that gives the same charging time as C_{OSS} while V_{DS} is rising from 0 to 50% BV_{DSS}

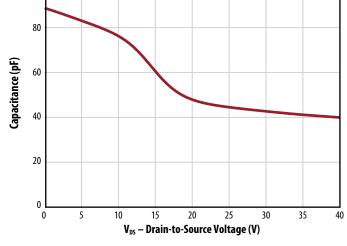
4. Drain rise time is determined by ZVS charging of the output capacitance


5. See Power Sequencing section in Applications Information for considerations on laser drive voltage

6. Paragraph 2.7 of AEC Q100-011 Rev. D, Jan. 29, 2019 states that CDM specification is not necessary on such a small device.


EPC21603


Performance Curves



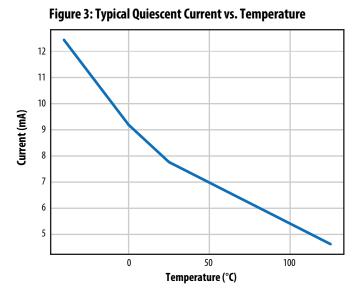


Figure 5: Turn Off Propagation Delay vs. Temperature

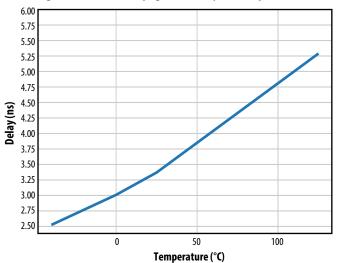
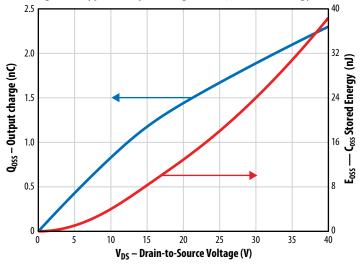




Figure 7: Typical Output Charge and C_{OSS} Stored Energy

Figure 8: Transient Thermal Impedance

0.01

0.001 10-6

10-5

10-4

Application Information

Safety Warning

This device is capable of driving laser diodes to generate high power optical pulses. Such pulses are capable of causing PERMANENT VISION DAMAGE AND BLINDNESS as well as additional injury or property damage. Laser diodes may emit infrared (IR) light that is invisible to the user, but which can still cause PERMANENT VISION DAMAGE AND BLINDNESS as well as additional injury or property damage. User is fully responsible for following proper laser safety procedures to prevent injury or damage.

10-3

t₁, Rectangular Pulse Duration, seconds

Notes:

Duty Factor: $D = t_1/t_2$ $Peak T_{J} = P_{DM} x Z_{\theta JC} x R_{\theta JC} + T_{C}$

10-2

t₂

10⁻¹

1

Power Sequencing

IN must be held low during power up sequence. For power up, V_{DD} must be applied before applying voltage to the drain to prevent possible unwanted turn on of the output. For power down, the order must be reversed.

Power Up	IN	V _{DD}	Drain
1	Off, $V_{CM} = 0 V$	0 V	0 V
2	Off, $V_{CM} = 1.2 V$	5 V	0 V
3	Off, $V_{CM} = 1.2 V$	5 V	V _{Laser Drive}
4	On, V _{CM} = 1.2 V	5 V	V _{Laser Drive}
Power Down	IN	V _{DD}	Drain
1	Off, $V_{CM} = 1.2 V$	5 V	V _{Laser Drive}
2	Off, $V_{CM} = 1.2 V$	5 V	0 V
3	Off, $V_{CM} = 0 V$	0 V	0 V

Application Information (continued)

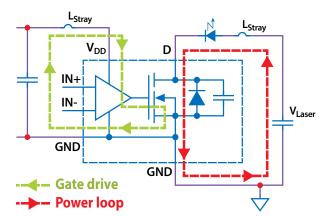
Layout and decoupling

Minimizing inductance in both power and gate drive loops is critical. The power loop is primary, and gate drive loop secondary. Short, wide traces are required, and returning in the second layer, using a thin dielectric will cancel much of the inductance. Using multiple ceramic capacitors in parallel will reduce stray inductance and impedance in the power loop. Use high quality NPO or COG capacitors for both power and gate drive. This will increase effective capacitance as capacitors with lower quality materials will lose much more capacitance with voltage. Recommended layout is shown below. Component recommendations for power and gate drive decoupling capacitors are shown in the EPC9156 demonstration board quick start guide.

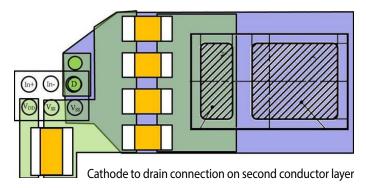
Turn off current is limited by the energy of the power loop stray inductance transferring to the C_{OSS} of the power FET of the laser driver. E_{OSS} vs. V_{DS} curve is in the datasheet.

Start up

 V_{DD} should be applied before the laser voltage. For applications where the laser voltage is below 10 V and at elevated temperatures, it may take a few pulses before the pulse width stabilizes.


Input logic

LVDS inputs are used with each input internally pulled to 1.2 V with 2.5 k Ω . For safety IN+ should be pulled to ground with 1 k Ω and IN- should be pulled to V_{DD} with 3 k Ω .


