

General Description

The MAX4780/MAX4784 are low on-resistance, lowvoltage, quad 2:1 analog multiplexers that operate from a single +1.6V to +4.2V supply. These devices have fast switching speeds (ton = 20ns, toff = 8ns), handle rail-to-rail analog signals, and consume less than 1µW of quiescent power.

When powered from a +2.7V supply, the MAX4780/ MAX4784 feature low 0.7Ω on-resistance (RON), and 0.1Ω Ron flatness. The digital logic input is +1.8V CMOS-logic compatible when using a single +3V supply.

The MAX4780/MAX4784 are available in 16-pin TSSOP and 3mm x 3mm thin QFN packages.

Applications

Power Routing

Battery-Powered Systems

Audio and Video Signal Routing

Low-Voltage Data-Acquisition Systems

Communications Circuits

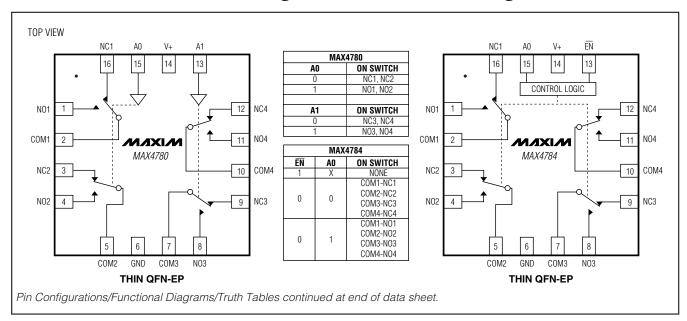
PCMCIA Cards

Cellular Phones

Modems

Hard Drives

Features


- ♦ Single-Supply Operation from 1.6V to 4.2V
- **♦ Low Ron** 0.7Ω (+2.7V Supply) 2Ω (+1.8V Supply)
- ♦ 0.1Ω Ron Flatness (+2.7V Supply)
- ♦ 3mm x 3mm Thin QFN Package
- ♦ +1.8V CMOS Logic Compatible
- ♦ Fast Switching: toN = 20ns, toFF = 8ns

Ordering Information

PART	TEMP RANGE	PIN-PACKAGE
MAX4780ETE	-40°C to +85°C	16 Thin QFN-EP*
MAX4780EUE	-40°C to +85°C	16 TSSOP
MAX4784ETE	-40°C to +85°C	16 Thin QFN-EP*
MAX4784EUE	-40°C to +85°C	16 TSSOP

^{*}EP = Exposed pad.

Pin Configurations/Functional Diagrams/Truth Tables

MIXIM

Maxim Integrated Products 1

ABSOLUTE MAXIMUM RATINGS

Voltages Referenced to GND	
V+, A_, EN	0.3V to +4.6V
COM_, NO_, NC_ (Note 1)	0.3V to $(V + + 0.3V)$
Continuous Current COM_, NO_, NC_	±300mA
Peak Current COM_, NO_, NC_	
(pulsed at 1ms 10% duty cycle)	±500mA

Continuous Power Dissipation ($I_A = +70^{\circ}$ C	;)
16-Pin Thin QFN (derate 14.7mW/°C	
above +70°C)	1176.5mW
16-Pin TSSOP (derate 9.4mW/°C above	+70°C)755mW
Operating Temperature Range	
Maximum Junction Temperature	+150°C
Storage Temperature Range	
Lead Temperature (soldering, 10s)	+300°C

Note 1: Signals on COM_, NO_, or NC_ exceeding V+ or GND are clamped by internal diodes. Limit forward current to maximum current rating.

