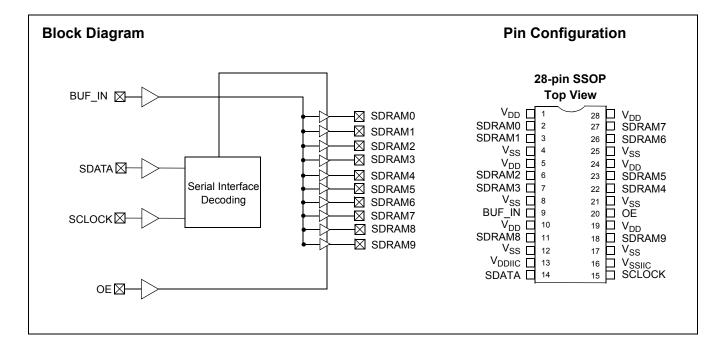


CY2310ANZ

3.3V SDRAM Buffer for Mobile PCs with 4 SO-DIMMs


Features

- One input to 10 output buffer/driver
- Supports up to four SDRAM SO-DIMMs
- Two additional outputs for feedback
- Serial interface for output control
- Low skew outputs
- Up to 100-MHz operation
- Multiple V_{DD} and V_{SS} pins for noise reduction
- · Dedicated OE pin for testing
- Space-saving 28-pin SSOP package
- 3.3V operation

Functional Description

The CY2310ANZ is a 3.3V buffer designed to distribute high-speed clocks in mobile PC applications. The part has 10 outputs, 8 of which can be used to drive up to four SDRAM SO-DIMMs, and the remaining can be used for external feedback to a PLL. The device operates at 3.3V and outputs can run up to 100 MHz, thus making it compatible with Pentium II[®] processors. The CY2310ANZ can be used in conjunction with the CY2281 or similar clock synthesizer for a full Pentium II motherboard solution.

The CY2310ANZ also includes a serial interface which can enable or disable each output clock. On power-up, all output clocks are enabled. A separate Output Enable pin facilitates testing on ATE.

Pin Summary

Name	Pins	Description
V _{DD}	1, 5, 10, 19, 24, 28	3.3V Digital voltage supply
V _{SS}	4, 8, 12, 17, 21, 25	Ground
V _{DDIIC}	13	Serial interface voltage supply
V _{SSIIC}	16	Ground for serial interface
BUF_IN	9	Input clock
OE	20	Output Enable, three-states outputs when LOW. Internal pull-up to V_{DD}
SDATA	14	Serial data input, internal pull-up to V _{DD}
SCLK	15	Serial clock input, internal pull-up to V _{DD}
SDRAM [0-3]	2, 3, 6, 7	SDRAM byte 0 clock outputs
SDRAM [4-7]	22, 23, 26, 27	SDRAM byte 1 clock outputs
SDRAM [8–9]	11, 18	SDRAM byte 2 clock outputs

Device Functionality

OE	SDRAM [0-17]
0	High-Z
1	1 x BUF_IN

Serial Configuration Map

• The Serial bits will be read by the clock driver in the following order:

Byte 0 - Bits 7, 6, 5, 4, 3, 2, 1, 0 Byte 1 - Bits 7, 6, 5, 4, 3, 2, 1, 0

Byte N - Bits 7, 6, 5, 4, 3, 2, 1, 0

- Reserved and unused bits should be programmed to "0".
- Serial interface address for the CY2310ANZ is:

4	۹6	A5	A4	A3	A2	A1	A0	R/W
	1	1	0	1	0	0	1	

Byte 0:SDRAM Active/Inactive Register (1 = Enable, 0 = Disable), Default = Enabled

Bit	Pin #	Description
Bit 7		Initialize to 0
Bit 6		Initialize to 0
Bit 5		Initialize to 0
Bit 4		Initialize to 0
Bit 3	7	SDRAM3 (Active/Inactive)
Bit 2	6	SDRAM2 (Active/Inactive)
Bit 1	3	SDRAM1 (Active/Inactive)
Bit 0	2	SDRAM0 (Active/Inactive)

