

3W - Dual/Single Output - Wide Input - Isolated & Regulated DC-DC Converter

DC-DC Converter

3 Watt

- ⊕ 2:1 wide input voltage range
- 1.5kVDC isolation
- Ŧ Short circuit protection (SCP; automatic recovery)
- Remote On/Off control

Ð

High power density

-40°C to +85°C

RoHS compliance

Operating temperature:

🕀 Ultra compact SIP package EN60950 approved

The 3S8W_1.5RP series series are isolated 3W DC-DC products with 2:1 input voltage and conventional voltage output. The product has a relatively compact SIP plastic package, and features high efficiency, operating temperature of -40°C~+85°C. The smaller size and fine cost design make the converter an ideal solution in communication, instruments, and industrial electronics applications.

Common specifications	
Short circuit protection:	Continuous, automatic recovery
Temperature rise at full load:	25°C TYP
Cooling:	Free air convection
Operation temperature range:	-40°C~+85°C
Storage temperature range:	-55°C ~+125°C
Lead temperature range:	300°C MAX, 1.5mm from case for 10 sec
Storage humidity range:	< 95%
Case material:	Plastic [UL94-V0]
MTBF (MIL-HDBK-217F@25°C):	>1,000,000 hours
Weight:	4.9g
Dimensions:	22 x 9.5 x 12mm

Input	specifi	cations

Test condition	Min	Тур	Max	Units
 5VDC input 3.3V input Others 12VDC input 3.3V input Others 24VDC input 3.3V input Others 48VDC input 3.3V input Others 		735/40 805/40 278/30 314/30 140/20 154/20 69/5 78/5	758/85 846/65 286/40 338/40 145/40 163/40 72/15 85/15	mA mA mA mA mA mA
 5VDC input 12VDC input 24VDC input 48VDC input 		20 20 55 55		mA mA mA mA
 5VDC input 12VDC input 24VDC input 48VDC input 	-0.7 -0.7 -0.7 -0.7		12 25 50 100	VDC VDC VDC VDC
 5VDC input 12VDC input 24VDC input 48VDC input 			4.5 9 18 36	VDC VDC VDC VDC
Filter capacitor				
Unavailable				
Models ONModels OFF	The Ctrl end is suspended or of high resistance Connect with high level (relative to the input grounding) to make the 5-10mA current flows into the Ctrl end.			elative make
	 SVDC input 3.3V input Others 12VDC input 3.3V input Others 24VDC input 3.3V input Others 48VDC input 3.3V input Others 48VDC input 12VDC input 12VDC input 24VDC input 48VDC input 12VDC input 48VDC input 48VDC input 5VDC input 12VDC input 48VDC input 5VDC input 12VDC input 48VDC input FIVDC input 5VDC input 12VDC input 48VDC input SVDC input 12VDC input 12VDC input 12VDC input 12VDC input Hothers 	 SVDC input SVDC input Others 12VDC input Others 12VDC input Others Paylow and the set of th	 SVDC input - 3.3V input - 3.3V input - Others <li< td=""><td>• SVDC input 735/40 758/85 • 3.3V input 735/40 758/85 • Others 805/40 846/65 • 12VDC input 278/30 286/40 • Others 314/30 338/40 • Others 314/30 338/40 • Others 140/20 145/40 • Others 154/20 163/40 • A8VDC input 69/5 72/15 • Others 78/5 85/15 • SVDC input 20 55 • SVDC input 20 24/20 • 12VDC input 20 28/16 • 24VDC input 20 25 • SVDC input -0.7 12 • 12VDC input -0.7 100 • SVDC input -0.7 100 • 48VDC input 36 Filter capacitor Unavail</td></li<>	• SVDC input 735/40 758/85 • 3.3V input 735/40 758/85 • Others 805/40 846/65 • 12VDC input 278/30 286/40 • Others 314/30 338/40 • Others 314/30 338/40 • Others 140/20 145/40 • Others 154/20 163/40 • A8VDC input 69/5 72/15 • Others 78/5 85/15 • SVDC input 20 55 • SVDC input 20 24/20 • 12VDC input 20 28/16 • 24VDC input 20 25 • SVDC input -0.7 12 • 12VDC input -0.7 100 • SVDC input -0.7 100 • 48VDC input 36 Filter capacitor Unavail

¹⁾ Please refer to "Application note" as the direction for use of Ctrl.