Stresses beyond those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

ELECTRICAL CHARACTERISTICS—Single +3V Supply

 $(V+=+2.7V \text{ to } +4.2V, V_{IH}=+1.4V, V_{IL}=+0.5V, T_A=T_{MIN} \text{ to } T_{MAX}, \text{ unless otherwise specified. Typical values are at } V+=+3.0V, T_A=+25^{\circ}C.)$ (Notes 2, 3)

PARAMETER	SYMBOL	CONDITIONS	TA	MIN	TYP	MAX	UNITS
ANALOG SWITCH	1						
Analog Signal Range	V _{COM} _, V _{NO} _, V _{NC} _			0		V+	V
On-Resistance (Note 4)	RON	V+ = 2.7V, ICOM = 100mA,	+25°C		0.7	1	Ω
On-nesistance (Note 4)	HOM	V_{NO} or V_{NC} = 1.5V	T _{MIN} to T _{MAX}			1.2	22
On-Resistance Match Between Channels	ΔRON	V+ = 2.7V, I _{COM} _ = 100mA,	+25°C		0.1	0.15	Ω
(Notes 4, 5)	ΔhON	V_{NO} or V_{NC} = 1.5V	T _{MIN} to T _{MAX}			0.2	
On-Resistance Flatness	D	V+ = 2.7V, I _{COM} _ = 100mA;	+25°C		0.1	0.2	Ω
(Note 6)	R _{FLAT} (ON)	V_{NO} or V_{NC} = 1V, 1.5V, 2V	T _{MIN} to T _{MAX}			0.3	22
NO_ or NC_ Off-Leakage	I _{NO_(OFF)} ,	V+ = 3.6V; V _{COM} _ = 0.3V, 3.3V;	+25°C	-1	±0.002	+1	Λ
Current (Note 7)	INC_(OFF)	V_{NO} or V_{NC} = 3.3V, 0.3V	T _{MIN} to T _{MAX}	-5		+5	nA
COM_ Off-Leakage Current		V+ = 3.6V; V _{COM} _ = 0.3V, 3.3V;	+25°C	-1	±0.002	+1	0
(MAX4784 Only) (Note 7)	ICOM_(OFF)	V _{NO} or V _{NC} = 3.3V, 0.3V, or unconnected	T _{MIN} to T _{MAX}	-5		+5	· nA
COM_ On-Leakage Current	1	V+ = 3.6V; V _{COM} _ = 3.3V, 0.3V;	+25°C	-2	±0.002	+2	A
(Note 7)	ICOM_(ON)	V _{NO} or V _{NC} = 3.3V, 0.3V, or unconnected	T _{MIN} to T _{MAX}	-10		+10	nA nA

2 ______M/XI/M

ELECTRICAL CHARACTERISTICS—Single +3V Supply (continued)

 $(V+=+2.7V \text{ to } +4.2V, V_{IH}=+1.4V, V_{IL}=+0.5V, T_A=T_{MIN} \text{ to } T_{MAX}, \text{ unless otherwise specified. Typical values are at } V+=+3.0V, T_A=+25^{\circ}C.)$ (Notes 2, 3)

