Optoelectronics Cree ML-B White Series on Linear Board

Cree ML-B White Series

The lighting class 1/4-watt XLamp ML-B LED brings high performance and a smooth look to a wide range of lighting applications, including linear lighting, LED replacement lamps, fluorescent retrofits and retail-display lighting.

FEATURES

Wide Viewing Angle: 120°
 Thermal Resistance: 25°C/W
 Maximum Drive Current: 0.175A

APPLICATIONS

- > Linear Lighting
- > Fluorescent Retrofits
- > Retail Display

Flux Characteristics (T_i=25°C--White)(per LED)

	7 (1	,	was-nye ROHS
COLOR TEMPERATURE	CCT(TYP.)(°K)*	MIN.FLUX (LM) @80MA	KIT USED
Cool White	47505250	23.5	0WA1
Neutral White	37004300	18.1	0VE5
Warm White	28003200	18.1	0VZ7

*See Cree Specifications

*Absolute Maximum Ratings (Note 1)

ITEMS	SYMBOL	RATING	UNIT
Forward Current - (Note 2)	I _F	175	mA
Forward Voltage (TYPICAL)(@80mA)	V_{F}	13.2	V
Reverse Voltage	V_{R}	-5.0	V
Operating Temperature at T _B Point (Note 2&3))	T _{OPR}	100	°C
Junction Temperature	T_J	150	oC
ESD Classification (HBM per MIL-STD-883D)		Class 2	

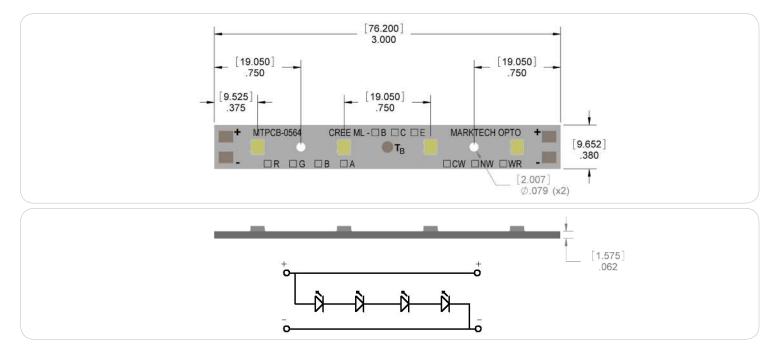
- * Exceeding maximum ratings may damage the LED and cause potential safety hazards.
- * Elevated operating temperatures can be expected to negatively impact the service life (lumen output)
- * All data is related to entire assembly. Data reflects statistical mean values. Actual data may differ depending on variances in the manufacturing process.
- * End users need to take into account the lumen depreciation as the temperature rises with various thermal solutions installed.
- * It is highly recommended for the user to review the CREE ML-B Series page for additional and most recent technical data at http://www.cree.com/led-components-and-modules/products/xlamp/discrete-nondirectional/xlamp-mlb

2012-08-13

- Note 1: Using continuously under elevated loads (i.e. the application of high temperature/current/voltage or a significant change in temperature, etc.) may cause this product to significantly decrease in reliability even if the operating conditions are within the absolute maximum ratings.
- Note 2: The thermal resistance from the LED junction to ambient temperature, Rth(j-a), should be kept below 30°C/W (all colors) so that the LED is not exposed to a condition beyond the absolute maximum ratings.
- Note 3: The temperature of the LED assembly must be measured at the T_B -point according to EN60598-1 in a thermally constant status with a temperature sensor or a temperature sensitive label.

Hardware (not included)

- > Mount with M1.6 Machine Screws.
- > 18AWG Maximum Wire Gauge.
- > Use only with constant current power supplies.


PCB Fabrication

> Layer Count: 1

Core Material: 6061-T6 AluminumSingle Layer Copper Weight: 1oz

> Solder Mask: White

> Finishing Plating: Pb Free HASL

The information contained herein is subject to change without notice.

2012-08-13