Output specifications						
Item	Test condition	Min	Тур	Max	Units	
Output voltage accuracy	5% to 100% load		±1	±3	%	
No load output voltage accuracy	Input voltage range • 3S8W1203_1.5RP, 3S8W1203_1.5RP • Others		±5 ±1.5	±8 ±5	%	
Output Voltage Balance	Dual output, balanced loads		±0.5	±1	%	
Line regulation	Input voltage from low to high, full load		±0.2	±0.5	%	
Load regulation	5% to 100% load		±0.6	±1	%	
Temperature coefficient	100% load		±0.02	±0.03	%/°C	
Ripple & Noise*	20MHz bandwidth					
	3S8W_1212S1.5RP 3S8W_1215S1.5RP 3S8W_4824S1.5RP		70 70 70	100 100 100		
	358W_122451.5RP 358W_241551.5RP 358W_242451.5RP 358W_4805D1.5RP 358W_480351.5RP		100 100 100 100 100	150 150 150 150 150		
	Others		40	75		
Transient recovery time	25% load step change		0.5	3	ms	
Transient response deviation	25% load step change		±2.5	±5	%	
Isolation specificatio	ns					
Item	Test condition	Min	Тур	Max	Units	
Isolation voltage	Tested for 1 minute, leakage current less than 1 mA	1500		Plax	VDC	
Isolation resistance	Test at 500VDC	1000			MΩ	
Isolation capacitance	Input/Output, 100KHz/0.1V		120		pF	

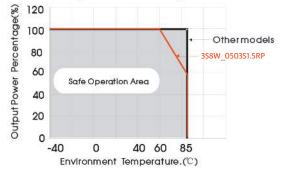
Example: 3S8W_0505S1.5RP

3 = 3Watt; S8 = SIP8; W = wide input; 05 = 4,5 - 9Vin; 05 = 5Vout; S = Single Output; 1.5 = 1500VDC; R = Regulated Output; P = Short Curcuit Protection

3W - Dual/Single Output - Wide Input - Isolated & Regulated DC-DC Converter

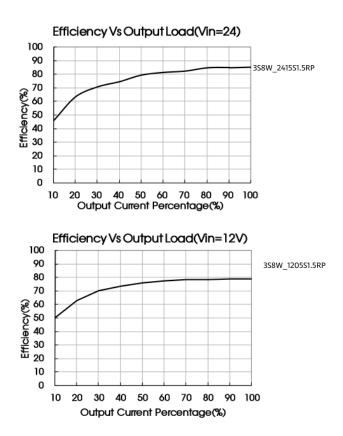
EMC spec	cifications						
EMI	CE	CISPR32/EN55032 CLASS B (External Circuit Refer to EMC recommended circuit②)					
EMI	RE	CISPR32/EN55032 CLASS B (External Circuit Refer to recommended circuit ())					
EMS	ESD	IEC/EN61000-4-2	Contact ±4KV	perf. Criteria B			
EMS	RS	IEC/EN61000-4-3	10V/m	perf. Criteria A			
EMS	EFT	IEC/EN61000-4-4	±2KV	perf. Criteria B (External Circuit Refer to EMC recommended circuit)			
EMS	Surge	IEC/EN61000-4-5	±2KV	perf. Criteria B (External Circuit Refer to EMC recommended circuit)			
EMS	CS	IEC/EN61000-4-6	3 Vr.m.s	perf. Criteria A			
EMS	Voltage dips, short and interruptions immunity	IEC/EN61000-4-29	0%-70%	perf. Criteria B			

Part Number	Inp Nominal	ut Voltage [V Range M	DC] 1ax ¹⁾	Output Voltage [VDC]	Output Cu Max	rrent [mA] Min	Ripple&Noise [mVp-p, Typ./Max.]	Capacitive load ²⁾ [µF, Max.]	Efficiency [%, Typ.]
3S8W_0503S1.5RP	5	4.5-9	11	3.3	758	38	40/75	1800	68
3S8W_0505S1.5RP	5	4.5-9	11	5	500	25	40/75	2200	73
3S8W_0509S1.5RP	5	4.5-9	11	9	278	14	40/75	1000	74
3S8W_0512S1.5RP	5	4.5-9	11	12	208	10	40/75	680	77
3S8W_0515S1.5RP	5	4.5-9	11	15	167	8	40/75	470	74
3S8W_0524S1.5RP	5	4.5-9	11	24	104	5	40/75	330	76
3S8W_1203S1.5RP	12	9-18	22	3.3	758	38	40/75	2700	75
3S8W_1205S1.5RP	12	9-18	22	5	600	30	40/75	2200	76
3S8W_1206S1.5RP	12	9-18	22	6	500	25	40/75	1800	79
358W_120951.5RP	12	9-18	22	9	333	17	40/75	1000	79
358W_121251.5RP	12	9-18	22	12	250	13	70/100	680	82
3S8W_1215S1.5RP	12	9-18	22	15	200	10	70/100	470	83
3S8W_1224S1.5RP	12	9-18	22	24	125	6	100/150	330	81
3S8W_2403S1.5RP	24	18-36	40	3.3	758	38	40/75	2700	74
3S8W_2405S1.5RP	24	18-36	40	5	600	30	40/75	2200	81
3S8W_2409S1.5RP	24	18-36	40	9	333	17	40/75	1000	83
3S8W_2412S1.5RP	24	18-36	40	12	250	13	40/75	680	83
3S8W_2415S1.5RP	24	18-36	40	15	200	10	100/150	470	83
3S8W_2424S1.5RP	24	18-36	40	24	125	6	100/150	330	83
3S8W_4803S1.5RP	48	36-75	80	3.3	758	38	100/150	2700	75
3S8W_4805S1.5RP	48	36-75	80	5	600	30	40/75	2200	76
3S8W_4812S1.5RP	48	36-75	80	12	250	13	40/75	680	80
3S8W_4815S1.5RP	48	36-75	80	15	200	10	40/75	470	84
3S8W_4824S1.5RP	48	36-75	80	24	125	6	70/100	330	82


