

STGB10NC60K

10 A, 600 V short-circuit rugged IGBT

Features

- Low on voltage drop (V_{CESAT})
- Short-circuit withstand time 10 µs

Applications

- High frequency motor controls
- SMPS and PFC in both hard switch and resonant topologies
- Motor drives

Description

This device utilizes the advanced Power MESH™ process resulting in an excellent trade-off between switching performance and low on-state behavior.

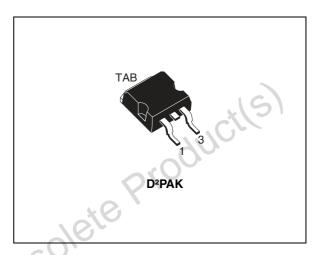
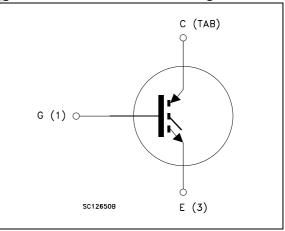



Figure 1. Internal schematic diagram

Part number	Marking	Package	Packaging
STGB10NC60KT4	GB10NC60K	D ² PAK	Tape and reel

Doc ID 11842 Rev 4

1 Electrical ratings

Table 2.	Absolute	maximum	ratings
	Abounte	IIIuAIIIIuIII	runngo

Symbol	Parameter	Value	Unit
V _{CES}	Collector-emitter voltage (V _{GE} = 0)	600	V
I _C ⁽¹⁾	Continuous collector current at $T_C = 25^{\circ}C$	20	А
I _C ⁽¹⁾	Continuous collector current at T _C = 100°C	10	А
I _{CL} ⁽²⁾	Turn-off latching current	30	А
I _{CP} ⁽³⁾	Pulsed collector current	30	Α
V _{GE}	Gate-emitter voltage	±20	V
P _{TOT}	Total dissipation at $T_C = 25^{\circ}C$	65	W
T _{STG}	Storage temperature	- 55 to 150	°C
TJ	Operating junction temperature	- 55 10 150	C
t _{SCW}	Short-circuit withstand time (V _{CE} = 0.5 V _{CES} , T _J = 125 °C, R _G = 10 Ω , V _{GE} = 12 V)	10	μs

1. Calculated according to the iterative formula:

$$I_{C}(T_{C}) = \frac{T_{j(max)} - T_{C}}{R_{thj-c} \times V_{CE(sat)(max)}(T_{j(max)}, I_{C}(T_{C}))}$$

- 2. $V_{clamp} = 80 \% V_{CES}$, $V_{GE} = 15 V$, $R_G = 10 \Omega$, $T_J = 150 \degree C$
- 3. Pulse width limited by maximum junction temperature and turn-off within RBSOA

Table	3.	Thermal	data

	Symbol	Parameter	Value	Unit
	R _{thJC}	Thermal resistance junction-case	1.9	°C/W
cole	R _{thJA}	Thermal resistance junction-ambient	62.5	°C/W
0650				

Electrical characteristics 2

Parameter	Test conditions	N/1:		· · · · · ·	
		Min.	Тур.	Max.	Unit
ollector-emitter breakdown Itage (V _{GE} = 0)	I _C = 1mA	600			V
ollector-emitter saturation	V _{GE} = 15V, I _C = 5A V _{GE} = 15V, I _C = 5A, T _J =125°C		2.2 1.8	2.5	V V
ate threshold voltage	$V_{CE} = V_{GE}$, $I_C = 250 \ \mu A$	4.5		6.5	v
bllector cut-off current GE = 0)	V _{CE} = 600 V V _{CE} = 600 V, T _J = 125 °C		10	150 1	μA mA
ate-emitter leakage urrent (V _{CE} = 0)	V _{GE} = ± 20 V	<i>'0'</i>		±100	nA
orward transconductance	$V_{CE} = 15 \text{ V} \text{ I}_{C} = 5 \text{ A}$		15		S
olle GE ate	ector cut-off current $_{\rm E}$ = 0) e-emitter leakage ent (V _{CE} = 0)	ector cut-off current $E = 0$ $V_{CE} = 600 V$ $V_{CE} = 600 V, T_J = 125 °Ce-emitter leakageent (V_{CE} = 0)V_{GE} = \pm 20 V$	ector cut-off current $E = 0$ $V_{CE} = 600 V$ $V_{CE} = 600 V, T_J = 125 °Ce-emitter leakageent (V_{CE} = 0)V_{GE} = \pm 20 V$	ector cut-off current $E = 0$ $V_{CE} = 600 \text{ V}$ $V_{CE} = 600 \text{ V}, T_J = 125 °C$ e-emitter leakage ent ($V_{CE} = 0$) $V_{GE} = \pm 20 \text{ V}$	ector cut-off current $E = 0$ $V_{CE} = 600 \text{ V}$ $V_{CE} = 600 \text{ V}, T_J = 125 °C1501e-emitter leakageent (V_{CE} = 0)V_{GE} = \pm 20 \text{ V}\pm 100$