PARAMETER SYMBOL CONDITIONS		TA	MIN	TYP	MAX	UNITS	
TERISTICS						•	
ton	V _{NO} _, V _{NC} _ = 1.5V, B _L = 500 C _L = 35pF	+25°C		20	25	ns	
ON	Figure 1	T _{MIN} to T _{MAX}			30	110	
torr	V _{NO_} , V _{NC_} = 1.5V,	+25°C		8	10	ns	
WEF	Figure 1	T _{MIN} to T _{MAX}			18	113	
†BBM	$V_{NO_{-}}, V_{NC_{-}} = 1.5V,$ $R_{1} = 50Q, C_{1} = 35pF$	+25°C		7		ns	
, DDIM	Figure 2	T _{MIN} to T _{MAX}	1			110	
Q	V _{GEN} = 0, R _{GEN} = 0, C _L = 1.0nF, Figure 3	+25°C		5		рС	
Coff	f = 1MHz, Figure 4	+25°C		33		рF	
CCOM_(OFF)	f = 1MHz, Figure 4	f = 1MHz, Figure 4 +25°C		60		рF	
C _{COM} (ON)	f = 1MHz, Figure 4 +25°C			85		рF	
BW	Signal = 0, $R_{IN} = R_{OUT} = 50\Omega$, $C_L = 5pF$, Figure 5			123		MHz	
V _{ISO}	$f = 1MHz$, $V_{COM} = 1V_{P-P}$, $R_L = 50\Omega$, $C_L = 5pF$, Figure 5	+25°C		-67		dB	
VcT	$f = 1MHz$, $V_{COM} = 1V_{P-P}$, $R_L = 50\Omega$, $C_L = 5pF$, Figures 4, 5	+25°C		-95		dB	
THD	f = 20Hz to 20 kHz, $V_{COM} = 2$ V _{P-P} , $R_L = 32\Omega$	+25°C		0.008		%	
-							
VIH			1.8			V	
V _I L					0.5	V	
IIN	V _{EN} = 0 or +3.6V, V _{A0} = 0 or +3.6V		-1	0.005	+1	μΑ	
•						•	
V+			1.6		3.6	V	
l+	$V+ = 3.6V$, \overline{EN} , $A0 = 0$ or $V+$, all channels on or off	T _{MIN} to T _{MAX}			2	μΑ	
	TERISTICS ton toff tbbb Q Coff Ccom_(off) Ccom_(on) BW Viso Vct ThD Vih Vill Iin	TERISTICS ton VNO_, VNC_ = 1.5V, RL = 50Ω, CL = 35pF, Figure 1 toff VNO_, VNC_ = 1.5V, RL = 50Ω, CL = 35pF, Figure 1 tbbm VNO_, VNC_ = 1.5V, RL = 50Ω, CL = 35pF, Figure 2 Q VGEN = 0, RGEN = 0, CL = 1.0nF, Figure 3 Coff f = 1MHz, Figure 4 CCOM_(OFF) f = 1MHz, Figure 4 CCOM_(ON) f = 1MHz, Figure 4 VISO f = 1MHz, VCOM_ = 1VPP, RL = 50Ω, CL = 5pF, Figure 5 VISO f = 1MHz, VCOM_ = 1VPP, RL = 50Ω, CL = 5pF, Figure 5 THD f = 20Hz to 20kHz, VCOM_ = 2VP-P, RL = 32Ω VIH VIL In VEN = 0 or +3.6V, VAO = 0 or +3.6V V+ V+ In V+ In V+	TERISTICS ton VNO_, VNC_ = 1.5V, RL = 50Ω, CL = 35pF, Figure 1 +25°C TMIN to TMAX +25°C toff RL = 50Ω, CL = 35pF, Figure 1 +25°C TMIN to TMAX +25°C TMIN to TMAX +25°C TMIN to TMAX +25°C Q VGEN = 0, RGEN = 0, CL = 35pF, Figure 3 +25°C COFF f = 1MHz, Figure 4 +25°C CCOM_(OFF) f = 1MHz, Figure 4 +25°C CCOM_(ON) f = 1MHz, Figure 4 +25°C CCOM_(ON) f = 1MHz, Figure 4 +25°C VISO f = 1MHz, Figure 4 +25°C VISO f = 1MHz, VCOM_ = 1VP.P, RL = 50Ω, CL = 5pF, Figure 5 +25°C VCT f = 1MHz, VCOM_ = 1VP.P, RL = 50Ω, CL = 5pF, Figures 4, 5 +25°C THD f = 20Hz to 20kHz, VCOM_ = 2VP.P, RL = 32Ω +25°C VIH VIL VIN VEN = 0 or +3.6V, VAO = 0 or V+, VAO = 0 or VAO = 0 or V+,	TERISTICS ton VNO_, VNC_ = 1.5V, RL = 50Ω, CL = 35pF, Figure 1 +25°C TMIN to TMAX VNO_, VNC_ = 1.5V, RL = 50Ω, CL = 35pF, Figure 1 +25°C TMIN to TMAX TMIN to TMAX VNO_, VNC_ = 1.5V, RL = 50Ω, CL = 35pF, Figure 2 +25°C TMIN to TMAX 1 Q VGEN = 0, RGEN = 0, CL = 1.0nF, Figure 3 +25°C COFF f = 1MHz, Figure 4 +25°C CCOM_(OFF) f = 1MHz, Figure 4 +25°C CCOM_(ON) f = 1MHz, Figure 4 +25°C CCOM_(ON) f = 1MHz, Figure 4 +25°C VISO f = 1MHz, Figure 4 +25°C VISO f = 1MHz, Figure 4 +25°C VISO f = 1MHz, VCOML = 1VP.P, RL = 50Ω, CL = 5pF, Figure 5 +25°C VCT f = 20Hz to 20kHz, VCOML = 1VP.P, RL = 50Ω, CL = 5pF, Figures 4, 5 +25°C THD f = 20Hz to 20kHz, VCOML = 2VP.P, RL = 32Ω +25°C VIH VIL 1.8 VIH VIN VEN = 0 or +3.6V, VAO = 0 or V+, VAO = 0 or	TERISTICS ton	TERISTICS ton VNO_, VNC_ = 1.5V, RL = 50Ω, CL = 35pF, Figure 1 +25°C 20 25 Ton VNO_, VNC_ = 1.5V, RL = 50Ω, CL = 35pF, Figure 1 +25°C 8 10 Ton VNO_, VNC_ = 1.5V, RL = 50Ω, CL = 35pF, Figure 2 +25°C 7 Ton Ton Ton 1 Q VGEN = 0, RGEN = 0, CL = 1.0nF, Figure 3 +25°C 5 Cop f = 1MHz, Figure 4 +25°C 33 Coom_(COFF) f = 1MHz, Figure 4 +25°C 85 BW Signal = 0, Rin = ROUT = 50Ω, CL = 5pF, Figure 5 +25°C 85 VISO f = 1MHz, Voom_= 1VPP, RL = 50Ω, CL = 5pF, Figure 5 +25°C -67 VCT f = 1MHz, Voom_= 1VPP, RL = 50Ω, CL = 5pF, Figures 4, 5 +25°C -95 THD f = 20Hz to 20kHz, Voom_= 1VPP, RL = 32Ω +25°C 0.008 VIH VI 1.8 VII VEN = 0 or +3.6V -1 0.005 +1 VH V= 3.6V, EN, A0 = 0 or V+, Tount to Toux 2	

