Freescale Semiconductor

Technical Data

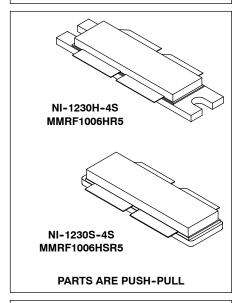
RF Power Field Effect Transistors

N-Channel Enhancement-Mode Lateral MOSFETs

Designed for pulse and CW wideband applications with frequencies up to 500 MHz. Devices are unmatched and are suitable for use in communications, radar and industrial applications.

 Capable of Handling 10:1 VSWR @ 50 Vdc, 450 MHz, 1000 W Peak Power

Features


- Characterized with Series Equivalent Large-Signal Impedance Parameters
- · CW Operation Capability with Adequate Cooling
- Qualified Up to a Maximum of 50 V_{DD} Operation
- · Integrated ESD Protection
- · Designed for Push-Pull Operation
- Greater Negative Gate-Source Voltage Range for Improved Class C Operation
- In Tape and Reel. R5 Suffix = 50 Units, 56 mm Tape Width, 13-inch Reel.

Document Number: MMRF1006H Rev. 0, 12/2013

VRoHS

MMRF1006HR5 MMRF1006HSR5

10-500 MHz, 1000 W, 50 V LATERAL N-CHANNEL BROADBAND RF POWER MOSFETs

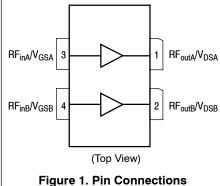


Table 1. Maximum Ratings

Rating	Symbol	Value	Unit
Drain-Source Voltage	V _{DSS}	-0.5, +110	Vdc
Gate-Source Voltage	V _{GS}	-6, +10	Vdc
Storage Temperature Range	T _{stg}	-65 to +150	°C
Case Operating Temperature	T _C	150	°C
Operating Junction Temperature (1)	TJ	225	°C
Total Device Dissipation @ T _C = 25°C, CW only (2)	P _D	1333	W

- 1. Continuous use at maximum temperature will affect MTTF.
- 2. Refer to Fig. 12, Transient Thermal Impedance, for information to calculate value for pulsed operation.

Table 2. Thermal Characteristics

Characteristic	Symbol	Value (1)	Unit
Thermal Impedance, Junction to Case Pulse: Case Temperature 80°C, 1000 W Peak, 100 μsec Pulse Width, 20% Duty Cycle, 450 MHz (2)	Z _{θJC}	0.03	°C/W
Thermal Resistance, Junction to Case CW: Case Temperature 84°C, 1000 W CW, 352.2 MHz	$R_{\theta JC}$	0.15	°C/W

Table 3. ESD Protection Characteristics

Test Methodology	Class
Human Body Model (per JESD22-A114)	2, passes 2000 V
Machine Model (per EIA/JESD22-A115)	A, passes 125 V
Charge Device Model (per JESD22-C101)	IV, passes 2000 V

Table 4. Electrical Characteristics (T_A = 25°C unless otherwise noted)

-	•				
Characteristic	Symbol	Min	Тур	Max	Unit
Off Characteristics ⁽³⁾					
Gate-Source Leakage Current (V _{GS} = 5 Vdc, V _{DS} = 0 Vdc)	I _{GSS}	_	_	10	μAdc
Drain-Source Breakdown Voltage (I _D = 300 mA, V _{GS} = 0 Vdc)	V _{(BR)DSS}	110	_	_	Vdc
Zero Gate Voltage Drain Leakage Current (V _{DS} = 50 Vdc, V _{GS} = 0 Vdc)	I _{DSS}	_	_	100	μAdc
Zero Gate Voltage Drain Leakage Current (V _{DS} = 100 Vdc, V _{GS} = 0 Vdc)	I _{DSS}	_	_	5	mA
On Characteristics					
Gate Threshold Voltage (3) $(V_{DS} = 10 \text{ Vdc}, I_D = 1600 \mu\text{Adc})$	V _{GS(th)}	1	1.68	3	Vdc
Gate Quiescent Voltage (4) (V _{DD} = 50 Vdc, I _D = 150 mAdc, Measured in Functional Test)	V _{GS(Q)}	1.5	2.2	3.5	Vdc
Drain-Source On-Voltage (3) (V _{GS} = 10 Vdc, I _D = 4 Adc)	V _{DS(on)}	_	0.28	_	Vdc
Dynamic Characteristics ⁽³⁾	- 1				
Reverse Transfer Capacitance (V _{DS} = 50 Vdc ± 30 mV(rms)ac @ 1 MHz, V _{GS} = 0 Vdc)	C _{rss}	_	3.3	_	pF
Output Capacitance (V _{DS} = 50 Vdc ± 30 mV(rms)ac @ 1 MHz, V _{GS} = 0 Vdc)	C _{oss}	_	147	_	pF
Input Capacitance (V _{DS} = 50 Vdc, V _{GS} = 0 Vdc ± 30 mV(rms)ac @ 1 MHz)	C _{iss}	_	506	_	pF