Byte 1: SDRAM Active/Inactive Register (1 = Active, 0 = Inactive), Default = Active

Bit	Pin #	Description	
Bit 7	27	SDRAM7 (Active/Inactive)	
Bit 6	26	SDRAM6 (Active/Inactive)	
Bit 5	23	SDRAM5 (Active/Inactive)	
Bit 4	22	SDRAM4 (Active/Inactive)	
Bit 3		Initialize to 0	
Bit 2		Initialize to 0	
Bit 1		Initialize to 0	
Bit 0		Initialize to 0	

Byte 2: SDRAM Active/Inactive Register (1 = Active, 0 = Inactive), Default = Active

Bit	Pin #	Description	
Bit 7	18	SDRAM9 (Active/Inactive)	
Bit 6	11	SDRAM8 (Active/Inactive)	
Bit 5		Reserved, drive to 0	
Bit 4		Reserved, drive to 0	
Bit 3		Reserved, drive to 0	
Bit 2		Reserved, drive to 0	
Bit 1		Reserved, drive to 0	
Bit 0		Reserved, drive to 0	

Maximum Ratings

Supply Voltage to Ground Potential0.5V to +7.0V
DC Input Voltage (Except BUF_IN)–0.5V to V_DD + 0.5V
DC Input Voltage (BUF_IN)0.5V to +7.0V

Storage Temperature65°C to +150°C	
Junction Temperature 150°C	
Static Discharge Voltage (per MIL-STD-883, Method 3015)>2000V	

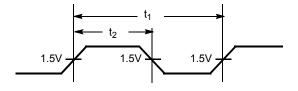
Operating Conditions

Parameter	Description	Min.	Max.	Unit
V _{DD}	Supply Voltage	3.135	3.465	V
T _A	Operating Temperature (Ambient Temperature)	0	70	°C
CL	Load Capacitance	20	30	pF
C _{IN}	Input Capacitance		7	pF
t _{PU}	Power-up time for all V _{DD} s to reach minimum specified voltage (power ramps must be monotonic)	0.05	50	ms

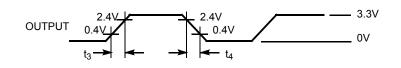
Electrical Characteristics

Parameter	Description	Test Conditions	Min.	Max.	Unit
V _{IL}	Input LOW Voltage ^[1]	Except serial interface pins		0.8	V
V _{ILiic}	Input LOW Voltage	For serial interface pins only		0.7	V
V _{IH}	Input HIGH Voltage ^[1]		2.0		V
IIL	Input LOW Current (BUF_IN input)	V _{IN} = 0V	-10	10	μΑ
IIL	Input LOW Current (Except BUF_IN Pin)	V _{IN} = 0V		100	μΑ
I _{IH}	Input HIGH Current	V _{IN} = V _{DD}	-10	10	μΑ
V _{OL}	Output LOW Voltage ^[2]	I _{OL} = 25 mA		0.4	V
V _{OH}	Output HIGH Voltage ^[2]	I _{OH} = –36 mA	2.4		V
I _{DD}	Supply Current ^[2]	Unloaded outputs, 100-MHz		200	mA
I _{DD}	Supply Current	Loaded outputs, 100-MHz		360	mA
I _{DD}	Supply Current ^[2]	Unloaded outputs, 66.67-MHz		150	mA
I _{DD}	Supply Current	Loaded outputs, 66.67-MHz		230	mA
I _{DDS}	Supply Current	${\sf BUF_IN=V_{DD}} \text{ or } {\sf V_{SS}}$ All other inputs at ${\sf V_{DD}}$		500	μΑ

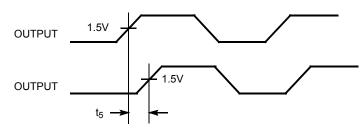
Notes:
1. BUF_IN input has a threshold voltage of V_{DD}/2.
2. Parameter is guaranteed by design and characterization. Not 100% tested in production.