Output Capacitance

Output capacitance (C_{OSS}) is the capacitance between drain and ground. Output charge (Q_{OSS}) is the integral of output capacitance over voltage. Just like discrete power FETs, output capacitance is charged and discharged with each cycle. This takes time and dissipates power. Please refer to FET application notes to determine impact.

Figure 10: Recommended Layout

Figure 11: Parameter Measurement Test Circuits

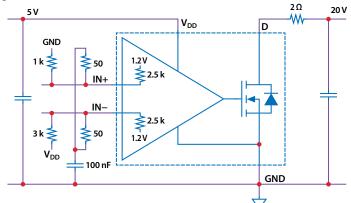
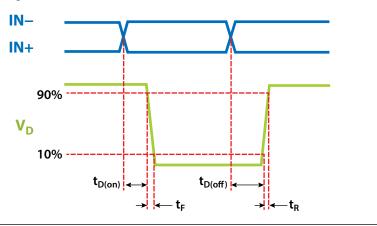
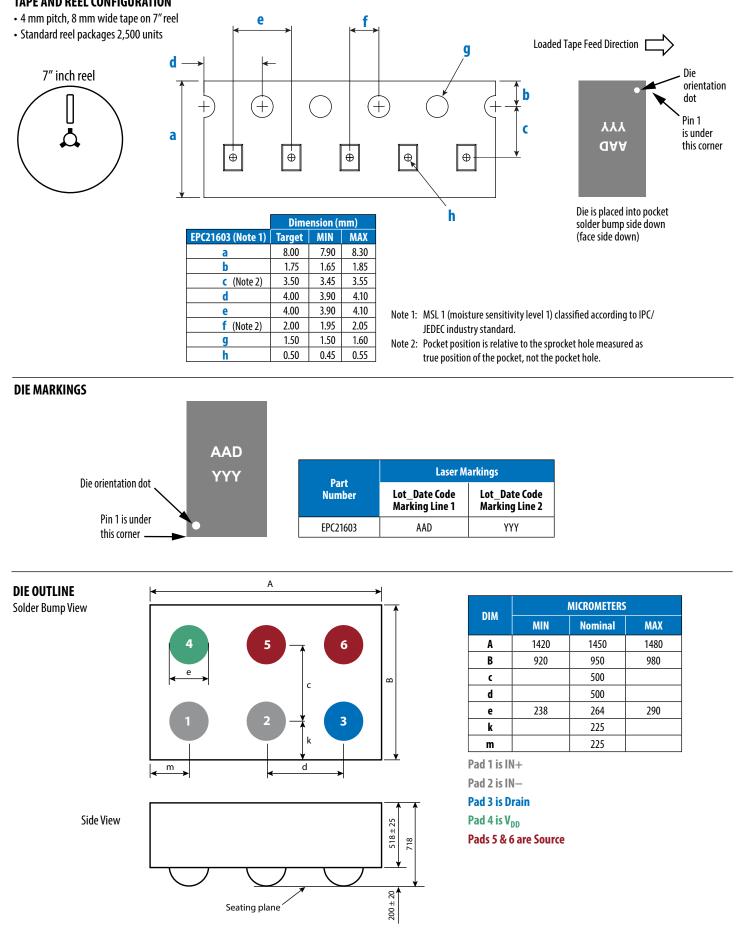
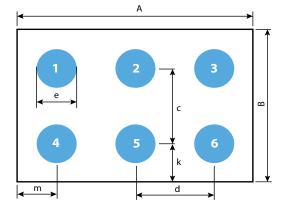




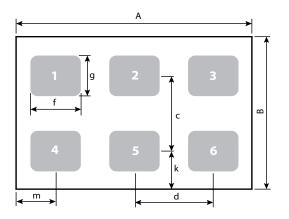
Figure 12: Parameter Measurement Definitions

EPC21603


TAPE AND REEL CONFIGURATION

EPC21603

RECOMMENDED LAND PATTERN



DIM	MICROMETERS		
A	1450		
В	950		
c	500		
d	d 500		
e	e 230		
k	225		
m 225			
Pad 1 is IN+			
Pad 2 is IN—			
Pad 3 is Drain			
Pad 4 is V _{DD}			
Daderoc			

Pads 5 & 6 are Source

RECOMMENDED STENCIL DRAWING

(measurements in μm)

DIM	MICROMETERS
A	1450
В	950
c	500
d	500
f	300
g	250
k	225
m	225

Recommended stencil should be 4mil (100 μm) thick, must be laser cut, opening per drawing.

The corner has a radius of R60

Intended for use with SAC305 Type 4 solder, reference 88.5% metals content.

Additional assembly resources available at

https://epc-co.com/epc/design-support/assemblybasics

Efficient Power Conversion Corporation (EPC) reserves the right to make changes without further notice to any products herein to improve reliability, function or design. EPC does not assume any liability arising out of the application or use of any product or circuit described herein; neither does it convey any license under its patent rights, nor the rights of others. eGaN[®] is a registered trademark of Efficient Power Conversion Corporation.

EPC Patent Listing: https://epc-co.com/epc/about-epc/patents

Information subject to change without notice. Revised June 2023