

Sample &

Buy

uA78M05, uA78M06, uA78M08 uA78M09, uA78M10, uA78M12, uA78M33

Support &

Community

2.2

SLVS059T-JUNE 1976-REVISED JANUARY 2015

µA78Mxx Positive-Voltage Regulators

Technical

Documents

Features 1

- **3-Terminal Regulators**
- Output Current up to 500 mA
- No External Components
- Internal Thermal-Overload Protection
- High Power-Dissipation Capability
- Internal Short-Circuit Current Limiting
- **Output Transistor Safe-Area Compensation**

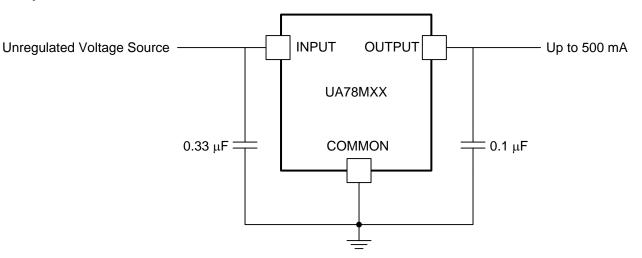
Applications 2

- **On-Card Regulation**
- Portable Devices
- **Computing & Servers**
- Telecommunications

3 Description

Tools &

Software


This series of fixed-voltage integrated-circuit voltage regulators is designed for a wide range of applications. The applications include on-card regulation for elimination of noise and distribution problems associated with single-point regulation. Each of these regulators can deliver up to 500 mA of output current. The internal current-limiting and thermal-shutdown features of these regulators essentially make them immune to overload. In addition to use as fixed-voltage regulators, these devices can be used with external components to obtain adjustable output voltages and currents and also as the power-pass element in precision regulators.

Device Information⁽¹⁾

PART NUMBER	PACKAGE	BODY SIZE (NOM)
	SOT-223 (3)	6.50 mm x 3.50 mm
UA78Mxx	TO-220 (3)	10.16 mm x 8.82 mm
	TO-252 (3)	6.60 mm x 6.10 mm

(1) For all available packages, see the orderable addendum at the end of the data sheet.

Simplified Schematic 4

Table of Contents

8

1	Feat	ures 1
2	App	lications 1
3	Desc	cription1
4	Sim	olified Schematic 1
5	Revi	sion History 2
6	Pin (Configuration and Functions 3
7		cifications 4
	7.1	Absolute Maximum Ratings 4
	7.2	ESD Ratings 4
	7.3	Recommended Operating Conditions 4
	7.4	Thermal Information 4
	7.5	Electrical Characteristics — uA78M33C 5
	7.6	Electrical Characteristics — uA78M33I 5
	7.7	Electrical Characteristics — uA78M05C 6
	7.8	Electrical Characteristics — uA78M05I 6
	7.9	Electrical Characteristics — uA78M06C 7
	7.10	Electrical Characteristics — uA78M08C 7
	7.11	Electrical Characteristics — uA78M09C 8
	7.12	Electrical Characteristics — uA78M10C 8
	7.13	Electrical Characteristics — uA78M12C 9

5 **Revision History**

	Changes from Revision Q (April 2010) to Revision R Pag					
•	Removed Ordering Information table.	1				
С	Changes from Revision R (February 2013) to Revision S Pag	е				
•	Added Applications, Device Information table, Pin Functions table, ESD Ratings table, Thermal Information table, Typical Characteristics, Feature Description section, Device Functional Modes, Application and Implementation section, Power Supply Recommendations section, Layout section, Device and Documentation Support section, and Mechanical, Packaging, and Orderable Information section.					

EXAS **ISTRUMENTS**

www.ti.com

8.4 Device Functional Modes...... 10 Application and Implementation 11 9 9.1 Application Information..... 11 9.2 Typical Application 11 10 Power Supply Recommendations 13 11.1 Layout Guidelines 13 Layout Example 13 11.2 12 Device and Documentation Support 14 12.1 Related Links 14 12.2 Trademarks 14 12.3 Electrostatic Discharge Caution 14 12.4 Glossary..... 14

Mechanical, Packaging, and Orderable

Information 14

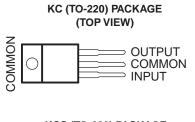
Detailed Description 10

8.2 Functional Block Diagram 10

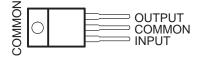
8.3 Feature Description...... 10

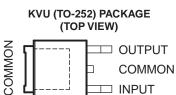
13

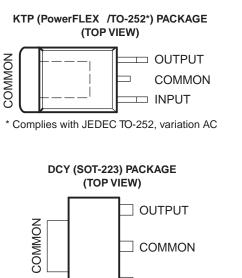
Changes from Revision S (May 2013) to Revision T


•	Removed obsolete part information from document.	1

Copyright © 1976-2015, Texas Instruments Incorporated


Page




6 Pin Configuration and Functions

KCS (TO-220) PACKAGE (TOP VIEW)

3

Pin Functions

	PIN	ТҮРЕ	DESCRIPTION	
NAME	NO.	ITFE	DESCRIPTION	
COMMON	2	—	Ground	
INPUT	1	I	Supply Input	
OUTPUT	3	0	Voltage Output	

7 Specifications

7.1 Absolute Maximum Ratings

over virtual junction temperature range (unless otherwise noted) ⁽¹⁾

		MIN	MAX	UNIT
VI	Input voltage		35	V
TJ	Operating virtual junction temperature		150	°C
T _{stg}	Storage temperature range	-65	150	°C

(1) Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under Recommended Operating Conditions is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

7.2 ESD Ratings

			VALUE	UNIT
		Human body model (HBM), per ANSI/ESDA/JEDEC JS-001, all pins ⁽¹⁾	2500	
V _(ESD)	Electrostatic discharge	Charged device model (CDM), per JEDEC specification JESD22-C101, all pins $^{\rm (2)}$	2000	V

(1) JEDEC document JEP155 states that 500-V HBM allows safe manufacturing with a standard ESD control process.

(2) JEDEC document JEP157 states that 250-V CDM allows safe manufacturing with a standard ESD control process.

7.3 Recommended Operating Conditions

			MIN	MAX	UNIT
VI		uA78M33	5.3	25	
		uA78M05	7	25	
		uA78M06	8	25	
		uA78M08	10.5	25	V
	Input voltage	uA78M09	11.5	26	
		uA78M10	12.5	28	
		uA78M12	14.5	30	
		uA78M15	17.5	30	
lo	Output current			500	mA
т	Operating virtual junction temperature	uA78MxxC	0	125	°C
TJ	Operating virtual junction temperature	uA78MxxI	-40	125	-0

7.4 Thermal Information

		UA78Mxx					
	THERMAL METRIC ⁽¹⁾	DCY	КС	KCS	КТР	KVU	UNIT
		3 PINS	3 PINS	3 PINS	3 PINS	3 PINS	
$R_{\theta JA}$	Junction-to-ambient thermal resistance	53	19	19	28	30.3	
R _{θJC(to}	Junction-to-case (top) thermal resistance	30.6	17	17	19	—	°C/W
R _{θJC(b}	Junction-to-case (bottom) thermal resistance	_	3	3	1.4	_	

(1) For more information about traditional and new thermal metrics, see the IC Package Thermal Metrics application report, SPRA953.

4

Product Folder Links: uA78M05 uA78M06 uA78M08 uA78M09 uA78M10 uA78M12 uA78M33

7.5 Electrical Characteristics — uA78M33C

at specified virtual junction temperature, V_I = 8 V, I_O = 350 mA, T_J = 25°C (unless otherwise noted)

DADAMETEDO		TEST CONDIT		uA	78M330)	LINUT
PARAMETER0		TEST CONDIT	IONS	MIN	TYP	MAX	UNIT
Output voltage ⁽²⁾	I _O = 5 mA to 350	mA,		3.2	3.3	3.4	v
	$V_{1} = 8 V \text{ to } 20 V$		$T_J = 0^{\circ}C$ to $125^{\circ}C$	3.1	3.3	3.5	v
Input voltage regulation	L 200 mA		V _I = 5.3 V to 25 V		9	100	m\/
Input voltage regulation	I _O = 200 mA		$V_I = 8 V$ to 25 V		3	50	mV
Pipple rejection	V _I = 8 V to 18 V,		I_{O} = 100 mA, T_{J} = 0°C to 125°C	62			dD
Ripple rejection	f = 120 Hz		I _O = 300 mA	62	80		dB
Output voltage regulation	$V_{I} = 8 V,$		$I_{O} = 5 \text{ mA to } 500 \text{ mA}$		20	100	mV
Temperature coefficient of output voltage	I _O = 5 mA,		$T_J = 0^{\circ}C$ to 125°C		-1		mV/°C
Output noise voltage	f = 10 Hz to 100 k	Hz			40	200	μV
Dropout voltage					2		V
Bias current					4.5	6	mA
Dies summent shares	I _O = 200 mA,	$V_{I} = 8 V \text{ to } 25 V,$	$T_J = 0^{\circ}C$ to $125^{\circ}C$			0.8	
Bias current change	I _O = 5 mA to 350 mA,		$T_J = 0^{\circ}C$ to $125^{\circ}C$		0.5		mA
Short-circuit output current	V _I = 35 V				300		mA
Peak output current					700		mA

All characteristics are measured with a 0.33-µF capacitor across the input and a 0.1-µF capacitor across the output. Pulse-testing (1) techniques maintain T_J as close to T_A as possible. Thermal effects must be taken into account separately.

