

Quad 12-Bit Microprocessor-Compatible D/A Converter

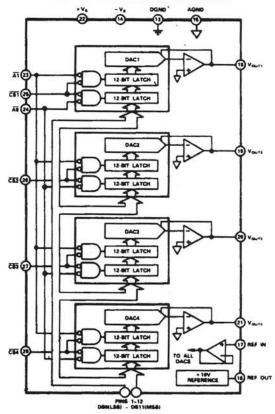
AD390

FEATURES

Four Complete 12-Bit DACs in One IC Package
Linearity Error ± 1/2LSB T_{min} - T_{max} (AD390K, T)
Factory-Trimmed Gain and Offset
Buffered Voltage Output
Monotonicity Guaranteed Over Full Temperature Range
Double-Buffered Data Latches
Includes Reference and Buffer
Fast Settling: 8µs max to ± 1/2LSB

PRODUCT DESCRIPTION

The AD390 contains four 12-bit high speed voltage-output digital-to-analog converters in a compact 28-pin hybrid package. The design is based on a proprietary latched 12-bit DAC chip which reduces chip count and provides high reliability. The AD390 is ideal for systems requiring digital control of many analog voltages where board space is at a premium. Such applications include automatic test equipment, process controllers, and vector-scan displays.


The AD390 is laser-trimmed to $\pm 1/2$ LSB max nonlinearity (AD390KD, TD) and absolute accuracy of ± 0.05 percent of full scale. The high initial accuracy is made possible by the use of thin-film scaling resistors on the monolithic DAC chips. The internal buried Zener voltage reference provides excellent temperature drift characteristics (20ppm/°C) and an initial tolerance of $\pm 0.03\%$ maximum. The internal reference buffer allows a single common reference to be used for multiple AD390 devices in large systems.

The individual DACs are accessed by the $\overline{CS1}$ through $\overline{CS4}$ control inputs and the $\overline{A0}$ and $\overline{A1}$ lines. These control signals permit the registers of the four DACs to be loaded sequentially and the outputs to be simultaneously updated.

The AD390 outputs are calibrated for a $\pm 10V$ output range with positive-true offset binary input coding. A 0 to + 10V version is available on special order.

The AD390 is packaged in a 28-lead ceramic package and is specified for operation over the 0 to $+70^{\circ}$ C and -55° C to $+125^{\circ}$ C temperature range.

FUNCTIONAL BLOCK DIAGRAM

PRODUCT HIGHLIGHTS

- The AD390 offers a dramatic reduction in printed circuit board space requirements in systems using multiple DACs.
- Each DAC is independently addressable, providing a versatile control architecture for simple interface to microprocessors. All latch enable signals are level-triggered.
- The output voltage is trimmed to a full scale accuracy of ±0.05%. Settling time to ±1/2LSB is 8 microseconds maximum.
- An internal 10 volt reference is available or an external reference can be used. With an external reference, the AD390 gain TC is ±5ppm/°C maximum.
- The proprietary monolithic DAC chips provide excellent linearity and guaranteed monotonicity over the full operating temperature range.
- The 28-pin double-width hybrid package provides extremely high functional density. No external components or adjustments are required to provide the complete function.
- The AD390SD and AD390TD feature guaranteed accuracy and linearity over the -55°C to +125°C temperature range.

AD390 — SPECIFICATIONS $(T_A = +25^{\circ}C, V_S = \pm 15V)$ unless otherwise indicated, specifications guaranteed after AD390 — SPECIFICATIONS $(T_A = +25^{\circ}C, V_S = \pm 15V)$ unless otherwise indicated, specifications guaranteed after AD390 — SPECIFICATIONS $(T_A = +25^{\circ}C, V_S = \pm 15V)$ unless otherwise indicated, specifications guaranteed after AD390 — SPECIFICATIONS $(T_A = +25^{\circ}C, V_S = \pm 15V)$ unless otherwise indicated, specifications guaranteed after AD390 — SPECIFICATIONS $(T_A = +25^{\circ}C, V_S = \pm 15V)$ unless otherwise indicated, specifications guaranteed after AD390 — SPECIFICATIONS $(T_A = +25^{\circ}C, V_S = \pm 15V)$ unless otherwise indicated, specifications guaranteed after AD390 — SPECIFICATIONS $(T_A = +25^{\circ}C, V_S = \pm 15V)$ unless otherwise indicated, specifications guaranteed after AD390 — SPECIFICATIONS $(T_A = +25^{\circ}C, V_S = \pm 15V)$ unless otherwise indicated, specifications guaranteed after AD390 — SPECIFICATIONS $(T_A = +25^{\circ}C, V_S = \pm 15V)$ unless otherwise indicated, specifications guaranteed after AD390 — SPECIFICATIONS $(T_A = +25^{\circ}C, V_S = \pm 15V)$ unless otherwise indicated, specifications guaranteed after AD390 — SPECIFICATIONS $(T_A = +25^{\circ}C, V_S = \pm 15V)$ unless otherwise indicated, specifications guaranteed after AD390 — SPECIFICATIONS $(T_A = +25^{\circ}C, V_S = \pm 15V)$ unless otherwise indicated, specifications $(T_A = +25^{\circ}C, V_S = \pm 15V)$ unless otherwise indicated, specifications $(T_A = +25^{\circ}C, V_S = \pm 15V)$ unless otherwise indicated, specifications $(T_A = +25^{\circ}C, V_S = \pm 15V)$