Functional Tests $^{(4)}$ (In Freescale Test Fixture, 50 ohm system) V_{DD} = 50 Vdc, I_{DQ} = 150 mA, P_{out} = 1000 W Peak (200 W Avg.), f = 450 MHz, 100 μ sec Pulse Width, 20% Duty Cycle

Power Gain	G _{ps}	19	20	22	dB
Drain Efficiency	η_{D}	60	64	_	%
Input Return Loss	IRL	_	-18	-9	dB

- 1. Refer to AN1955, *Thermal Measurement Methodology of RF Power Amplifiers*. Go to http://www.freescale.com/rf. Select Documentation/Application Notes AN1955.
- 2. Refer to Fig. 12, Transient Thermal Impedance, for other pulsed conditions.
- 3. Each side of device measured separately.
- 4. Measurement made with device in push-pull configuration.

(continued)

MMRF1006HR5 MMRF1006HSR5

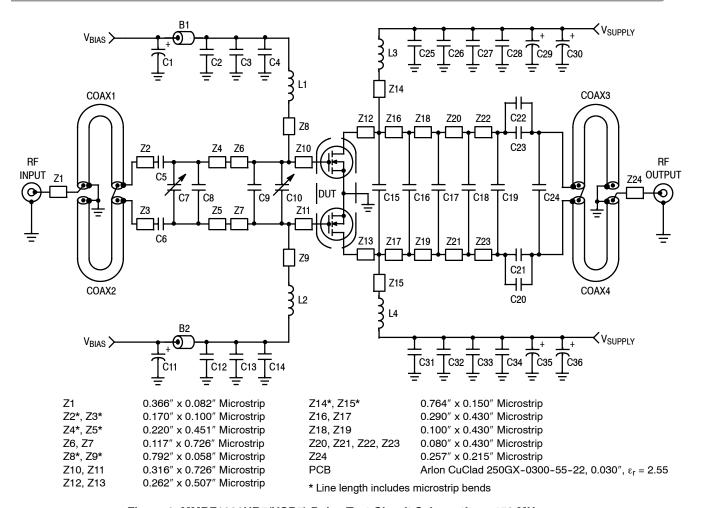
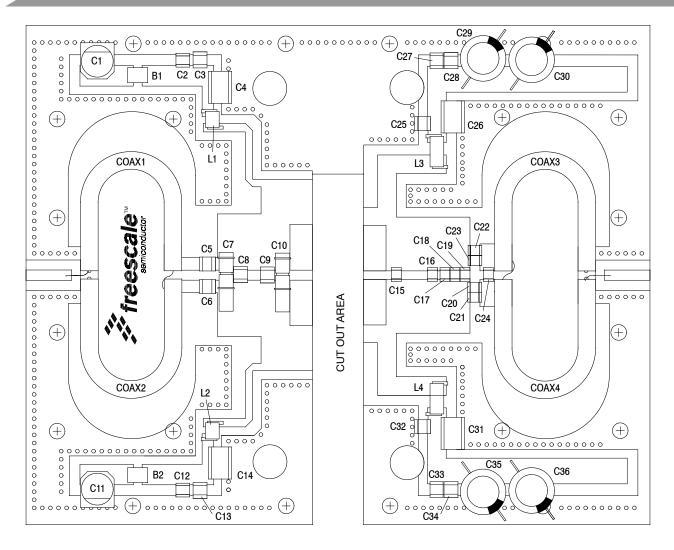
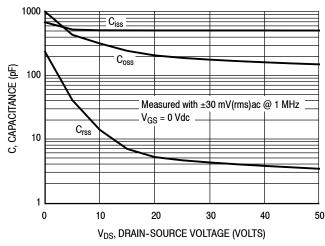
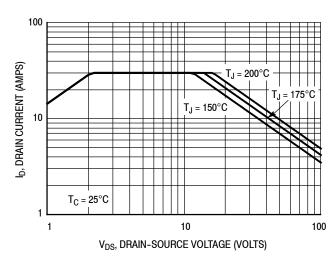