(2)This specification applies only for dc power dissipation permitted by Absolute Maximum Ratings.

7.6 Electrical Characteristics — uA78M33I

at specified virtual junction temperature, $V_I = 8 V$, $I_O = 350 mA$, $T_J = 25^{\circ}C$ (unless otherwise noted)

DADAMETED		TEST CONDIT		uA	78M33	I	UNIT	
PARAMETER		TEST CONDIT	IONS	MIN	TYP	MAX	UNIT	
Output voltage ⁽²⁾	$I_{O} = 5 \text{ mA to } 350$	mA,		3.2	3.3	3.4	V	
	$V_{I} = 8 V \text{ to } 20 V$		$T_J = -40^{\circ}C$ to $125^{\circ}C$	3.1	3.3	3.5	v	
Input valtage regulation	1 200 mA		$V_{I} = 5.3 V$ to 25 V		9	100	mV	
Input voltage regulation	I _O = 200 mA		$V_I = 8 V$ to 25 V		3	50	mv	
Ripple rejection	$V_{I} = 8 V \text{ to } 18 V,$		$I_{O} = 100 \text{ mA}, T_{J} = -40^{\circ}\text{C} \text{ to}$ 125°C	62		MAX 3 3.4 3 3.5 0 100 3 50 0 100 0 200 2 6 0 8 0 0.5	dB	
	f = 120 Hz		I _O = 300 mA	62	80			
Output voltage regulation	$V_{I} = 8 V,$		$I_{O} = 5 \text{ mA to } 500 \text{ mA}$		20	100	mV	
Temperature coefficient of output voltage	I _O = 5 mA,		$T_J = -40^{\circ}C$ to $125^{\circ}C$		-1		mV/°C	
Output noise voltage	f = 10 Hz to 100 k	κHz			40	200	μV	
Dropout voltage					2		V	
Bias current					4.5	6	mA	
Diag ourrent change	I _O = 200 mA,	$V_1 = 8 V \text{ to } 25 V,$	$T_J = -40^{\circ}C$ to $125^{\circ}C$			0.8	mA	
Bias current change	$I_{\rm O} = 5 \text{ mA to } 350$	mA,	$T_J = -40^{\circ}C$ to $125^{\circ}C$			0.5	ma	
Short-circuit output current	V _I = 35 V				300		mA	
Peak output current					700		mA	

(1) All characteristics are measured with a 0.33-µF capacitor across the input and a 0.1-µF capacitor across the output. Pulse-testing techniques maintain T_J as close to T_A as possible. Thermal effects must be taken into account separately. This specification applies only for dc power dissipation permitted by *Absolute Maximum Ratings*.

(2)

STRUMENTS

XAS

7.7 Electrical Characteristics — uA78M05C

at specified virtual junction temperature, V_I = 10 V, I_O = 350 mA, T_J = 25°C (unless otherwise noted)

DADAMETED	TEST CONDITIONS ⁽¹⁾			uA78M05C			
PARAMETER	IES	CONDITIONS "	MIN	ТҮР	MAX	UNIT	
Output voltage ⁽²⁾	I _O = 5 mA to 350 mA,		4.8	5	5.2	V	
	$V_1 = 7 V \text{ to } 20 V$	$T_J = 0^{\circ}C$ to $125^{\circ}C$	4.75		5.25	v	
	L 000 m A	V _I = 7 V to 25 V		3	100		
Input voltage regulation	l _O = 200 mA	V _I = 8 V to 25 V		1	50	mV	
Ripple rejection	$V_1 = 8 V \text{ to } 18 V,$	$I_{O} = 100 \text{ mA}, T_{J} = 0^{\circ}\text{C} \text{ to } 125^{\circ}\text{C}$	62			dB	
	f = 120 Hz	I _O = 300 mA	62	80			
	$I_{O} = 5 \text{ mA to } 500 \text{ mA}$		20 100				
Output voltage regulation	I _O = 5 mA to 200 mA			10	50	mV	
Temperature coefficient of output voltage	I _O = 5 mA,	$T_J = 0^{\circ}C$ to $125^{\circ}C$		-1		mV/°C	
Output noise voltage	f = 10 Hz to 100 kHz			40	200	μV	
Dropout voltage				2		V	
Bias current				4.5	6	mA	
D'a a summa da basa sa	$I_{O} = 200 \text{ mA}, V_{I} = 8 \text{ V to } 25 \text{ V}, T_{J} = 0^{\circ}\text{C to } 125^{\circ}\text{C}$				0.8		
Bias current change	$I_{O} = 5 \text{ mA to } 350 \text{ mA},$	$T_{\rm J} = 0^{\circ}C$ to $125^{\circ}C$			0.5	mA	
Short-circuit output current	V ₁ = 35 V			300		mA	
Peak output current				0.7		А	

All characteristics are measured with a 0.33-µF capacitor across the input and a 0.1-µF capacitor across the output. Pulse-testing (1) techniques maintain T_J as close to T_A as possible. Thermal effects must be taken into account separately.

This specification applies only for dc power dissipation permitted by Absolute Maximum Ratings. (2)

7.8 Electrical Characteristics — uA78M05I

at specified virtual junction temperature, $V_I = 10$ V, $I_O = 350$ mA, $T_J = 25^{\circ}C$ (unless otherwise noted)

PARAMETER	TEOL	CONDITIONS ⁽¹⁾	u	A78M0	UNIT	
PARAMETER	IESI	CONDITIONS	MIN	ТҮР	MAX	UNIT
Output voltage ⁽²⁾	I _O = 5 mA to 350 mA,		4.8	5	5.2	V
Output voltage	$V_{I} = 7 V$ to 20 V	$T_J = -40^{\circ}C$ to $125^{\circ}C$	4.75		5.25	v
	L 000 A	$V_I = 7 V$ to 25 V		3	100	
Input voltage regulation	I _O = 200 mA	V _I = 8 V to 25 V		1	50	mV
Diamle rejection	$V_{I} = 8 V \text{ to } 18 V,$	I _O = 100 mA, T _J = -40°C to 125°C	62			dB
Ripple rejection	f = 120 Hz	I _O = 300 mA	62	80		aв
Output voltage	I _O = 5 mA to 500 mA			20	100	
regulation	I _O = 5 mA to 200 mA			10	50	mV
Temperature coefficient of output voltage	I _O = 5 mA,	$T_J = -40^{\circ}C$ to $125^{\circ}C$		-1		mV/°C
Output noise voltage	f = 10 Hz to 100 kHz			40	200	μV
Dropout voltage				2		V
Bias current				4.5	6	mA
Dies summert skanne	$I_{O} = 200 \text{ mA}, \qquad V_{I} = 8 \text{ V to } 25 \text{ V}$	$T_{\rm J} = -40^{\circ}{\rm C} \text{ to } 125^{\circ}{\rm C}$			0.8	
Bias current change	I _O = 5 mA to 350 mA,	$T_{J} = -40^{\circ}C$ to 125°C			0.5	mA
Short-circuit output current	V ₁ = 35 V			300		mA
Peak output current				0.7		А

All characteristics are measured with a 0.33-µF capacitor across the input and a 0.1-µF capacitor across the output. Pulse-testing (1) techniques maintain T_J as close to T_A as possible. Thermal effects must be taken into account separately. This specification applies only for dc power dissipation permitted by *Absolute Maximum Ratings*.