Table 4 Static

	Table	5.	Dynamic
--	-------	----	---------

9 _{fs} ⁽¹⁾	Forward transconductance	V _{CE} = 15 V, I _C = 5A		15		S			
1. Pulse te	. Pulse test: pulse duration < 300 μs, duty cycle < 2 %.								
Table 5.	able 5. Dynamic								
Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit			
C _{ies} C _{oes} C _{res}	Input capacitance Output capacitance Reverse transfer capacitance	V _{CE} = 25V, f = 1MHz, V _{GE} = 0		380 46 8.5		pF pF pF			
Q _g Q _{ge} Q _{gc}	Total gate charge Gate-emitter charge Gate-collector charge	$V_{CE} = 390V, I_C = 5A,$ $V_{GE} = 15V,$ (see Figure 17)		19 5 9		nC nC nC			

Switching on/off (inductive load)

	ge		GE (GE)		-		
	Q _{gc}	Gate-collector charge	(see Figure 17)		9		nC
	10						
de	Table 6.	Switching on/off (ind	uctive load)				
absur	Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit
O^{φ}	t _{d(on)}	Turn-on delay time	$V_{CC} = 390V, I_{C} = 5A$		17		ns
	t _r	Current rise time	R _G = 10Ω, V _{GE} = 15V,		6		ns
	(di/dt) _{on}	Turn-on current slope	(see Figure 18)		655		A/µs
	t _{d(on)}	Turn-on delay time	V _{CC} = 390V, I _C = 5A		16.5		ns
	t _r	Current rise time	R _G = 10Ω, V _{GE} = 15V, Tj=125°C		6.5		ns
	(di/dt) _{on}	Turn-on current slope	(see Figure 18)		575		A/µs
	t _r (V _{off})	Off voltage rise time	$V_{cc} = 390V, I_C = 5A,$		33		ns
	t _d (_{off})	Turn-off delay time	$R_{GE} = 10\Omega$, $V_{GE} = 15V$,		72		ns
	t _f	Current fall time	(see Figure 18)		82		ns
	t _r (V _{off})	Off voltage rise time	$V_{cc} = 390V, I_{C} = 5A,$		60		ns
	t _d (_{off})	Turn-off delay time	R _{GE} =10Ω, V _{GE} =15V, Tj=125°C		106		ns
	t _f	Current fall time	(see Figure 18)		136		ns

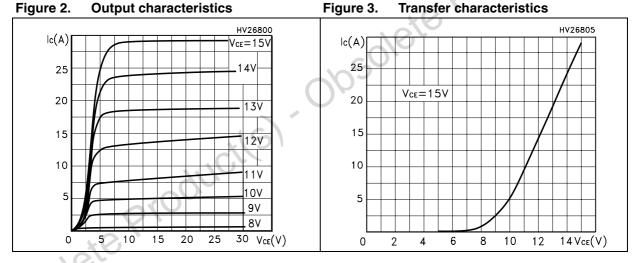
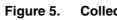
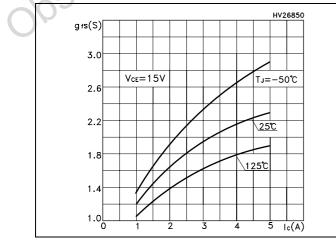