Switching Characteristics^[3]

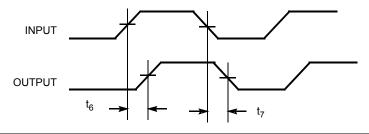

Parameter	Name	Test Conditions	Min.	Тур.	Max.	Unit
	Maximum Operating Frequency				100	MHz
	Duty Cycle ^[2, 4] = $t_2 \div t_1$	Measured at 1.5V	45.0	50.0	55.0	%
t ₃	Rising Edge Rate ^[2]	Measured between 0.4V and 2.4V	0.9	1.5	4.0	V/ns
t ₄	Falling Edge Rate ^[2]	Measured between 2.4V and 0.4V	0.9	1.5	4.0	V/ns
t ₅	Output to Output Skew ^[2]	All outputs equally loaded		150	250	ps
t ₆	SDRAM Buffer LH Prop. Delay ^[2]	Input edge greater than 1 V/ns	1.0	3.5	5.0	ns
t ₇	SDRAM Buffer HL Prop. Delay ^[2]	Input edge greater than 1 V/ns	1.0	3.5	5.0	ns
t ₈	SDRAM Buffer Enable Delay ^[2]	Input edge greater than 1 V/ns	1.0	5	12	ns
t ₉	SDRAM Buffer Disable Delay ^[2]	Input edge greater than 1 V/ns	1.0	20	30	ns

Switching Waveforms

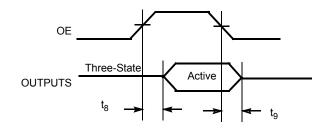

Duty Cycle Timing

All Outputs Rise/Fall Time

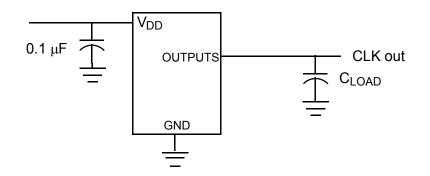
Output-Output Skew


Notes:

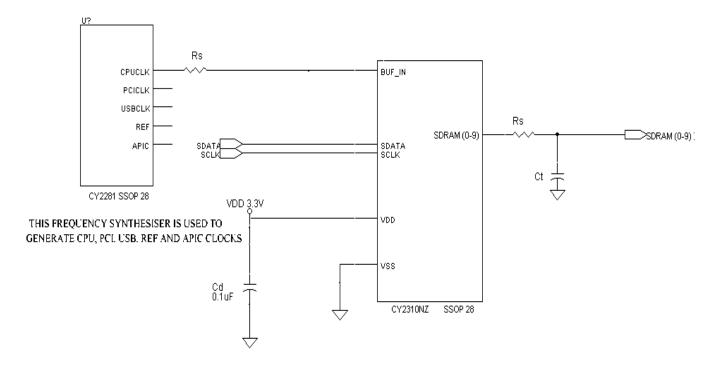
All parameters specified with loaded outputs.
 Duty cycle of input clock is 50%. Rising and falling edge rate is greater than 1V/ns



Switching Waveforms (continued)


SDRAM Buffer LH and HL Propagation Delay

SDRAM Buffer Enable and Disable Times


Test Circuit

Application Information

Clock traces must be terminated with either series or parallel termination, as is normally done.