(2)

6

7.9 Electrical Characteristics — uA78M06C

at specified virtual junction temperature, V_I = 11 V, I_O = 350 mA, T_J = 25°C (unless otherwise noted)

		uA	78M06	6C			
PARAMETER		TEST CONDITIONS	(')	MIN	TYP	MAX	UNIT
Output voltage ⁽²⁾	$1 5 m \Lambda to 250 m \Lambda$	V _I = 8 V to 21 V		5.75	6	6.25	v
	I _O = 5 mA to 350 mA,	$v_1 = 0 v (0 21 v)$	$T_J = 0^{\circ}C$ to $125^{\circ}C$	5.7		6.3	v
Input voltage regulation	1 200 mA	$V_I = 8 V \text{ to } 25 V$			5	100	mV
Input voltage regulation	l _O = 200 mA	$V_I = 9 V \text{ to } 25 V$			1.5	50	mv
Ripple rejection	V _I = 8 V to 18 V,	f = 120 Hz	I _O = 100 mA, T _J = 0°C to 125°C	59			dB
			I _O = 300 mA	59	80		
Output voltage regulation	$I_{O} = 5 \text{ mA to } 500 \text{ mA}$				20	120	mV
Output voltage regulation	$I_{O} = 5 \text{ mA to } 200 \text{ mA}$				10	60	mv
Temperature coefficient of output voltage	I _O = 5 mA,	$T_J = 0^{\circ}C$ to $125^{\circ}C$			-1		mV/°C
Output noise voltage	f = 10 Hz to 100 kHz				45		μV
Dropout voltage					2		V
Bias current					4.5	6	mA
Diag ourrent change	$V_{I} = 9 V \text{ to } 25 V,$	I _O = 200 mA,	$T_J = 0^{\circ}C$ to $125^{\circ}C$			0.8	~^
Bias current change	I _O = 5 mA to 350 mA,	$T_J = 0^{\circ}C$ to $125^{\circ}C$				0.5	mA
Short-circuit output current	V ₁ = 35 V				270		mA
Peak output current					0.7		Α

(1) All characteristics are measured with a $0.33 + \mu$ capacitor across the input and a $0.1 + \mu$ capacitor across the output. Pulse-testing techniques maintain T_J as close to T_A as possible. Thermal effects must be taken into account separately.

(2) This specification applies only for dc power dissipation permitted by Absolute Maximum Ratings.

7.10 Electrical Characteristics — uA78M08C

at specified virtual junction temperature, $V_1 = 14$ V, $I_0 = 350$ mA, $T_J = 25^{\circ}C$ (unless otherwise noted)

DADAMETER		uA	78M08	3C			
PARAMETER		TEST CONDITIONS ⁽¹⁾		MIN	ТҮР	MAX	UNIT
Output voltage ⁽²⁾				7.7	8	8.3	V
	V _I = 10.5 V to 23 V,	$I_{O} = 5 \text{ mA to } 350 \text{ mA}$	$T_J = 0^{\circ}C$ to $125^{\circ}C$	7.6		8.4	v
Input voltage regulation	L 200 mA	V _I = 10.5 V to 25 V			6	100	mV
Input voltage regulation	I _O = 200 mA	$V_{I} = 11 V \text{ to } 25 V$			2	50	mv
Ripple rejection	V _I = 11 V to 21.5 V,	I _O = 100 mA,	$T_J = 0^{\circ}C$ to $125^{\circ}C$	56			dB
	f = 120 Hz	I _O = 300 mA		56	80		ub
Output valtage regulation	$I_{O} = 5 \text{ mA to } 500 \text{ mA}$				25	160	m\/
Output voltage regulation	$I_{O} = 5 \text{ mA to } 200 \text{ mA}$				10	80	mV
Temperature coefficient of output voltage	I _O = 5 mA,	$T_J = 0^{\circ}C$ to $125^{\circ}C$			-1		mV/°C
Output noise voltage	f = 10 Hz to 100 kHz				52		μV
Dropout voltage					2		V
Bias current					4.6	6	mA
Diag ourrent change	$V_{I} = 10.5 V \text{ to } 25 V,$	I _O = 200 mA,	$T_J = 0^{\circ}C$ to $125^{\circ}C$			0.8	~
Bias current change	$I_{O} = 5 \text{ mA to } 350 \text{ mA},$	$T_J = 0^{\circ}C$ to $125^{\circ}C$				0.5	mA
Short-circuit output current	V _I = 35 V				250		mA
Peak output current					0.7		А

(1) All characteristics are measured with a $0.33 - \mu$ F capacitor across the input and a $0.1 - \mu$ F capacitor across the output. Pulse-testing techniques maintain T_J as close to T_A as possible. Thermal effects must be taken into account separately.

(2) This specification applies only for dc power dissipation permitted by *Absolute Maximum Ratings*.

7.11 Electrical Characteristics — uA78M09C

at specified virtual junction temperature, $V_1 = 16 \text{ V}$, $I_0 = 350 \text{ mA}$, $T_J = 25^{\circ}\text{C}$ (unless otherwise noted)

DADAMETED		uA	78M09	OC	UNIT		
PARAMETER		TEST CONDITIONS ⁽¹⁾		MIN	TYP	MAX	UNIT
Output voltage ⁽²⁾	$V_1 = 11.5 V$ to 24 V,	$I_{O} = 5 \text{ mA to } 350 \text{ mA}$		8.6	9	9.4	v
Output voltage	$v_{\rm I} = 11.5 \ v_{\rm I} \ 0 \ 24 \ v_{\rm I}$	$I_0 = 5 \text{ IIA to 550 IIA}$	$T_J = 0^{\circ}C$ to $125^{\circ}C$	8.5		9.5	v
Input voltage regulation	I _O = 200 mA	$V_{I} = 11.5 \text{ V to } 26 \text{ V}$			6	100	mV
Input voltage regulation	$I_0 = 200 \text{ mA}$	$V_{I} = 12 V \text{ to } 26 V$			2	50	mv
Dipple rejection	$V_{I} = 13 V \text{ to } 23 V,$	I _O = 100 mA,	$T_J = 0^{\circ}C$ to $125^{\circ}C$	56			dB
Ripple rejection	f = 120 Hz	I _O = 300 mA		56	80		uБ
Output voltage regulation	$I_{O} = 5 \text{ mA to } 500 \text{ mA}$				25	180	mV
Output voltage regulation	$I_{O} = 5 \text{ mA to } 200 \text{ mA}$				10	90	IIIV
Temperature coefficient of output voltage	I _O = 5 mA,	$T_J = 0^{\circ}C$ to $125^{\circ}C$			-1		mV/°C
Output noise voltage	f = 10 Hz to 100 kHz				58		μV
Dropout voltage					2		V
Bias current					4.6	6	mA
Diag ourrent change	V _I = 11.5 V to 26 V,	I _O = 200 mA,	$T_J = 0^{\circ}C$ to $125^{\circ}C$			0.8	~ ^
Bias current change	$I_{O} = 5 \text{ mA to } 350 \text{ mA},$	$T_J = 0^{\circ}C$ to $125^{\circ}C$				0.5	mA
Short-circuit output current	V _I = 35 V				250		mA
Peak output current					0.7		А

(1) All characteristics are measured with a $0.33-\mu$ F capacitor across the input and a $0.1-\mu$ F capacitor across the output. Pulse-testing techniques maintain T_J as close to T_A as possible. Thermal effects must be taken into account separately.

(2) This specification applies only for dc power dissipation permitted by Absolute Maximum Ratings.

7.12 Electrical Characteristics — uA78M10C

at specified virtual junction temperature, $V_1 = 17$ V, $I_0 = 350$ mA, $T_J = 25^{\circ}C$ (unless otherwise noted)

DADAMETER				uA	78M10	C	UNIT
PARAMETER		TEST CONDITIONS ⁽¹⁾		MIN	TYP	MAX	UNIT
Output voltage ⁽²⁾				9.6	10	10.4	v
	V _I = 12.5 V to 25 V,	$I_{O} = 5 \text{ mA to } 350 \text{ mA}$	$T_J = 0^{\circ}C$ to $125^{\circ}C$	9.5		10.5	v
Input voltage regulation	L 200 mA	$V_{I} = 12.5 V \text{ to } 28 V$			7	100	m\/
Input voltage regulation	l _O = 200 mA	$V_{I} = 14 V \text{ to } 28 V$			2	50	mV
Pipple rejection	$V_{I} = 15 V \text{ to } 25 V,$	I _O = 100 mA,	$T_J = 0^{\circ}C$ to $125^{\circ}C$	59			dB
Ripple rejection	f = 120 Hz	I _O = 300 mA		55	80		uв
Output voltage regulation	$I_{O} = 5 \text{ mA to } 500 \text{ mA}$				25	200	mV
Output voltage regulation	$I_{O} = 5 \text{ mA to } 200 \text{ mA}$				10	100	IIIV
Temperature coefficient of output voltage	I _O = 5 mA,	$T_J = 0^{\circ}C$ to $125^{\circ}C$			-1		mV/°C
Output noise voltage	f = 10 Hz to 100 kHz				64		μV
Dropout voltage					2		V
Bias current					4.7	6	mA
Diag ourrent change	V _I = 12.5 V to 28 V,	I _O = 200 mA,	$T_J = 0^{\circ}C$ to $125^{\circ}C$			0.8	mA
Bias current change	$I_{O} = 5 \text{ mA to } 350 \text{ mA},$	$T_J = 0^{\circ}C$ to $125^{\circ}C$				0.5	ШA
Short-circuit output current	V _I = 35 V				245		mA
Peak output current					0.7		Α

(1) All characteristics are measured with a $0.33 + \mu$ capacitor across the input and a $0.1 + \mu$ capacitor across the output. Pulse-testing techniques maintain T_J as close to T_A as possible. Thermal effects must be taken into account separately.