Symbol	Parameter	Test conditions	Min	Тур	Max	Unit
E _{on} ⁽¹⁾ E _{off} ⁽²⁾ E _{ts}	Turn-on switching losses Turn-off switching losses Total switching losses	$V_{CC} = 390V, I_C = 5A$ $R_G = 10\Omega, V_{GE} = 15V,$ <i>(see Figure 18)</i>		55 85 140		μJ μJ μJ
$ \begin{array}{c} E_{\mathrm{on}}^{(1)} \\ E_{\mathrm{off}}^{(2)} \\ E_{\mathrm{ts}} \end{array} \end{array} $	Turn-on switching losses Turn-off switching losses Total switching losses	$V_{CC} = 390V, I_C = 5A$ $R_G = 10\Omega, V_{GE} = 15V,$ $Tj = 125^{\circ}C$ <i>(see Figure 18)</i>		87 162 249		μJ μJ μJ


Table 7. Switching energy (inductive load)


 Eon is the tun-on losses when a typical diode is used in the test circuit in figure 2. If the IGBT is offered in a
package with a co-pak diode, the co-pack diode is used as external diode. IGBTs & Diode are at the same
temperature (25°C and 125°C) oduci

2. Turn-off losses include also the tail of the collector current


Electrical characteristics (curves) 2.1

Collector-emitter on voltage vs temperature

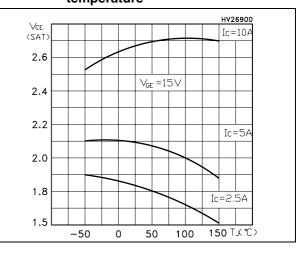
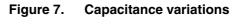



Figure 6. Gate charge vs. gate-source voltage

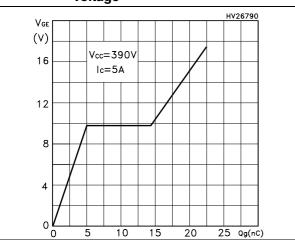


Figure 8. Normalized gate threshold voltage Figure 9. vs. temperature

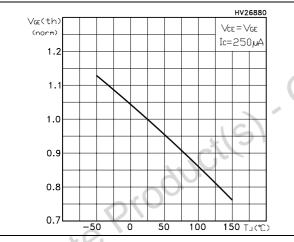
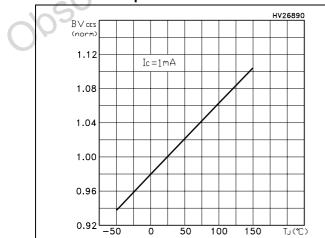
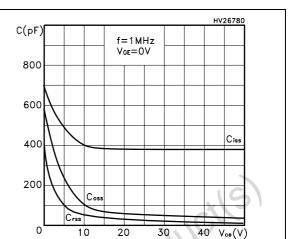




Figure 10. Normalized breakdown voltage vs temperature

Collector-emitter on voltage vs collector current

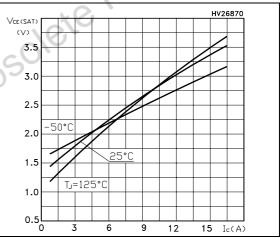
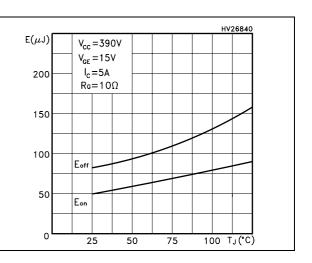



Figure 11. Switching losses vs temperature

Switching losses vs collector

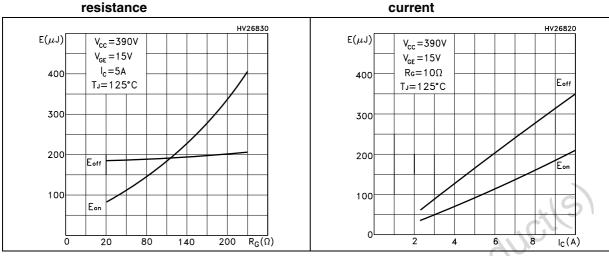


Figure 13.