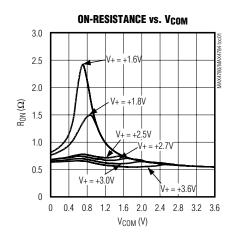
ELECTRICAL CHARACTERISTICS—Single +1.8V Supply

 $(V+=+1.8V, V_{IH}=+1.0V, V_{IL}=+0.4V, T_A=T_{MIN}$ to T_{MAX} , unless otherwise specified. Typical values are at $T_A=+25^{\circ}C$.) (Notes 2, 3)

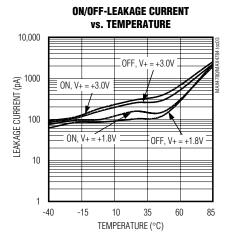
PARAMETER	SYMBOL	CONDITIONS	TA	MIN	TYP	MAX	UNITS	
ANALOG SWITCH								
Analog Signal Range	V _{COM} , V _{NO} , V _{NC}			0		V+	V	
On-Resistance	Ron	ICOM_ = 10mA,	+25°C		2	3	Ω	
	5.1	V_{NO} or V_{NC} = 1.0V	T _{MIN} to T _{MAX}			5		
NO_ or NC_ Off-Leakage	INO_(OFF),	$V_{COM} = 0.3V, 1.5V;$ V_{NO} or $V_{NC} = 1.5V,$	+25°C	-1		+1	nA	
Current (Note 7)	INC_(OFF)	0.3V	T _{MIN} to T _{MAX}	-5		+5		
COM_ Off-Leakage Current	\sim 1 ICOM (OEE) 1 VNO OF VNO = 15V		+25°C	-1		+1	nA	
(MAX4784 Only) (Note 7)			T _{MIN} to T _{MAX}	-5		+5	117 (
COM_ On-Leakage Current	ICOM_(ON)	V _{COM} = 0.3V, 1.5V; V _{NO} or V _{NC} = 0.3V, 1.5V, or unconnected	+25°C	-2		+2	nA	
(Note 7)			T _{MIN} to T _{MAX}	-10		+10		
SWITCH DYNAMIC CHARACTE	RISTICS							
Turn-On Time	ton	V_{NO} , V_{NC} = 1.0V, RL = 50 Ω , CL = 35pF,	+25°C		25	30	ns	
Turri on time	TON	Figure 1	T _{MIN} to T _{MAX}			35	110	
Turn-Off Time	torr	V_{NO} , V_{NC} = 1.0V, R_L = 50 Ω , C_L = 35pF,	+25°C		10	15	ns	
Turri-On Time	tOFF	Figure 1	T _{MIN} to T _{MAX}			20	115	
Break-Before-Make (Note 8)	topus	V _{NO} _, V _{NC} _ = 1.0V,	+25°C		10		no	
blear-belole-iviane (Ivole 6)	tBBM	$R_L = 50\Omega$, $C_L = 35pF$, Figure 2	T _{MIN} to T _{MAX}	1			ns	
Charge Injection	Q	$V_{GEN} = 0$, $R_{GEN} = 0$, $C_L = 1$ nF, Figure 3	+25°C		5		рС	