Figure 2. MMRF1006HR5(HSR5) Pulse Test Circuit Schematic — 450 MHz

Table 5. MMRF1006HR5(HSR5) Pulse Test Circuit Component Designations and Values — 450 MHz

Part	Description	Part Number	Manufacturer
B1, B2	47 Ω, 100 MHz Short Ferrite Beads	2743019447	Fair-Rite
C1, C11	47 μF, 50 V Electrolytic Capacitors	476KXM063M	Illinois
C2, C12, C28, C34	0.1 μF Chip Capacitors	CDR33BX104AKYS	Kemet
C3, C13, C27, C33	220 nF, 50 V Chip Capacitors	C1812C224K5RAC	Kemet
C4, C14	2.2 μF, 50 V Chip Capacitors	C1825C225J5RAC	Kemet
C5, C6, C8, C15	27 pF Chip Capacitors	ATC100B270JT500XT	ATC
C7, C10	0.8-8.0 pF Variable Capacitors	27291SL	Johanson Components
C9	33 pF Chip Capacitor	ATC100B330JT500XT	ATC
C16	12 pF Chip Capacitor	ATC100B120JT500XT	ATC
C17	10 pF Chip Capacitor	ATC100B100JT500XT	ATC
C18	9.1 pF Chip Capacitor	ATC100B9R1CT500XT	ATC
C19	8.2 pF Chip Capacitor	ATC100B8R2CT500XT	ATC
C20, C21, C22, C23, C25, C32	240 pF Chip Capacitors	ATC100B241JT200XT	ATC
C24	5.6 pF Chip Capacitor	ATC100B5R6CT500XT	ATC
C26, C31	2.2 μF, 100 V Chip Capacitors	2225X7R225KT3AB	ATC
C29, C30, C35, C36	330 μF, 63 V Electrolytic Capacitors	EMVY630GTR331MMH0S	Nippon Chemi-Con
Coax1, 2, 3, 4	25 Ω Semi Rigid Coax, 2.2" Shield Length	UT-141C-25	Micro-Coax
L1, L2	2.5 nH, 1 Turn Inductors	A01TKLC	Coilcraft
L3, L4	43 nH, 10 Turn Inductors	B10TJLC	Coilcraft


Figure 3. MMRF1006HR5(HSR5) Pulse Test Circuit Component Layout — 450 MHz

TYPICAL CHARACTERISTICS

Note: Each side of device measured separately.

Figure 4. Capacitance versus Drain-Source Voltage

Note: Each side of device measured separately.