Figure 12. Switching losses vs. gate resistance

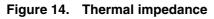


Figure 15. Turn-off SOA

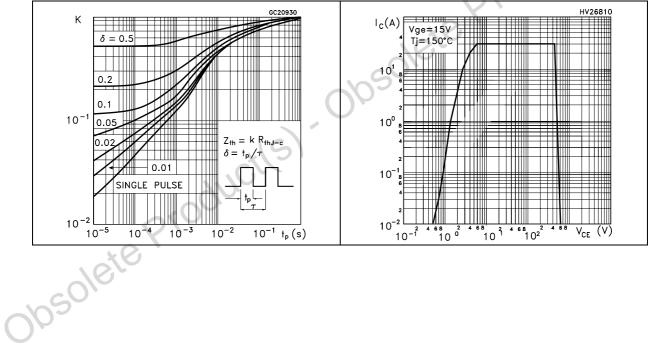


Figure 17. Gate charge test circuit

3 Test circuits

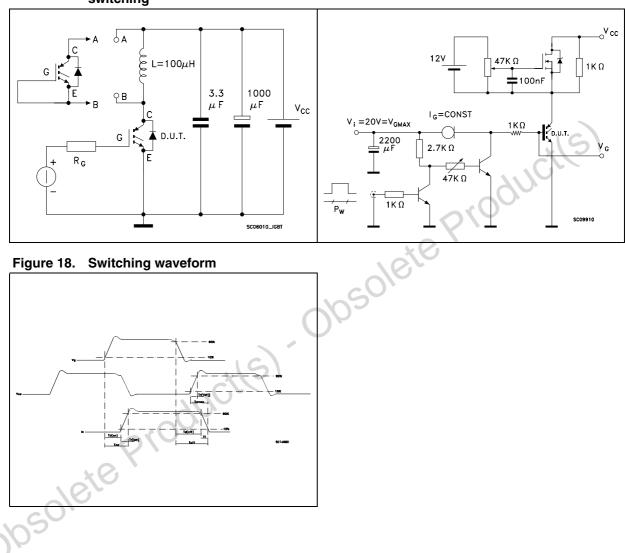


Figure 16. Test circuit for inductive load switching

4 Package mechanical data

In order to meet environmental requirements, ST offers these devices in different grades of ECOPACK[®] packages, depending on their level of environmental compliance. ECOPACK[®] specifications, grade definitions and product status are available at: *www.st.com*. ECOPACK[®] is an ST trademark.

	Dim	mm		
	Dim.	Min.	Тур.	Max.
	А	4.40		4.60
	A1	0.03		0.23
	b	0.70		0.93
	b2	1.14	Y	1.70
	С	0.45	10	0.60
	c2	1.23		1.36
	D	8.95	S	9.35
	D1	7.50	P .	
	E	10		10.40
	E1	8.50		
	e		2.54	
	e1	4.88		5.28
olosole	Щ	15		15.85
	J1	2.49		2.69
	KO L	2.29		2.79
	L1	1.27		1.40
	L2	1.30		1.75
	R		0.4	
	V2	0°		8°