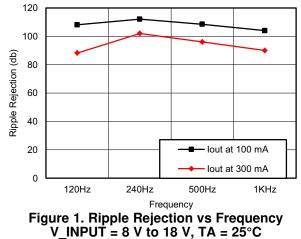
(2) This specification applies only for dc power dissipation permitted by *Absolute Maximum Ratings*.

8

9

www.ti.com

7.13 Electrical Characteristics — uA78M12C

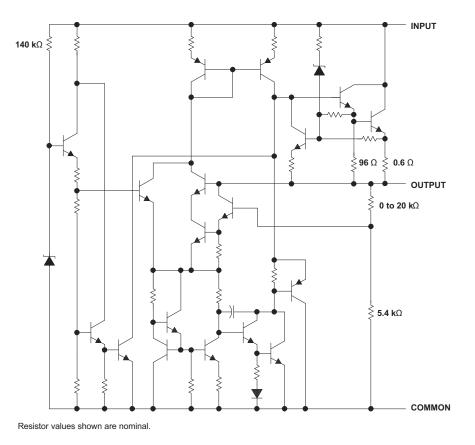

at specified virtual junction temperature, V_I = 19 V, I_O = 350 mA, T_J = 25°C (unless otherwise noted)

DADAMETED		TEST CONDITIONS ⁽¹⁾		uA	78M12	2C	UNIT
PARAMETER		TEST CONDITIONS		MIN	TYP	MAX	UNIT
Output voltage ⁽²⁾	V ₁ = 14.5 V to 27 V,	I _O = 5 mA to 350 mA		11.5	12	12.5	v
Output Voltage	$v_{\parallel} = 14.5 v (0.27 v),$	$I_0 = 5 \text{ IIIA to 550 IIIA}$	$T_J = 0^{\circ}C$ to $125^{\circ}C$	11.4		12.6	v
Input voltage regulation	L 200 mA	$V_{I} = 14.5 V \text{ to } 30 V$			8	100	mV
input voltage regulation	I _O = 200 mA	$V_I = 16 V$ to 30 V			2	50	ШV
Dipplo rejection	$V_{I} = 15 V \text{ to } 25 V,$	$I_{O} = 100 \text{ mA},$	$T_J = 0^{\circ}C$ to $125^{\circ}C$	55			dB
Ripple rejection	f = 120 Hz	I _O = 300 mA		55	80		uВ
	$I_{O} = 5 \text{ mA to } 500 \text{ mA}$				25	240	mV
Output voltage regulation	$I_{O} = 5 \text{ mA to } 200 \text{ mA}$				10	120	mv
Temperature coefficient of output voltage	I _O = 5 mA,	$T_J = 0^{\circ}C$ to $125^{\circ}C$			-1		mV/°C
Output noise voltage	f = 10 Hz to 100 kHz				75		μV
Dropout voltage					2		V
Bias current					4.8	6	mA
Diag ourrent change	V _I = 14.5 V to 30 V,	I _O = 200 mA,	$T_J = 0^{\circ}C$ to $125^{\circ}C$			0.8	
Bias current change	$I_{O} = 5 \text{ mA to } 350 \text{ mA},$	$T_J = 0^{\circ}C$ to $125^{\circ}C$				0.5	mA
Short-circuit output current	V _I = 35 V				240		mA
Peak output current					0.7		А

(1) All characteristics are measured with a $0.33-\mu$ F capacitor across the input and a $0.1-\mu$ F capacitor across the output. Pulse-testing techniques maintain T_J as close to T_A as possible. Thermal effects must be taken into account separately.

(2) This specification applies only for dc power dissipation permitted by Absolute Maximum Ratings.

7.14 Typical Characteristics


TEXAS INSTRUMENTS

8 Detailed Description

8.1 Overview

This series of fixed-voltage integrated-circuit voltage regulators is designed for a wide range of applications. The applications include on-card regulation for elimination of noise and distribution problems associated with single-point regulation. Each of these regulators can deliver up to 500 mA of output current. The internal current-limiting and thermal-shutdown features of these regulators essentially make them immune to overload. In addition to use as fixed-voltage regulators, these devices can be used with external components to obtain adjustable output voltages and currents and also as the power-pass element in precision regulators.

8.2 Functional Block Diagram

8.3 Feature Description

- 3-Terminal Regulators
- Output Current up to 500 mA
- No External Components
- Internal Thermal-Overload Protection
- High Power-Dissipation Capability
- · Internal Short-Circuit Current Limiting
- Output Transistor Safe-Area Compensation

8.4 Device Functional Modes

8.4.1 Fixed-Output Mode

These devices are available in fixed-output voltages. See the orderable part list for the desired output.

9 Application and Implementation

NOTE

Information in the following applications sections is not part of the TI component specification, and TI does not warrant its accuracy or completeness. TI's customers are responsible for determining suitability of components for their purposes. Customers should validate and test their design implementation to confirm system functionality.

9.1 Application Information

The UA78Mxx devices are ideal for use as linear regulators with few external components needed for a working design. They are also useful for attenuating power supply noise.

9.2 Typical Application

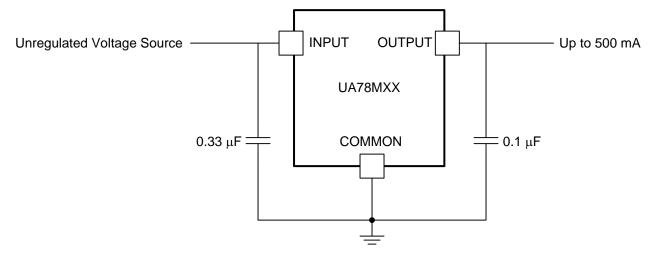
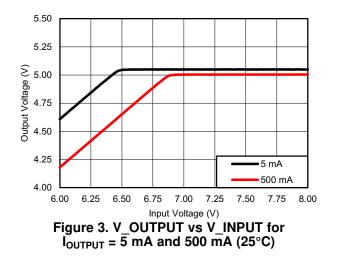


Figure 2. Fixed-Output Regulator

9.2.1 Design Requirements


An $0.33-\mu$ F decoupling capacitor on the input and a $0.1-\mu$ F decoupling capacitor on the output are recommended for the UA78Mxx to behave as close to datasheet specifications as possible.

9.2.2 Detailed Design Procedure

The customer's end application will determine how the schematic for UA78Mxx is designed. For example, if there is a load connected to a negative voltage as its ground, a clamp diode may be necessary on the output. In the event of an input short circuit or another case where the output voltage can be higher than the input, a diode shunt can be connected across the device with the anode at the output and cathode at the input

Typical Application (continued)

9.2.3 Application Curves

10 Power Supply Recommendations

See *Recommended Operating Conditions* for the recommended power supply voltages for each variation of the UA78Mxx. Different orderable part numbers will be able to tolerate different levels of voltage. It is also recommended to have a decoupling capacitor on the output to limit noise on the input.

11 Layout

11.1 Layout Guidelines

Keep trace widths large enough to eliminate problematic I×R voltage drops at the input and output terminals. Input decoupling capacitors should be placed as close to the UA78MXX as possible.

11.2 Layout Example

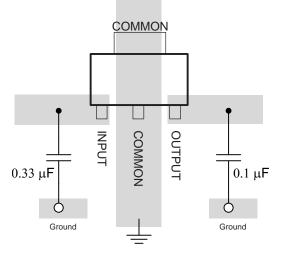


Figure 4. Layout Diagram

12 Device and Documentation Support

12.1 Related Links

The table below lists quick access links. Categories include technical documents, support and community resources, tools and software, and quick access to sample or buy.

PARTS	PRODUCT FOLDER	SAMPLE & BUY	TECHNICAL DOCUMENTS	TOOLS & SOFTWARE	SUPPORT & COMMUNITY
uA78M05	Click here	Click here	Click here	Click here	Click here
uA78M06	Click here	Click here	Click here	Click here	Click here
uA78M08	Click here	Click here	Click here	Click here	Click here
uA78M09	Click here	Click here	Click here	Click here	Click here
uA78M10	Click here	Click here	Click here	Click here	Click here
uA78M12	Click here	Click here	Click here	Click here	Click here
uA78M33	Click here	Click here	Click here	Click here	Click here

Table 1. Related Links

12.2 Trademarks

All trademarks are the property of their respective owners.