Figure 5. DC Safe Operating Area

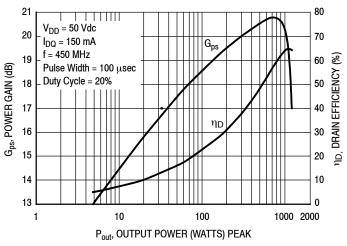


Figure 6. Power Gain and Drain Efficiency versus Output Power

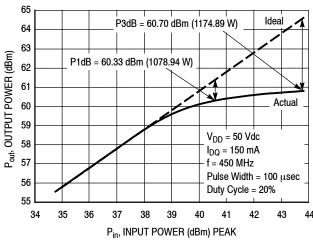


Figure 7. Output Power versus Input Power

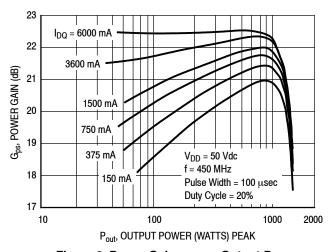


Figure 8. Power Gain versus Output Power

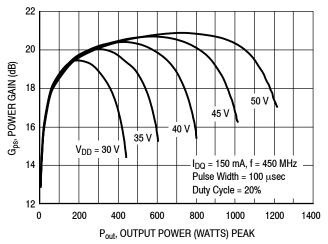


Figure 9. Power Gain versus Output Power

TYPICAL CHARACTERISTICS

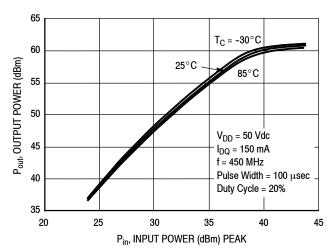


Figure 10. Output Power versus Input Power

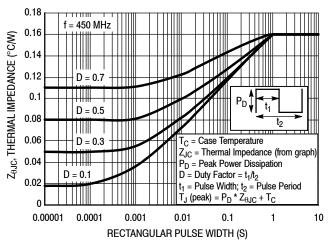
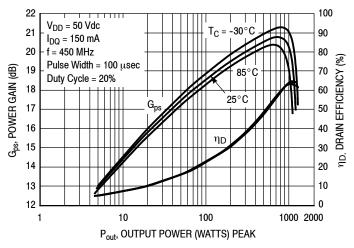
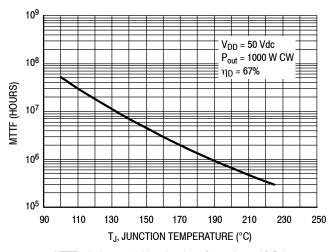
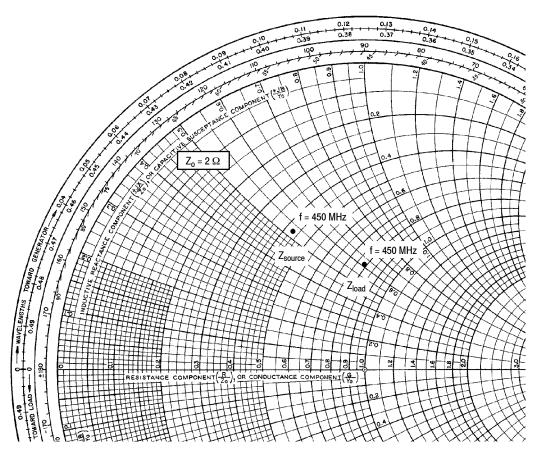


Figure 12. Transient Thermal Impedance


Figure 11. Power Gain and Drain Efficiency versus Output Power

MTTF calculator available at http://www.freescale.com/rf. Select Software & Tools/Development Tools/Calculators to access MTTF calculators by product.

NOTE: For pulse applications or CW conditions, use the MTTF calculator referenced above.

Figure 13. MTTF versus Junction Temperature - CW

 V_{DD} = 50 Vdc, I_{DQ} = 150 mA, P_{out} = 1000 W Peak

f	Z _{source}	Z _{load}
MHz	Ω	Ω
450	0.86 + j1.06	

Z_{source} = Test circuit impedance as measured from gate to gate, balanced configuration.

Z_{load} = Test circuit impedance as measured from drain to drain, balanced configuration.