Table 8. D²PAK (TO-263) mechanical data

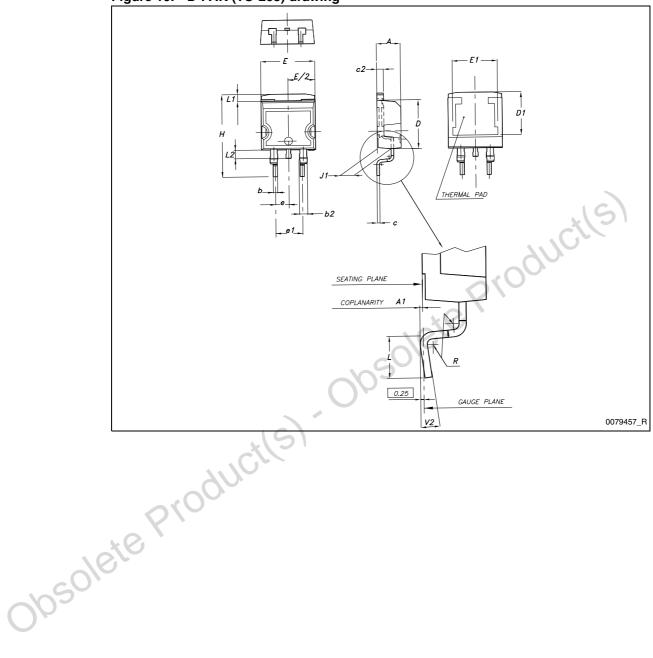


Figure 19. D²PAK (TO-263) drawing

5 Revision history

Table 9.Document revision history

	Date	Revision	Changes	
	21-Nov-2005	1	New release	
	06-Dic-2005	2	Inserted row on Table 2: Absolute maximum ratings	
	08-Feb-2007	3	Description has been updated	
	24-Feb-2011	4	Updated package mechanical data <i>Table 8. on page 8</i> and <i>Figure 19. on page 9</i>	
005018	tepro	ductl	Updated package mechanical data Table 8. on page 8 and Figure 19. on page 9	

Please Read Carefully:

Information in this document is provided solely in connection with ST products. STMicroelectronics NV and its subsidiaries ("ST") reserve the right to make changes, corrections, modifications or improvements, to this document, and the products and services described herein at any time, without notice.

All ST products are sold pursuant to ST's terms and conditions of sale.

Purchasers are solely responsible for the choice, selection and use of the ST products and services described herein, and ST assumes no liability whatsoever relating to the choice, selection or use of the ST products and services described herein.

No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted under this document. If any part of this document refers to any third party products or services it shall not be deemed a license grant by ST for the use of such third party products or services, or any intellectual property contained therein or considered as a warranty covering the use in any manner whatsoever of such third party products or services or any intellectual property contained therein.

UNLESS OTHERWISE SET FORTH IN ST'S TERMS AND CONDITIONS OF SALE ST DISCLAIMS ANY EXPRESS OR IMPLIED WARRANTY WITH RESPECT TO THE USE AND/OR SALE OF ST PRODUCTS INCLUDING WITHOUT LIMITATION IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE (AND THEIR EQUIVALENTS UNDER THE LAWS OF ANY JURISDICTION), OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT.

UNLESS EXPRESSLY APPROVED IN WRITING BY AN AUTHORIZED ST REPRESENTATIVE, ST PRODUCTS ARE NOT RECOMMENDED, AUTHORIZED OR WARRANTED FOR USE IN MILITARY, AIR CRAFT, SPACE, LIFE SAVING, OR LIFE SUSTAINING APPLICATIONS, NOR IN PRODUCTS OR SYSTEMS WHERE FAILURE OR MALFUNCTION MAY RESULT IN PERSONAL INJURY, DEATH, OR SEVERE PROPERTY OR ENVIRONMENTAL DAMAGE. ST PRODUCTS WHICH ARE NOT SPECIFIED AS "AUTOMOTIVE GRADE" MAY ONLY BE USED IN AUTOMOTIVE APPLICATIONS AT USER'S OWN RISK.

Resale of ST products with provisions different from the statements and/or technical features set forth in this document shall immediately void any warranty granted by ST for the ST product or service described herein and shall not create or extend in any manner whatsoever, any liability of ST.

ST and the ST logo are trademarks or registered trademarks of ST in various countries.

Information in this document supersedes and replaces all information previously supplied.

The ST logo is a registered trademark of STMicroelectronics. All other names are the property of their respective owners.

© 2011 STMicroelectronics - All rights reserved

STMicroelectronics group of companies

Australia - Belgium - Brazil - Canada - China - Czech Republic - Finland - France - Germany - Hong Kong - India - Israel - Italy - Japan -Malaysia - Malta - Morocco - Philippines - Singapore - Spain - Sweden - Switzerland - United Kingdom - United States of America

www.st.com

Doc ID 11842 Rev 4