4 ______*NIXI/*M

ELECTRICAL CHARACTERISTICS—Single +1.8V Supply (continued)

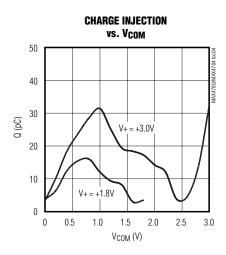

 $(V+=+1.8V,\ V_{IH}=+1.0V,\ V_{IL}=+0.4V,\ T_A=T_{MIN}\ to\ T_{MAX},\ unless\ otherwise\ specified.$ Typical values are at $T_A=+25^{\circ}C.)$ (Notes 2, 3)

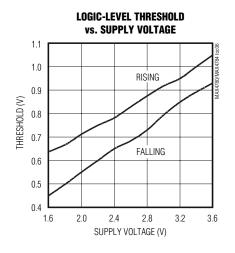
PARAMETER	SYMBOL	CONDITIONS	TA	MIN	TYP	MAX	UNITS
LOGIC INPUT (A_, EN)							
Input Logic-High	VIH			1			V
Input Logic-Low	VIL					0.4	V
Input Leakage Current	liN	$V_{\overline{EN}} = 0 \text{ or } +3.6V,$ $V_{A0} = 0 \text{ or } +3.6V$		-1		+1	μA

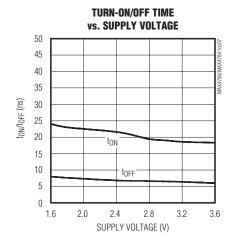

- **Note 2:** The algebraic convention, where the most negative value is a minimum and the most positive value is a maximum, is used in this data sheet.
- Note 3: -40°C specifications are guaranteed by design.
- Note 4: R_{ON} and ΔR_{ON} matching specifications for QFN packaged parts are guaranteed by design.
- **Note 5:** $\Delta R_{ON} = R_{ON(MAX)} R_{ON(MIN)}$.
- **Note 6:** Flatness is defined as the difference between the maximum and the minimum value of on-resistance as measured over the specified analog signal ranges.
- Note 7: Leakage parameters are 100% tested at T_A = +85°C, and guaranteed by correlation over the full rated temperature range.
- Note 8: Guaranteed by design.
- **Note 9:** Off-isolation = $20\log_{10}(V_{COM}/V_{NO})$, V_{COM} = output, V_{NO} = input to off switch.
- Note 10: Between two switches.
- Note 11: Parts are guaranteed to 1 million cycles of operation. (Cycle = switch on → switch off → switch on.)
- **Note 12:** The minimum load resistance is 8Ω . (See the *Typical Application Circuit*.)