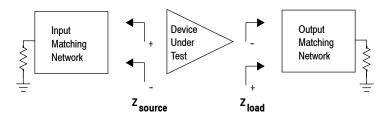
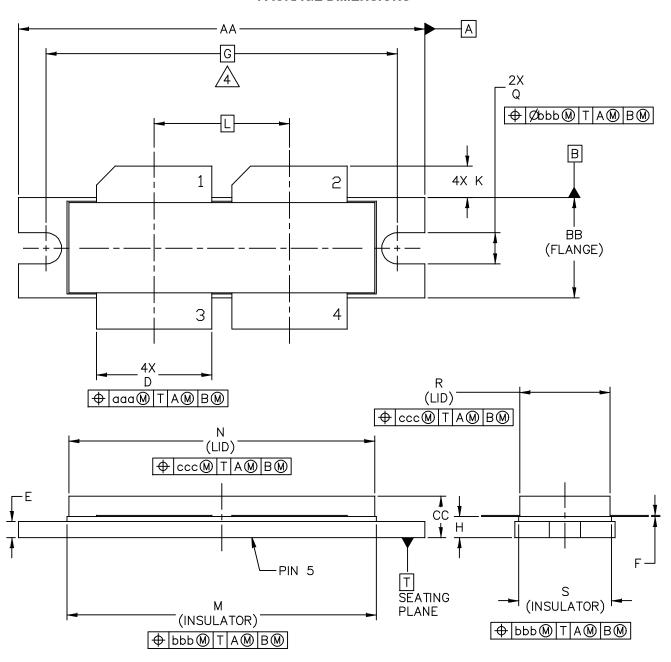
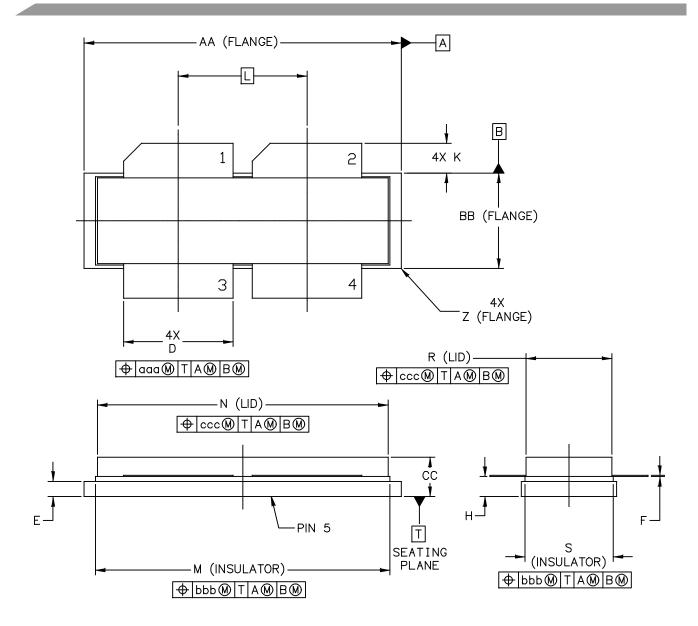



Figure 14. Series Equivalent Source and Load Impedance — 450 MHz

PACKAGE DIMENSIONS



© FREESCALE SEMICONDUCTOR, INC. ALL RIGHTS RESERVED.	MECHANICAL OUTLINE		PRINT VERSION NOT TO SCALE
TITLE:		DOCUME	NT NO: 98ASB16977C REV: F
NI-1230-4H		STANDAF	RD: NON-JEDEC
			28 FEB 2013

NOTES:

- 1. INTERPRET DIMENSIONS AND TOLERANCES PER ASME Y14.5M-1994.
- 2. CONTROLLING DIMENSION: INCH
- 3. DIMENSION H IS MEASURED . 030 INCH (0.762 MM) AWAY FROM PACKAGE BODY.
- RECOMMENDED BOLT CENTER DIMENSION OF 1.52 INCH (38.61 MM) BASED ON M3 SCREW.

	ING	CH	MIL	LIMETER		INCH		MILLIMETER	
DIM	MIN	MAX	MIN	MAX	DIM	MIN	MAX	MIN	MAX
AA	1.615	1.625	41.02	41.28	Ν	1.218	1.242	30.94	31.55
BB	.395	.405	10.03	10.29	Q	.120	.130	3.05	3.30
CC	.170	.190	4.32	4.83	R	.355	.365	9.02	9.27
D	.455	.465	11.56	11.81	S	.365	.375	9.27	9.53
Е	.062	.066	1.57	1.68					
F	.004	.007	0.10	0.18					
G	1.400	BSC	35	.56 BSC	aaa		.013	0.33	
Н	.082	.090	2.08	2.29	bbb		.010	0.	25
K	.117	.137	2.97	3.48	ccc		.020	0.	.51
L	.540	BSC	13.	.72 BSC					
М	1.219	1.241	30.96	31.52					
© F	FREESCALE SEM ALL RIGHT	MICONDUCTOR, S RESERVED.	INC.	MECHANICA	L OUT	LINE	PRINT VERS	SION NOT T	O SCALE
TITLE:	TITLE:						IT NO: 98ASB1	6977C	REV: F
NI-1230-4H						STANDAR	D: NON-JEDEC		
								28	FEB 2013