Part Number		ut Voltage [V Range M	DC] lax ¹⁾	Output Voltage [VDC]	Output Cu Max	rrent [mA] Min	Ripple&Noise [mVp-p, Typ./Max.]	Capacitive load ²⁾ [µF, Max.]	Efficiency [%, Typ.]
3S8W_0505D1.5RP	5	4.5-9	11	±5	±250	±13	40/75	1000	74
3S8W_0512D1.5RP	5	4.5-9	11	±12	±104	±5	40/75	470	77
3S8W_0515D1.5RP	5	4.5-9	11	±15	±83	±4	40/75	330	77
3S8W_0524D1.5RP	5	4.5-9	11	±24	±52	±3	40/75	220	76
3S8W_1205D1.5RP	12	9-18	22	±5	±300	±15	40/75	1000	78
3S8W_1209D1.5RP	12	9-18	22	±9	±167	±8	40/75	680	78
3S8W_1212D1.5RP	12	9-18	22	±12	±125	±6	40/75	470	79
3S8W_1215D1.5RP	12	9-18	22	±15	±100	±5	40/75	330	80
3S8W_2405D1.5RP	24	18-36	40	±5	±300	±15	40/75	1000	79
3S8W_2409D1.5RP	24	18-36	40	±9	±167	±8	40/75	680	81
3S8W_2412D1.5RP	24	18-36	40	±12	±125	±6	40/75	470	83
3S8W_2415D1.5RP	24	18-36	40	±15	±100	±5	40/75	330	83
3S8W_4805D1.5RP	48	36-75	80	±5	±300	±15	100/150	1000	79
3S8W_4812D1.5RP	48	36-75	80	±12	±125	±6	40/75	470	82
3S8W_4815D1.5RP	48	36-75	80	±15	±100	±5	40/75	330	82

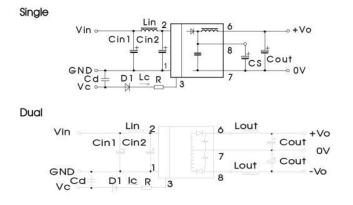
¹⁾ Absolute maximum rating without damage on the converter, but it isn't recommended; ²⁾ For dual output converter, the given value is the same for each output. Page 2 of 6 GAPTEC-Electronic GmbH & Co. KG 358W_1.5RP – Rev. 2021-1.1 sales@gaptec-electronic.com – www.gaptec-electronic.com Specifications subject to change without notice.

3W - Dual/Single Output - Wide Input - Isolated & Regulated DC-DC Converter


Typical characteristics

Temperature Derating Curve

Efficiency



3W - Dual/Single Output - Wide Input - Isolated & Regulated DC-DC Converter

Recommended circuit

All the DC/DC converters of this series are tested according to the recommended circuit before delivery.