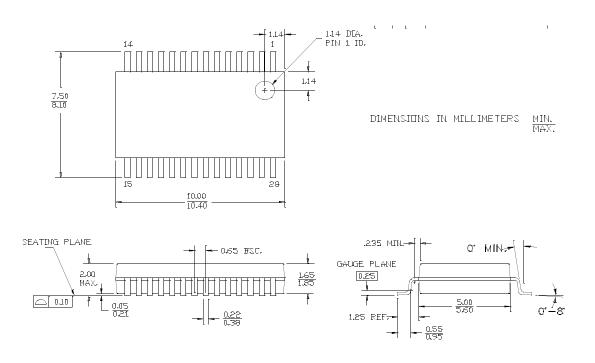
Cd = DECOUPLING CAPACITOR

Ct = OPTIONAL EMI-REDUCING CAPACITORS

Rs = SERIES TERMINATING RESISTORS

Summary

- Surface mount, low-ESR, ceramic capacitors should be used for filtering. Typically, these capacitors have a value of 0.1 μF. In some cases, smaller value capacitors may be required.
- The value of the series terminating resistor satisfies the following equation, where Rtrace is the loaded characteristic impedance of the trace, Rout is the output impedance of the buffer (typically 25Ω), and Rseries is the series terminating resistor. Rseries > Rtrace – Rout
- Footprints must be laid out for optional EMI-reducing capacitors, which should be placed as close to the terminating resistor as is physically possible. Typical values of these capacitors range from 4.7 pF to 22 pF.
- A Ferrite Bead may be used to isolate the Board V_{DD} from the clock generator V_{DD} island. Ensure that the Ferrite Bead offers greater than 50Ω impedance at the clock frequency, under loaded DC conditions. Please refer to the application note "Layout and Termination Techniques for Cypress Clock Generators" for more details.
- If a Ferrite Bead is used, a 10 μF–22 μF tantalum bypass capacitor should be placed close to the Ferrite Bead. This capacitor prevents power supply droop during current surges.



Ordering Information

Ordering Code	Package Type	Operating Range
Standard		
CY2310ANZPVC-1	28-pin SSOP	Commercial
CY2310ANZPVC-1T	28-pin SSOP - Tape and Reel	Commercial
Lead-free		
CY2310ANZPVXC-1	28-pin SSOP	Commercial
CY2310ANZPVXC-1T	28-pin SSOP - Tape and Reel	Commercial

Package Diagram

51-85079-*C

Pentium II is a registered trademark of Intel Corporation. All products and company names mentioned in this document may be the trademarks of their respective holders.

Document #: 38-07142 Rev. *B

© Cypress Semiconductor Corporation, 2005. The information contained herein is subject to change without notice. Cypress Semiconductor Corporation assumes no responsibility for the use of any circuitry other than circuitry embodied in a Cypress product. Nor does it convey or imply any license under patent or other rights. Cypress products are not warranted nor intended to be used for medical, life support, life saving, critical control or safety applications, unless pursuant to an express written agreement with Cypress. Furthermore, Cypress does not authorize its products for use as critical components in life-support systems where a malfunction or failure may reasonably be expected to result in significant injury to the user. The inclusion of Cypress products in life-support systems application implies that the manufacturer assumes all risk of such use and in doing so indemnifies Cypress against all charges.

Document History Page

Document Title: CY2310ANZ 3.3V SDRAM Buffer for Mobile PCs with 4 SO-DIMMs Document Number: 38-07142				
REV.	ECN NO.	lssue Date	Orig. of Change	Description of Change
**	110251	11/18/01	DSG	Change from Spec number: 38-00659 to 38-07142
*A	121829	12/14/02	RBI	Power up requirements added to Operating Conditions Information
*В	310555	See ECN	RGL	Added Lead-free Devices

© Cypress Semiconductor Corporation, 2005. The information contained herein is subject to change without notice. Cypress Semiconductor Corporation assumes no responsibility for the use of any circuitry other than circuitry embodied in a Cypress product. Nor does it convey or imply any license under patent or other rights. Cypress products are not warranted nor intended to be used for medical, life support, life saving, critical control or safety applications, unless pursuant to an express written agreement with Cypress. Furthermore, Cypress does not authorize its products for use as critical components in life-support systems where a malfunction or failure may reasonably be expected to result in significant injury to the user. The inclusion of Cypress products in life-support systems application implies that the manufacturer assumes all risk of such use and in doing so indemnifies Cypress against all charges.