Model	AD390JD/SD			AD390KD/TD			1
	Min	Тур	Typ Max		Min Typ		Units
DATA INPUTS (Pins 1-12 and 23-28) ¹ TTL or 5 Volt CMOS			***				
Input Voltage							1.,
Bit ON (Logic "1")	+2.0		+5.5	+2.0		+5.5	V.
Bit OFF (Logic "0") Input Current (Pin 24 is 3 × Larger)	i		+0.8			+0.8	V
Bit ON (Logic "1")		500	1200		500	1200	1 .
Bit OFF (Logic "0")	1	500 150	1200		500	1200	μA
ALEX-MANUFACTOR AND	<u> </u>	130	400		150	400	μΛ
RESOLUTION	ļ		12			12	Bits
OUTPUT ²							
Voltage Range ³	1		± 10			± 10	V
Current	5			5			mA.
Settling Time (to $\pm \frac{1}{2}LSB$)		4	8		4	8	μs
ACCURACY							
Gain Error (w/ext. 10.000V reference)	1	±0.05	±0.1	1	±0.025	±0.05	% of FSR4
Offset	I	±0.025	±0.05	I	±0.012	±0.025	% of FSR
Linearity Error	1	± 1/4	± 3/4	1	± 1/8	± 1/2	LSB
Differential Linearity Error		± 1/2	$\pm 3/4$		± 1/4	± 1/2	LSB
TEMPERATURE DRIFT	T	***************************************		1			
Gain (internal reference)	l		± 40			±20	ppm/°C
(external reference)	1		± 10			±5	ppm/°C
Zero			± 10			±5	ppm/°C
Linearity Error Tmin-Tmax	1	± 1/2	± 3/4		± 1/4	± 1/2	LSB
Differential Linearity MONO	FONICITY	GUARANTI	EEDOVER	FULL TEM	PERATURE	RANGE	
CROSSTALK ⁵		0.1		T	0.1		LSB
REFERENCE OUTPUT				<u> </u>			
Voltage (without load)	9.997	10.000	10.003	9.997	10.000	10.003	lv
Current (available for external use)	2.5	3.5		2.5	3.5		mA
REFERENCE INPUT							
Input Resistance		10 ¹⁰		l .	10 ¹⁰		Ω
Voltage Range	5		11	5	10000	11	l ÿ
POWER REQUIREMENTS				 			<u> </u>
Voltage ⁶	±13.5	±15	± 16.5	±13.5	± 15	±16.5	v
Current			_ 10.5	1 -15.5	-15	± 10.5	
+V _s	ļ	20	35	1	20	35	mA
$-\mathbf{v_s}$		-85	- 100	1	-85	- 100	mA
POWER SUPPLY GAIN SENSITIVITY							
+V _s		0.002	0.006		0.002	0.006	%FS/%
- V _s		0.0025	0.006		0.0025	0.006	%FS/%
TEMPERATURE RANGE							
Operating (Full Specifications) J, K	0		+70	0		+70	°C
S, T	-55		+ 125	-55		+125	°Č
Storage	-65		+ 150	-65		+150	°C
				1 33		+ 130	

NOTES

The AD390 outputs are guaranteed stable for load capacitances up to 300pF.

AD50207-1 J Grade AD50207-2 K Grade AD50207-3 S Grade AD50207-4 T Grade AD50207-7 S/883B Grade AD50207-8 T/883B Grade

¹Timing specifications appear in Table 2.

^{3 ± 10}V range is standard. A 0 to 10V version is also available. To order, use the following part numbers:

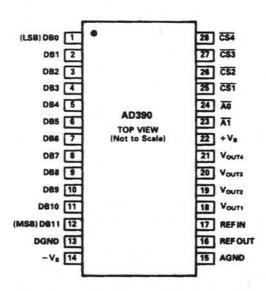
FSR means Full Scale Range and is equal to 20V for a ± 10V range.

^{*}Crosstalk is defined as the change in any one output as a result of any other output being driven from - 10V to + 10V into a 2k 11 load.

The AD390 can be used with supply voltage as low as ± 11.4V, Figure 10.

Specifications subject to change without notice.

AD390


ABSOLUTE MAXIMUM RATINGS	Analog Outputs (Pins 16, 18-21)
+ V _S to DGND 0 to +18V	Indefinite Short to AGND or DGND
-V _S to DGND 0 to -18V	Momentary Short to $\pm V_S$
Digital Inputs (Pins 1-12, 23-28) to DGND1 to +7V	Storage Temperature65°C to +150°C
Ref In to DGND ± V _S	Lead Temperature (Soldering, 10 Seconds) + 300°C
AGND to DGND ±0.6V	

ORDERING GUIDE

Model	Temperature Range	Gain Error 25°C	Linearity Error Tmin - Tmax	Package Option*
AD390JD	0 to +70°C	±4LSB	± 3/4LSB	DH-28
AD390KD	0 to +70°C	±2LSB	± 1/2LSB	DH-28
AD390SD	-55°C to +125°C	±4LSB	± 3/4LSB	DH-28
AD390TD	-55°C to +125°C	±2LSB	± 1/2LSB	DH-28

^{*}DH-28 = Side Brazed Ceramic DIP for Hybrid. For outline information see Package Information section.

PIN CONFIGURATION