If a further decrease of the input and output ripple is required, properly increase the input & output of additional capacitors Cin1, Cin2, Cs and Cout; or select capacitors of low equivalent impedance like s e r i e s capacitor, etc. Cs is used to reduce ripple. No need to add Cs, if ripple meets the demand. Appropriate filter capacitance shall be chosen, start-up problems may be caused if the capacitance is too large. For each output circuit, under the condition of safe and reliable operation, the max. capacity of its filter capacitor should be lower than the

Vin	5VDC&12VDC	24VDC&48VDC	
Cin1	100µF	10µF	
Cin2	47µF	lμF	
Lin	4.7µH~12µH		
Cs	10µF~22µF		
Cout	100µF(Typ.)		
Lout	2.2µH~10µH		
Cd	47nF/100V		

EMC solution-recommended circuit

Vin C	FUSE		LDM1			Vin +Vo		
	MOV	+ C0	C1	C2	D1 R	DC/DC Ctrl	СЗ	LOAD
GND C-	C	1	2	CYI	3	GND -Vo (0V)		

Recommended external circuit parameters:

Model	Vin: 5V	Vin: 12V	Vin: 24V	Vin: 48V			
FUSE	Slow blown f	Slow blown fuses according to the actual input current selections of the clients					
MOV	-	S14K20	S20K30	S14K60			
LDM1		12μΗ					
C0	680µ	F/25V	330µF/50V	330µF/100V			
C1, C2			4.7µF/100V				
C3	Refer to the Cout in recommended circuit						
CY1	1nF/2KV						
D1	RB160M-60/1A						
R	Follows: $R = \frac{V_C - V_D - 1.0}{L_C} - 300$						
Cd		K	- 500				

Note:

2. VC is the voltage of the Ctrl end relative to the GND of the input grounding; VD is the positive-going conduction pressure drop of D1; IC is the current flows into the Ctrl end and its value is generally 5-10mA, se⊕art 3[®] for the peripheral circuit of Ctrl end;

3. If there is no recommended parameters, no external component is required.

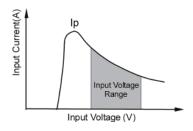
^{1.} Part (1) is used for EMS test, part (2) is used for EMI filtering. Choose according to requirements.

3W - Dual/Single Output - Wide Input - Isolated & Regulated DC-DC Converter

Ctrl end

The modules are of normal output when the Ctrl end is suspended or of high resistance; the modules turn off when connecting with high level (relative to the input grounding); notice that the current flows into the pin shall be 5 - 10mA, the modules will be permanently damaged if the current exceeds its max. value (20mA in general).

The value of R can be derived as follows:

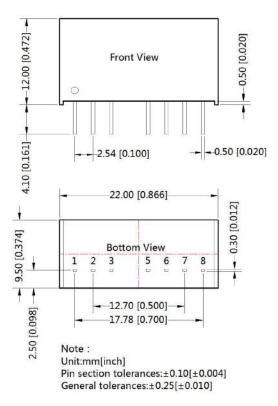

$$R = \frac{V_C - V_D - 1.0}{I_C} - 300$$

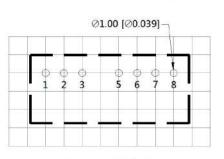
For detailed parameters, please refer to EMC solution-recommended circuit in this manual.

Input current

When the electricity is provided by the unstable power supply, please make sure that the range of the output voltage fluctuation and the ripple voltage of the power supply do not exceed the indicators of the modules. Input current of power supply should afford the flash startup current of this kind of DC/DC module.

Generally: Vin= 5V series Iave = 1296mA Vin=12V series lave = 631mA Vin=24V series lave = 363mA Vin=48V series lave =157mA




Output load requirements

When using, the minimum load of the module output should not be less than 5% of the nominal load.In order to meet the performance parameters of this datasheet, please connect a 5% dummy load in parallel at the output end, the dummy load is generally a resistor, please note that the resistor needs to be used in derating.

3W - Dual/Single Output - Wide Input - Isolated & Regulated DC-DC Converter

Mechanical dimensions

THIRD ANGLE PROJECTION

Note : Grid 2.54*2.54mm

	Pin-Out	0
Pin	Single	Dual
1	GND	GND
2	Vin	Vin
3	Ctrl	Ctrl
5	NC	NC
6	+Vo	+Vo
7	OV	OV
8	CS	-Vo

NC: No connection

Note:

1. Min. load shouldn't be less than 5%, otherwise ripple maybe increased dramatically. If the product operates under min. load, it may not be guaranteed to meet all specifications listed. Operation under minimum load will not damage the converter.

2. Recommended Dual output models unbalanced load is $\leq \pm 5\%$, if the product operates $>\pm 5\%$, it may not be guaranteed to meet all specifications listed. Please contact our technical support for more details.

Max. Capacitive Load is tested at input voltage range and full load.
 All specifications measured at Ta = 25°C, humidity <75%, nominal input

voltage and rated output load unless otherwise specified. 5. In this datasheet, all test methods are based on our corporate standards.

6. All characteristics are for listed models, and non-standard models may per-

form differently.Please contact our technical support for more details. 7. Please contact our technical support for any specific requirement.

Specifications of this product are subject to changes without prior notice.