12.3 Electrostatic Discharge Caution

These devices have limited built-in ESD protection. The leads should be shorted together or the device placed in conductive foam during storage or handling to prevent electrostatic damage to the MOS gates.

12.4 Glossary

SLYZ022 — TI Glossary.

This glossary lists and explains terms, acronyms, and definitions.

13 Mechanical, Packaging, and Orderable Information

The following pages include mechanical, packaging, and orderable information. This information is the most current data available for the designated devices. This data is subject to change without notice and revision of this document. For browser-based versions of this data sheet, refer to the left-hand navigation.

25-Dec-2014

PACKAGING INFORMATION

Orderable Device		Package Type	Package Drawing	Pins	Package Qty	Eco Plan	Lead/Ball Finish	MSL Peak Temp	Op Temp (°C)	Device Marking	Samples
UA78M05CDCY	(1) ACTIVE	SOT-223	DCY	4	80	(2) Green (RoHS & no Sb/Br)	(6) CU SN	(3) Level-2-260C-1 YEAR	0 to 125	(4/5) C5	Samples
UA78M05CDCYG3	ACTIVE	SOT-223	DCY	4	80	Green (RoHS & no Sb/Br)	CU SN	Level-2-260C-1 YEAR	0 to 125	C5	Samples
UA78M05CDCYR	ACTIVE	SOT-223	DCY	4	2500	Green (RoHS & no Sb/Br)	CU SN	Level-2-260C-1 YEAR	0 to 125	C5	Samples
UA78M05CDCYRG3	ACTIVE	SOT-223	DCY	4	2500	Green (RoHS & no Sb/Br)	CU SN	Level-2-260C-1 YEAR	0 to 125	C5	Samples
UA78M05CKC	OBSOLETE	TO-220	KC	3		TBD	Call TI	Call TI	0 to 125	UA78M05C	
UA78M05CKCS	ACTIVE	TO-220	KCS	3	50	Pb-Free (RoHS)	CU SN	N / A for Pkg Type	0 to 125	UA78M05C	Samples
UA78M05CKCSE3	ACTIVE	TO-220	KCS	3	50	Pb-Free (RoHS)	CU SN	N / A for Pkg Type	0 to 125	UA78M05C	Samples
UA78M05CKTPR	OBSOLETE	PFM	KTP	2		TBD	Call TI	Call TI	0 to 125	UA78M05C	
UA78M05CKTPRG3	OBSOLETE	PFM	KTP	2		TBD	Call TI	Call TI	0 to 125	UA78M05C	
UA78M05CKVURG3	ACTIVE	TO-252	KVU	3	2500	Green (RoHS & no Sb/Br)	CU SN	Level-3-260C-168 HR	0 to 125	78M05C	Samples
UA78M05IDCY	ACTIVE	SOT-223	DCY	4	80	Green (RoHS & no Sb/Br)	CU SN	Level-2-260C-1 YEAR	-40 to 125	J5	Samples
UA78M05IDCYG3	ACTIVE	SOT-223	DCY	4	80	Green (RoHS & no Sb/Br)	CU SN	Level-2-260C-1 YEAR	-40 to 125	J5	Samples
UA78M05IDCYR	ACTIVE	SOT-223	DCY	4	2500	Green (RoHS & no Sb/Br)	CU SN	Level-2-260C-1 YEAR	-40 to 125	J5	Samples
UA78M05IDCYRG3	ACTIVE	SOT-223	DCY	4	2500	Green (RoHS & no Sb/Br)	CU SN	Level-2-260C-1 YEAR	-40 to 125	J5	Samples
UA78M05IKC	OBSOLETE	TO-220	KC	3		TBD	Call TI	Call TI	-40 to 125	UA78M05I	
UA78M05IKCE3	OBSOLETE	TO-220	KC	3		TBD	Call TI	Call TI	-40 to 125	UA78M05I	
UA78M05IKCS	ACTIVE	TO-220	KCS	3	50	Pb-Free (RoHS)	CU SN	N / A for Pkg Type	-40 to 125	UA78M05I	Samples
UA78M05IKCSE3	ACTIVE	TO-220	KCS	3	50	Pb-Free (RoHS)	CU SN	N / A for Pkg Type	-40 to 125	UA78M05I	Samples
UA78M05IKTPR	OBSOLETE	PFM	KTP	2		TBD	Call TI	Call TI	-40 to 125	UA78M05I	
UA78M05IKTPRG3	OBSOLETE	PFM	KTP	2		TBD	Call TI	Call TI	-40 to 125	UA78M05I	

PACKAGE OPTION ADDENDUM

25-Dec-2014

Orderable Device	Status	Package Type	Package	Pins	Package	Eco Plan	Lead/Ball Finish	MSL Peak Temp	Op Temp (°C)	Device Marking	Sample
	(1)		Drawing		Qty	(2)	(6)	(3)		(4/5)	
UA78M05IKVURG3	ACTIVE	TO-252	KVU	3	2500	Green (RoHS & no Sb/Br)	CU SN	Level-3-260C-168 HR	-40 to 125	78M05I	Sampl
UA78M06CKC	OBSOLETE	TO-220	KC	3		TBD	Call TI	Call TI	0 to 125		
UA78M06CKTPR	OBSOLETE	PFM	KTP	2		TBD	Call TI	Call TI	0 to 125	UA78M06C	
UA78M06CKTPRG3	OBSOLETE	PFM	KTP	2		TBD	Call TI	Call TI	0 to 125	UA78M06C	
UA78M06CKVURG3	ACTIVE	TO-252	KVU	3	2500	Green (RoHS & no Sb/Br)	CU SN	Level-3-260C-168 HR	0 to 125	78M06C	Sampl
UA78M08CDCY	ACTIVE	SOT-223	DCY	4	80	Green (RoHS & no Sb/Br)	CU SN	Level-2-260C-1 YEAR	0 to 125	C8	Samp
UA78M08CDCYG3	ACTIVE	SOT-223	DCY	4	80	Green (RoHS & no Sb/Br)	CU SN	Level-2-260C-1 YEAR	0 to 125	C8	Sampl
UA78M08CDCYR	ACTIVE	SOT-223	DCY	4	2500	Green (RoHS & no Sb/Br)	CU SN	Level-2-260C-1 YEAR	0 to 125	C8	Samp
UA78M08CKC	OBSOLETE	TO-220	KC	3		TBD	Call TI	Call TI	0 to 125	UA78M08C	
UA78M08CKCE3	OBSOLETE	TO-220	KC	3		TBD	Call TI	Call TI	0 to 125	UA78M08C	
UA78M08CKCS	ACTIVE	TO-220	KCS	3	50	Pb-Free (RoHS)	CU SN	N / A for Pkg Type	0 to 125	UA78M08C	Samp
UA78M08CKCSE3	ACTIVE	TO-220	KCS	3	50	Pb-Free (RoHS)	CU SN	N / A for Pkg Type	0 to 125	UA78M08C	Samp
UA78M08CKTPR	OBSOLETE	PFM	KTP	2		TBD	Call TI	Call TI	0 to 125	UA78M08C	
UA78M08CKTPRG3	OBSOLETE	PFM	KTP	2		TBD	Call TI	Call TI	0 to 125	UA78M08C	
UA78M08CKVURG3	ACTIVE	TO-252	KVU	3	2500	Green (RoHS & no Sb/Br)	CU SN	Level-3-260C-168 HR	0 to 125	78M08C	Samp
UA78M09CKC	OBSOLETE	TO-220	KC	3		TBD	Call TI	Call TI	0 to 125		
UA78M09CKTP	OBSOLETE	PFM	KTP	2		TBD	Call TI	Call TI	0 to 125		
UA78M09CKTPR	OBSOLETE	PFM	KTP	2		TBD	Call TI	Call TI	0 to 125	UA78M09C	
UA78M09CKTPRG3	OBSOLETE	PFM	KTP	2		TBD	Call TI	Call TI	0 to 125	UA78M09C	
UA78M09CKVURG3	ACTIVE	TO-252	KVU	3	2500	Green (RoHS & no Sb/Br)	CU SN	Level-3-260C-168 HR	0 to 125	78M09C	Samp
UA78M10CKC	OBSOLETE	TO-220	KC	3		TBD	Call TI	Call TI	0 to 125		
UA78M10CKTPR	OBSOLETE	PFM	KTP	2		TBD	Call TI	Call TI	0 to 125	UA78M10C	
UA78M10CKTPRG3	OBSOLETE	PFM	KTP	2		TBD	Call TI	Call TI	0 to 125	UA78M10C	
UA78M10CKVURG3	ACTIVE	TO-252	KVU	3	2500	Green (RoHS & no Sb/Br)	CU SN	Level-3-260C-168 HR	0 to 125	78M10C	Samp