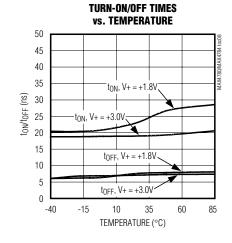
_Typical Operating Characteristics

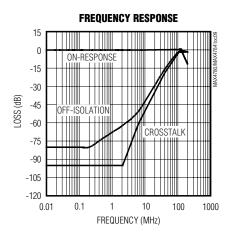
 $(T_A = +25^{\circ}C, \text{ unless otherwise noted.})$

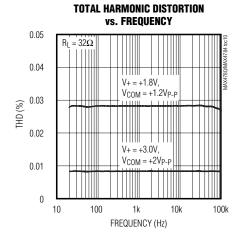





Typical Operating Characteristics (continued)


 $(T_A = +25^{\circ}C, \text{ unless otherwise noted.})$





Pin Description

PIN						
MAX4780 MAX4784		NAME	FUNCTION			
TSSOP	THIN QFN-EP	TSSOP	THIN QFN-EP			
1	15	1	15	A0	Address Input	
2	16	2	16	NC1	Normally Closed Terminal	
3	1	3	1	NO1	Normally Open Terminal	
4	2	4	2	COM1	Analog Switch Common Terminal	
5	3	5	3	NC2	Normally Closed Terminal	
6	4	6	4	NO2	Normally Open Terminal	
7	5	7	5	COM2	Analog Switch Common Terminal	
8	6	8	6	GND	Ground	
9	7	9	7	COM3	Analog Switch Common Terminal	
10	8	10	8	NO3	Normally Open Terminal	
11	9	11	9	NC3	Normally Closed Terminal	
12	10	12	10	COM4	Analog Switch Common Terminal	
13	11	13	11	NO4	Normally Open Terminal	
14	12	14	12	NC4	Normally Closed Terminal	
15	13	_	_	A1	Address Input	
_	_	15	13	ĒN	Enable. Connect to GND for normal operation. Connect to logic-level high to turn all switches off.	
16	14	16	14	V+	Positive Supply Voltage	
_	_	_	_	EP	Exposed Pad. Internally connected to GND. Connect to a large ground plane to maximize thermal performance. Not intended as an electrical connection point. (Thin QFN package only.)	

Detailed Description

The MAX4780/MAX4784 are low 0.7Ω (at V+ = +2.7V) on-resistance, low-voltage, quad 2:1 analog multiplexers/ demultiplexers that operate from a +1.6V to +4.2V single supply. CMOS switch construction allows switching analog signals that are within the supply voltage range (GND to V+).

When powered from a +2.7V supply, the 0.7Ω R_{ON} allows high continuous currents to be switched in a variety of applications.

Applications Information

Proper power-supply sequencing is recommended for all CMOS devices. Do not exceed the absolute maximum ratings, because stresses beyond the listed ratings can cause permanent damage to the devices. Always sequence V+ on first, followed by NO, NC, or COM.

Although it is not required, power-supply bypassing improves noise margin and prevents switching noise propagation from the V+ supply to other components. A $0.1\mu F$ capacitor, connected from V+ to GND, is adequate for most applications.

Typical Application Circuit

Logic Inputs

The MAX4780/MAX4784 logic inputs can be driven up to +4.2V regardless of the supply voltage. For example, with a +1.8V supply, A_ and EN may be driven low to GND and high to +4.2V. Driving A_ and EN rail-to-rail minimizes power consumption. Drive EN low to enable the COM_ outputs. When EN is high, the COM_ outputs are high impedance.

Analog Signal Levels

Analog signals that range over the entire supply voltage (V+ to GND) can be passed with very little change in on-

resistance (see the *Typical Operating Characteristics*). The switches are bidirectional, so the NO_, NC_, and COM_ pins can be used as either inputs or outputs.

Layout

High-speed switches require proper layout and design procedures for optimum performance. Reduce stray inductance and capacitance by keeping traces short and wide. Ensure that bypass capacitors are as close to the device as possible. Use large ground planes where possible.