© FREESCALE SEMICONDUCTOR, INC. ALL RIGHTS RESERVED.	MECHANICAL OU	TLINE	PRINT VERSION NOT TO SCALE
TITLE:		DOCUMEN	NT NO: 98ARB18247C REV: G
NI-1230-4S		STANDAF	RD: NON-JEDEC
			01 MAR 2013

NOTES:

- 1. INTERPRET DIMENSIONS AND TOLERANCES PER ASME Y14.5M-1994.
- 2. CONTROLLING DIMENSION: INCH
- 3. DIMENSION H IS MEASURED .030 INCH (0.762 MM) AWAY FROM PACKAGE BODY

DIM	INC MIN	HES MAX	MILL MIN	IMETERS MAX	DIM	NIN IN	ICHES MAX	MILLII MIN	METERS MAX
AA	1.265	1.275	32.13	32.39	R	.355	.365	9.02	9.27
BB	.395	.405	10.03	10.29	S	.365	.375	9.27	9.53
СС	.170	.190	4.32	4.83	Z	R.000	R.040	R0.00	R1.02
D	.455	.465	11.56	11.81					
E	.062	.066	1.57	1.68	aaa		.013	o	.33
F	.004	.007	0.10	0.18	bbb		.010	О	.25
Н	.082	.090	2.08	2.29	ccc		.020	C).51
K	.117	.137	2.97	3.48					
L	.540	BSC	13.	72 BSC					
М	1.219	1.241	30.96	31.52					
N	1.218	1.242	30.94	31.55					
© FREESCALE SEMICONDUCTOR, INC. ALL RIGHTS RESERVED.			INC.	MECHANICA	L 0U1	TLINE	PRINT VEF	RSION NOT	TO SCALE
TITLE:						DOCUME	NT NO: 98ARE	318247C	REV: G
		NI-123	0−4S			STANDA	RD: NON—JEDE	C	
								0	1 MAR 2013

PRODUCT DOCUMENTATION

Refer to the following documents to aid your design process.

Application Notes

• AN1955: Thermal Measurement Methodology of RF Power Amplifiers

Engineering Bulletins

• EB212: Using Data Sheet Impedances for RF LDMOS Devices

REVISION HISTORY

The following table summarizes revisions to this document.

Revision	Date	Description
0	Dec. 2013	Initial Release of Data Sheet

How to Reach Us:

Home Page: freescale.com

Web Support: freescale.com/support

Information in this document is provided solely to enable system and software implementers to use Freescale products. There are no express or implied copyright licenses granted hereunder to design or fabricate any integrated circuits based on the information in this document.

Freescale reserves the right to make changes without further notice to any products herein. Freescale makes no warranty, representation, or guarantee regarding the suitability of its products for any particular purpose, nor does Freescale assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation consequential or incidental damages. "Typical" parameters that may be provided in Freescale data sheets and/or specifications can and do vary in different applications, and actual performance may vary over time. All operating parameters, including "typicals," must be validated for each customer application by customer's technical experts. Freescale does not convey any license under its patent rights nor the rights of others. Freescale sells products pursuant to standard terms and conditions of sale, which can be found at the following address: freescale.com/SalesTermsandConditions.

Freescale and the Freescale logo are trademarks of Freescale Semiconductor, Inc., Reg. U.S. Pat. & Tm. Off. All other product or service names are the property of their respective owners.

© 2013 Freescale Semiconductor, Inc.

Document Number: MMRF1006H

Rev. 0, 12/2013