PACKAGE OPTION ADDENDUM

25-Dec-2014

Orderable Device	Status	Package Type	Package	Pins	Package	Eco Plan	Lead/Ball Finish	MSL Peak Temp	Op Temp (°C)	Device Marking	Samples
	(1)		Drawing		Qty	(2)	(6)	(3)		(4/5)	
UA78M12CKC	OBSOLETE	TO-220	KC	3		TBD	Call TI	Call TI	0 to 125	UA78M12C	
UA78M12CKCS	ACTIVE	TO-220	KCS	3	50	Pb-Free (RoHS)	CU SN	N / A for Pkg Type	0 to 125	UA78M12C	Samples
UA78M12CKCSE3	ACTIVE	TO-220	KCS	3	50	Pb-Free (RoHS)	CU SN	N / A for Pkg Type	0 to 125	UA78M12C	Samples
UA78M12CKTPR	OBSOLETE	PFM	KTP	2		TBD	Call TI	Call TI	0 to 125	UA78M12C	
UA78M12CKTPRG3	OBSOLETE	PFM	KTP	2		TBD	Call TI	Call TI	0 to 125	UA78M12C	
UA78M12CKVURG3	ACTIVE	TO-252	KVU	3	2500	Green (RoHS & no Sb/Br)	CU SN	Level-3-260C-168 HR	0 to 125	78M12C	Samples
UA78M33CDCY	ACTIVE	SOT-223	DCY	4	80	Green (RoHS & no Sb/Br)	CU SN	Level-2-260C-1 YEAR	0 to 125	C3	Samples
UA78M33CDCYG3	ACTIVE	SOT-223	DCY	4	80	Green (RoHS & no Sb/Br)	CU SN	Level-2-260C-1 YEAR	0 to 125	С3	Samples
UA78M33CDCYR	ACTIVE	SOT-223	DCY	4	2500	Green (RoHS & no Sb/Br)	CU SN	Level-2-260C-1 YEAR	0 to 125	C3	Samples
UA78M33CDCYRG3	ACTIVE	SOT-223	DCY	4	2500	Green (RoHS & no Sb/Br)	CU SN	Level-2-260C-1 YEAR	0 to 125	C3	Samples
UA78M33CKC	OBSOLETE	TO-220	KC	3		TBD	Call TI	Call TI	0 to 125	UA78M33C	
UA78M33CKCE3	OBSOLETE	TO-220	KC	3		TBD	Call TI	Call TI	0 to 125	UA78M33C	
UA78M33CKCS	ACTIVE	TO-220	KCS	3	50	Pb-Free (RoHS)	CU SN	N / A for Pkg Type	0 to 125	UA78M33C	Samples
UA78M33CKCSE3	ACTIVE	TO-220	KCS	3	50	Pb-Free (RoHS)	CU SN	N / A for Pkg Type	0 to 125	UA78M33C	Samples
UA78M33CKTPR	OBSOLETE	PFM	KTP	2		TBD	Call TI	Call TI	0 to 125	UA78M33C	
UA78M33CKTPRG3	OBSOLETE	PFM	KTP	2		TBD	Call TI	Call TI	0 to 125	UA78M33C	
UA78M33CKVURG3	ACTIVE	TO-252	KVU	3	2500	Green (RoHS & no Sb/Br)	CU SN	Level-3-260C-168 HR	0 to 125	78M33C	Samples
UA78M33IKVURG3	ACTIVE	TO-252	KVU	3	2500	Green (RoHS & no Sb/Br)	CU SN	Level-3-260C-168 HR	-40 to 125	78M33I	Samples

⁽¹⁾ The marketing status values are defined as follows: **ACTIVE:** Product device recommended for new designs.

LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.

NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.

PREVIEW: Device has been announced but is not in production. Samples may or may not be available.

OBSOLETE: TI has discontinued the production of the device.

25-Dec-2014

(2) Eco Plan - The planned eco-friendly classification: Pb-Free (RoHS), Pb-Free (RoHS Exempt), or Green (RoHS & no Sb/Br) - please check http://www.ti.com/productcontent for the latest availability information and additional product content details.

TBD: The Pb-Free/Green conversion plan has not been defined.

Pb-Free (RoHS): TI's terms "Lead-Free" or "Pb-Free" mean semiconductor products that are compatible with the current RoHS requirements for all 6 substances, including the requirement that lead not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, TI Pb-Free products are suitable for use in specified lead-free processes. **Pb-Free (RoHS Exempt):** This component has a RoHS exemption for either 1) lead-based flip-chip solder bumps used between the die and package, or 2) lead-based die adhesive used between the die and leadframe. The component is otherwise considered Pb-Free (RoHS compatible) as defined above.

Green (RoHS & no Sb/Br): TI defines "Green" to mean Pb-Free (RoHS compatible), and free of Bromine (Br) and Antimony (Sb) based flame retardants (Br or Sb do not exceed 0.1% by weight in homogeneous material)

⁽³⁾ MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.

⁽⁴⁾ There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.

(⁵⁾ Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation of the previous line and the two combined represent the entire Device Marking for that device.

⁽⁶⁾ Lead/Ball Finish - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead/Ball Finish values may wrap to two lines if the finish value exceeds the maximum column width.

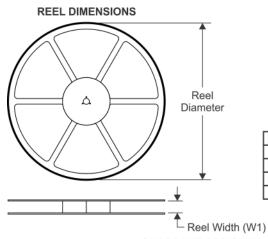
Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.

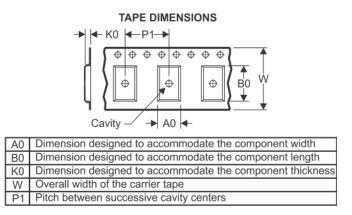
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.

OTHER QUALIFIED VERSIONS OF UA78M05, UA78M10, UA78M33 :

• Automotive: UA78M05-Q1, UA78M10-Q1, UA78M33-Q1

NOTE: Qualified Version Definitions:


• Automotive - Q100 devices qualified for high-reliability automotive applications targeting zero defects