Test Circuits/Timing Diagrams

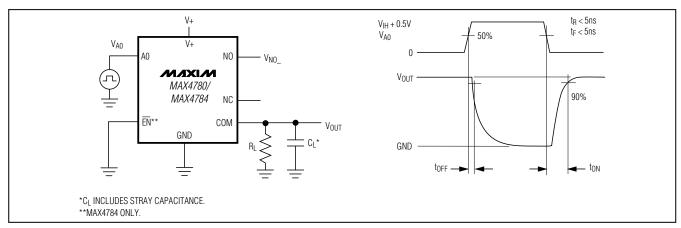


Figure 1. Turn-On and Turn-Off Times

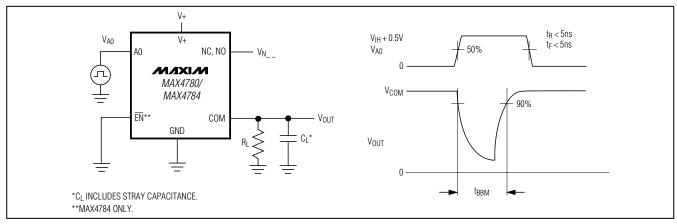


Figure 2. Break-Before-Make Interval

Test Circuits/Timing Diagrams (continued)

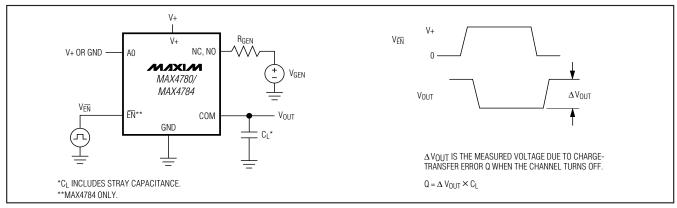


Figure 3. Charge Injection

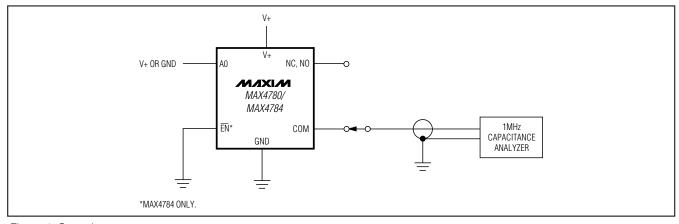


Figure 4. Capacitance

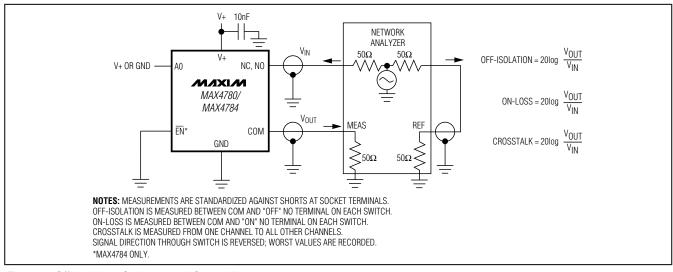
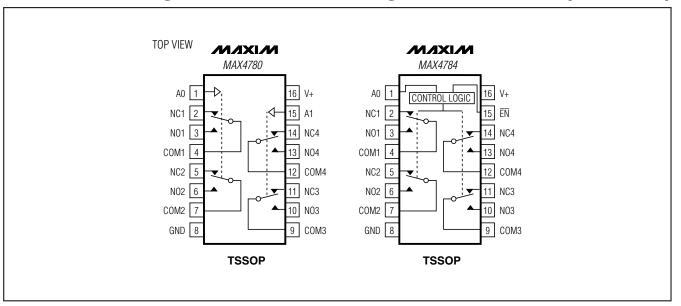



Figure 5. Off-Isolation, On-Loss, and Crosstalk

Pin Configurations/Functional Diagrams/Truth Tables (continued)

Chip Information

PROCESS: CMOS

Package Information

For the latest package outline information and land patterns, go to **www.maxim-ic.com/packages**.

PACKAGE TYPE	PACKAGE CODE	DOCUMENT NO.
16 TQFN	T1633+4	<u>21-0136</u>
16 TSSOP	U16+2	<u>21-0066</u>

Revision History

REVISION NUMBER	REVISION DATE	DESCRIPTION	PAGES CHANGED
0	4/02	Initial release	_
1	1/04	Added MAX4780	_
2	9/04	Changed Ab max voltage	_
3	12/04	Change operation to 4.2V	_
4	3/09	Added exposed pad information	1, 2, 4, 7, 10,

Maxim cannot assume responsibility for use of any circuitry other than circuitry entirely embodied in a Maxim product. No circuit patent licenses are implied. Maxim reserves the right to change the circuitry and specifications without notice at any time.