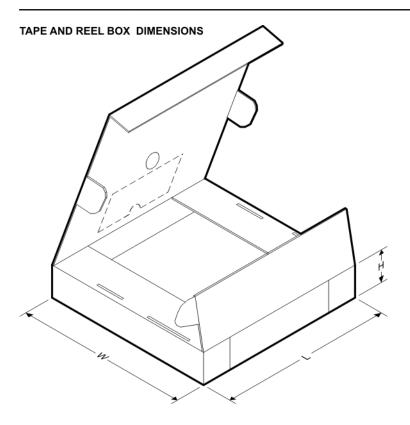

PACKAGE MATERIALS INFORMATION

www.ti.com

Texas Instruments

TAPE AND REEL INFORMATION

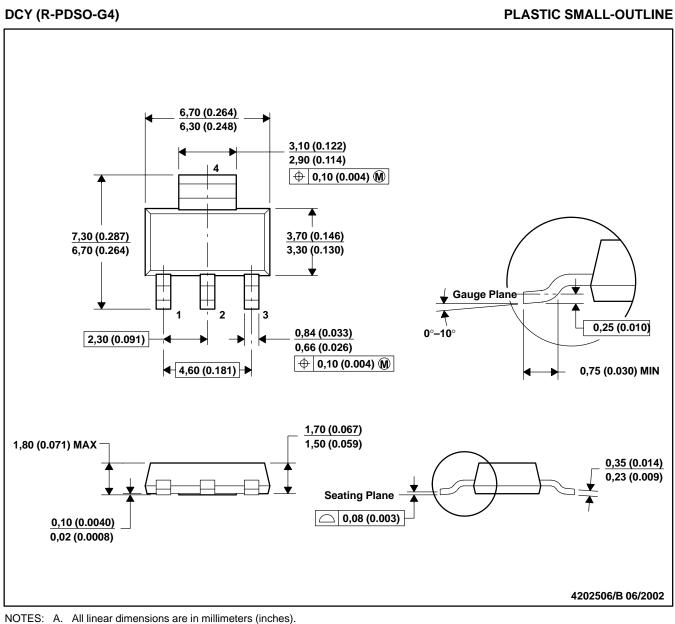
QUADRANT ASSIGNMENTS FOR PIN 1 ORIENTATION IN TAPE


Device	Package Type	Package Drawing	Pins	SPQ	Reel Diameter (mm)	Reel Width W1 (mm)	A0 (mm)	B0 (mm)	K0 (mm)	P1 (mm)	W (mm)	Pin1 Quadrant
UA78M05CDCYR	SOT-223	DCY	4	2500	330.0	12.4	6.55	7.25	1.9	1.5	12.0	Q3
UA78M05CKVURG3	TO-252	KVU	3	2500	330.0	16.4	6.9	10.5	2.7	8.0	16.0	Q2
UA78M05IDCYR	SOT-223	DCY	4	2500	330.0	12.4	7.05	7.4	1.9	8.0	12.0	Q3
UA78M05IDCYR	SOT-223	DCY	4	2500	330.0	12.4	6.55	7.25	1.9	1.5	12.0	Q3
UA78M05IKVURG3	TO-252	KVU	3	2500	330.0	16.4	6.9	10.5	2.7	8.0	16.0	Q2
UA78M06CKVURG3	TO-252	KVU	3	2500	330.0	16.4	6.9	10.5	2.7	8.0	16.0	Q2
UA78M08CDCYR	SOT-223	DCY	4	2500	330.0	12.4	7.05	7.4	1.9	8.0	12.0	Q3
UA78M08CKVURG3	TO-252	KVU	3	2500	330.0	16.4	6.9	10.5	2.7	8.0	16.0	Q2
UA78M09CKVURG3	TO-252	KVU	3	2500	330.0	16.4	6.9	10.5	2.7	8.0	16.0	Q2
UA78M10CKVURG3	TO-252	KVU	3	2500	330.0	16.4	6.9	10.5	2.7	8.0	16.0	Q2
UA78M12CKVURG3	TO-252	KVU	3	2500	330.0	16.4	6.9	10.5	2.7	8.0	16.0	Q2
UA78M33CDCYR	SOT-223	DCY	4	2500	330.0	12.4	7.05	7.4	1.9	8.0	12.0	Q3
UA78M33CDCYR	SOT-223	DCY	4	2500	330.0	12.4	6.55	7.25	1.9	1.5	12.0	Q3
UA78M33CKVURG3	TO-252	KVU	3	2500	330.0	16.4	6.9	10.5	2.7	8.0	16.0	Q2
UA78M33IKVURG3	TO-252	KVU	3	2500	330.0	16.4	6.9	10.5	2.7	8.0	16.0	Q2

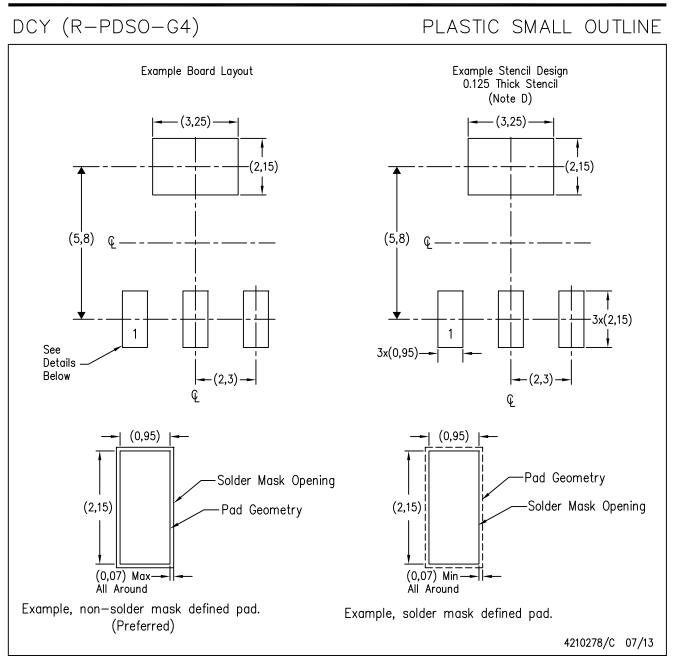
TEXAS INSTRUMENTS

www.ti.com

PACKAGE MATERIALS INFORMATION


3-Mar-2017

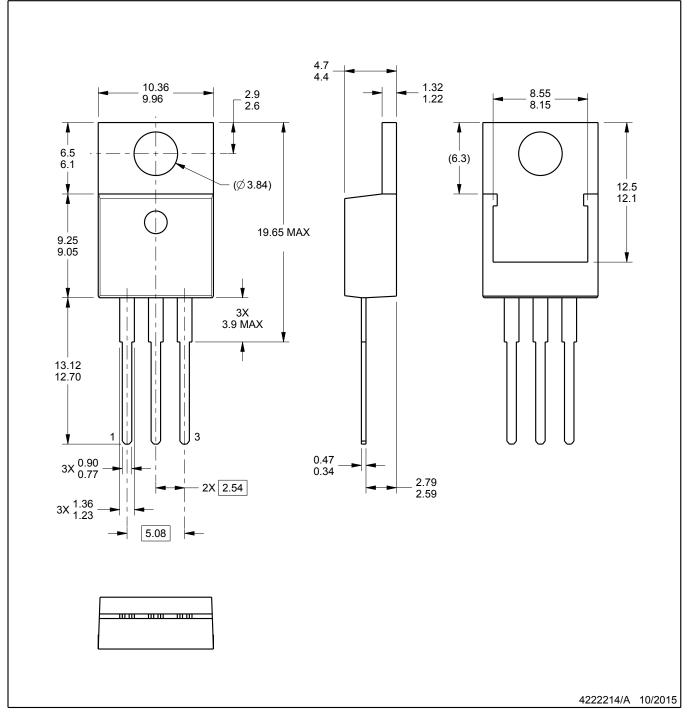
Device	Package Type	Package Drawing	Pins	SPQ	Length (mm)	Width (mm)	Height (mm)
UA78M05CDCYR	SOT-223	DCY	4	2500	336.0	336.0	48.0
UA78M05CKVURG3	TO-252	KVU	3	2500	340.0	340.0	38.0
UA78M05IDCYR	SOT-223	DCY	4	2500	340.0	340.0	38.0
UA78M05IDCYR	SOT-223	DCY	4	2500	336.0	336.0	48.0
UA78M05IKVURG3	TO-252	KVU	3	2500	340.0	340.0	38.0
UA78M06CKVURG3	TO-252	KVU	3	2500	340.0	340.0	38.0
UA78M08CDCYR	SOT-223	DCY	4	2500	340.0	340.0	38.0
UA78M08CKVURG3	TO-252	KVU	3	2500	340.0	340.0	38.0
UA78M09CKVURG3	TO-252	KVU	3	2500	340.0	340.0	38.0
UA78M10CKVURG3	TO-252	KVU	3	2500	340.0	340.0	38.0
UA78M12CKVURG3	TO-252	KVU	3	2500	340.0	340.0	38.0
UA78M33CDCYR	SOT-223	DCY	4	2500	340.0	340.0	38.0
UA78M33CDCYR	SOT-223	DCY	4	2500	336.0	336.0	48.0
UA78M33CKVURG3	TO-252	KVU	3	2500	340.0	340.0	38.0
UA78M33IKVURG3	TO-252	KVU	3	2500	340.0	340.0	38.0


MECHANICAL DATA

MPDS094A - APRIL 2001 - REVISED JUNE 2002

- B. This drawing is subject to change without notice.
 - C. Body dimensions do not include mold flash or protrusion.
 - D. Falls within JEDEC TO-261 Variation AA.

- NOTES: A. All linear dimensions are in millimeters.
 - B. This drawing is subject to change without notice.
 - C. Publication IPC-7351 is recommended for alternate designs.
 - D. Laser cutting apertures with trapezoidal walls and also rounding corners will offer better paste release. Customers should contact their board assembly site for stencil recommendations. Refer to IPC 7525 for stencil design considerations.


KCS0003B

PACKAGE OUTLINE

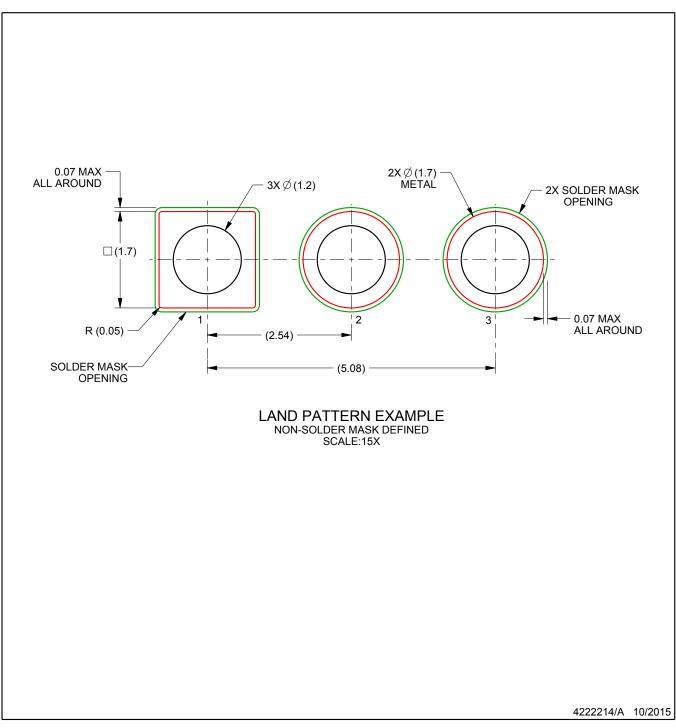
TO-220 - 19.65 mm max height

TO-220

NOTES:

1. All controlling linear dimensions are in inches. Dimensions in brackets are in millimeters. Any dimension in brackets or parenthesis are for reference only. Dimensioning and tolerancing per ASME Y14.5M.

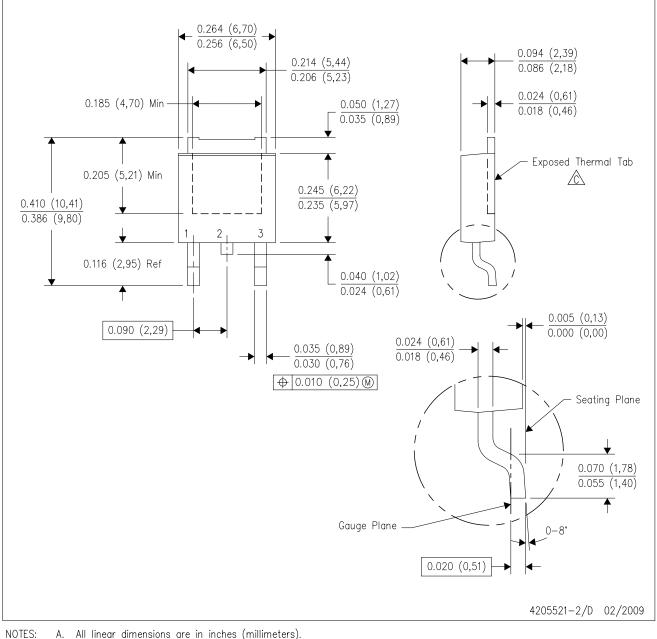
This drawing is subject to change without notice.
Reference JEDEC registration TO-220.



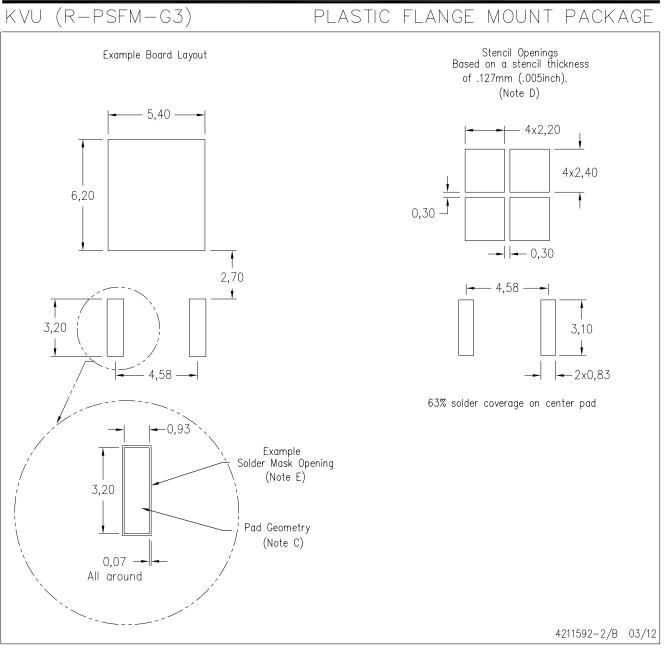
KCS0003B

EXAMPLE BOARD LAYOUT

TO-220 - 19.65 mm max height


TO-220

KVU (R-PSFM-G3)


PLASTIC FLANGE-MOUNT PACKAGE

- A. All linear dimensions are in inches (millimeters).
 - B. This drawing is subject to change without notice.
 - \bigtriangleup The center lead is in electrical contact with the exposed thermal tab.
 - D. Body Dimensions do not include mold flash or protrusions. Mold flash and protrusion shall not exceed 0.006 (0,15) per side. E. Falls within JEDEC TO-252 variation AA.

LAND PATTERN DATA

NOTES: A. All linear dimensions are in millimeters.

- B. This drawing is subject to change without notice.
- C. Publication IPC-SM-782 is an alternate information source for PCB land pattern designs.
- D. Laser cutting apertures with trapezoidal walls and also rounding corners will offer better paste release. Customers should contact their board assembly site for stencil design recommendations. Refer to IPC-7525 for other stencil recommendations.
- E. Customers should contact their board fabrication site for recommended solder mask tolerances and via tenting recommendations for vias placed in thermal pad.

IMPORTANT NOTICE FOR TI DESIGN INFORMATION AND RESOURCES

Texas Instruments Incorporated ('TI") technical, application or other design advice, services or information, including, but not limited to, reference designs and materials relating to evaluation modules, (collectively, "TI Resources") are intended to assist designers who are developing applications that incorporate TI products; by downloading, accessing or using any particular TI Resource in any way, you (individually or, if you are acting on behalf of a company, your company) agree to use it solely for this purpose and subject to the terms of this Notice.

TI's provision of TI Resources does not expand or otherwise alter TI's applicable published warranties or warranty disclaimers for TI products, and no additional obligations or liabilities arise from TI providing such TI Resources. TI reserves the right to make corrections, enhancements, improvements and other changes to its TI Resources.

You understand and agree that you remain responsible for using your independent analysis, evaluation and judgment in designing your applications and that you have full and exclusive responsibility to assure the safety of your applications and compliance of your applications (and of all TI products used in or for your applications) with all applicable regulations, laws and other applicable requirements. You represent that, with respect to your applications, you have all the necessary expertise to create and implement safeguards that (1) anticipate dangerous consequences of failures, (2) monitor failures and their consequences, and (3) lessen the likelihood of failures that might cause harm and take appropriate actions. You agree that prior to using or distributing any applications. TI has not conducted any testing other than that specifically described in the published documentation for a particular TI Resource.

You are authorized to use, copy and modify any individual TI Resource only in connection with the development of applications that include the TI product(s) identified in such TI Resource. NO OTHER LICENSE, EXPRESS OR IMPLIED, BY ESTOPPEL OR OTHERWISE TO ANY OTHER TI INTELLECTUAL PROPERTY RIGHT, AND NO LICENSE TO ANY TECHNOLOGY OR INTELLECTUAL PROPERTY RIGHT OF TI OR ANY THIRD PARTY IS GRANTED HEREIN, including but not limited to any patent right, copyright, mask work right, or other intellectual property right relating to any combination, machine, or process in which TI products or services are used. Information regarding or referencing third-party products or services does not constitute a license to use such products or services, or a warranty or endorsement thereof. Use of TI Resources may require a license from a third party under the patents or other intellectual property of the third party, or a license from TI under the patents or other intellectual property of TI.

TI RESOURCES ARE PROVIDED "AS IS" AND WITH ALL FAULTS. TI DISCLAIMS ALL OTHER WARRANTIES OR REPRESENTATIONS, EXPRESS OR IMPLIED, REGARDING TI RESOURCES OR USE THEREOF, INCLUDING BUT NOT LIMITED TO ACCURACY OR COMPLETENESS, TITLE, ANY EPIDEMIC FAILURE WARRANTY AND ANY IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, AND NON-INFRINGEMENT OF ANY THIRD PARTY INTELLECTUAL PROPERTY RIGHTS.

TI SHALL NOT BE LIABLE FOR AND SHALL NOT DEFEND OR INDEMNIFY YOU AGAINST ANY CLAIM, INCLUDING BUT NOT LIMITED TO ANY INFRINGEMENT CLAIM THAT RELATES TO OR IS BASED ON ANY COMBINATION OF PRODUCTS EVEN IF DESCRIBED IN TI RESOURCES OR OTHERWISE. IN NO EVENT SHALL TI BE LIABLE FOR ANY ACTUAL, DIRECT, SPECIAL, COLLATERAL, INDIRECT, PUNITIVE, INCIDENTAL, CONSEQUENTIAL OR EXEMPLARY DAMAGES IN CONNECTION WITH OR ARISING OUT OF TI RESOURCES OR USE THEREOF, AND REGARDLESS OF WHETHER TI HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES.

You agree to fully indemnify TI and its representatives against any damages, costs, losses, and/or liabilities arising out of your noncompliance with the terms and provisions of this Notice.

This Notice applies to TI Resources. Additional terms apply to the use and purchase of certain types of materials, TI products and services. These include; without limitation, TI's standard terms for semiconductor products http://www.ti.com/sc/docs/stdterms.htm), evaluation modules, and samples (http://www.ti.com/sc/docs/stdterms.htm), evaluation

Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265 Copyright © 2017, Texas Instruments Incorporated