30 W, 8.0 - 11.0 GHz, GaN MMIC, Power Amplifier

Description

Cree's CMPA801B030D is a gallium nitride (GaN) High Electron Mobility Transistor (HEMT) based monolithic microwave integrated circuit (MMIC). GaN has superior properties compared to silicon or gallium arsenide, including higher breakdown voltage, higher saturated electron drift velocity and higher thermal conductivity. GaN HEMTs also offer greater power density and wider bandwidths compared to Si and GaAs transistors. This MMIC contains a two-stage reactively matched amplifier design approach enabling very wide bandwidths to be achieved.

Typical Performance Over 8.0-11.0 GHz ($T_c = 85$ °C)

Parameter	8.0 GHz	8.5 GHz	9.0 GHz	10.0 GHz	11.0 GHz	Units
Small Signal Gain	31	30	27	25	25	dB
P_{OUT} @ P_{IN} = 27 dBm, 100 μ s @ 10%	37	39	37	28	29	W
Power Gain @ P _{IN} = 27 dBm, 100 μs @ 10%	19	19	19	18	18	dB
PAE @ P _{IN} = 27 dBm, 100 μs @ 10%	41	42	43	34	36	%

Features

- 28 dB Small Signal Gain
- 40 W Typical P_{SAT}
- Operation up to 28 V
- High Breakdown Voltage
- High Temperature Operation
- Size 0.142 x 0.188 x 0.004 inches

Applications

- · Point to Point Radio
- Communications
- Test Instrumentation
- EMC Amplifiers
- Radar

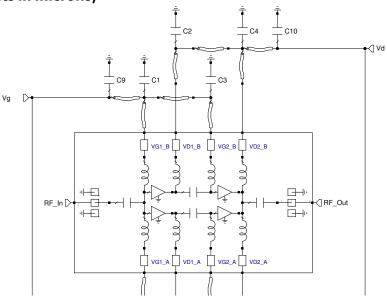
Absolute Maximum Ratings (not simultaneous) at 25 °C

Parameter	Symbol	Rating	Units	Conditions
Drain source Voltage	V _{DSS}	84	V _{DC}	25°C
Gate source Voltage	$V_{\sf GS}$	-10, +2	$V_{_{ m DC}}$	25°C
Storage Temperature	T _{STG}	-55, +150	°C	
Operating Junction Temperature	T _J	225	°C	
Thermal Resistance, Junction to Case (packaged) ¹	$R_{_{\thetaJC}}$	1.22	°C/W	Pulse Width = 100 μ s, Duty Cycle = 10%, P_{DISS} = 77 W
Thermal Resistance, Junction to Case $(packaged)^1$	$R_{_{\thetaJC}}$	1.80	°C/W	CW, 85°C, P _{DISS} = 77 W
Mounting Temperature (30 seconds)	T _s	320	°C	P _{DISS} = 77 W

Note:

Electrical Characteristics (Frequency = 8 GHz to 11.0 GHz unless otherwise stated; T_c = 25 $^{\circ}$ C)

Characteristics	Symbol	Min.	Тур.	Max.	Units	Conditions
DC Characteristics						
Gate Threshold Voltage	V _{GS(TH)}	-3.8	-3.0	-2.3	V	$V_{DS} = 10 \text{ V}, I_{D} = 13.2 \text{ mA}$
Gate Quiescent Voltage	$V_{GS(Q)}$	_	-2.7	-	V	V _{DS} = 28 V, I _{DQ} = 1200 mA
Saturated Drain Current ¹	I _{DS}	9.5	12.9	-	Α	$V_{DS} = 6.0 \text{ V}, V_{GS} = 2.0 \text{ V}$
Drain-Source Breakdown Voltage	$V_{_{BD}}$	84	100	-	V	$V_{GS} = -8 \text{ V}, I_{D} = 13.2 \text{ mA}$
RF Characteristics ²						
Small Signal Gain	S21	-	27.0	-	dB	V _{DD} = 28 V, I _{DQ} = 800 mA, Frequency 8.0 - 11.0 GHz
Input Return Loss	S11	-	-6.0	-	dB	V _{DD} = 28 V, I _{DQ} = 800 mA, Frequency 8.0 - 11.0 GHz
Output Return Loss	S21	-	-7.0	-	dB	$V_{DD} = 28 \text{ V}, I_{DQ} = 800 \text{ mA}, Frequency 8.0 - 11.0 GHz$
Power Output	P _{out}	-	41.9	-	W	$V_{DD} = 28 \text{ V}, I_{DQ} = 800 \text{ mA}, P_{IN} = 27 \text{ dBm}, Freq = 8.0 \text{ GHz}$
Power Output	P _{out}	-	51.5	-	W	$V_{DD} = 28 \text{ V}, I_{DQ} = 800 \text{ mA}, P_{IN} = 27 \text{ dBm}, Freq = 8.5 \text{ GHz}$
Power Output	P _{out}	-	45.4	-	W	$V_{DD} = 28 \text{ V}, I_{DQ} = 800 \text{ mA}, P_{IN} = 27 \text{ dBm}, Freq = 9.0 \text{ GHz}$
Power Output	Роит	-	40.8	-	W	$V_{DD} = 28 \text{ V}, I_{DQ} = 800 \text{ mA}, P_{IN} = 27 \text{ dBm}, Freq = 10.0 \text{ GHz}$
Power Output	P _{out}	-	38.8	-	W	$V_{DD} = 28 \text{ V}, I_{DQ} = 800 \text{ mA}, P_{IN} = 27 \text{ dBm}, Freq = 11.0 GHz}$
Power Added Efficiency	PAE	-	42.7	-	%	$V_{DD} = 28 \text{ V}, I_{DQ} = 800 \text{ mA}, P_{IN} = 27 \text{ dBm}, Freq = 8.0 \text{ GHz}$
Power Added Efficiency	PAE	-	47.9	-	%	$V_{DD} = 28 \text{ V}, I_{DQ} = 800 \text{ mA}, P_{IN} = 27 \text{ dBm}, Freq = 8.5 \text{ GHz}$
Power Added Efficiency	PAE	_	50.2	-	%	$V_{DD} = 28 \text{ V}, I_{DQ} = 800 \text{ mA}, P_{IN} = 27 \text{ dBm}, Freq = 9.0 \text{ GHz}$
Power Added Efficiency	PAE	_	40.7	-	%	$V_{DD} = 28 \text{ V}, I_{DQ} = 800 \text{ mA}, P_{IN} = 27 \text{ dBm}, Freq = 10.0 GHz}$
Power Added Efficiency	PAE	-	41.0	_	%	$V_{DD} = 28 \text{ V}, I_{DQ} = 800 \text{ mA}, P_{IN} = 27 \text{ dBm}, Freq = 11.0 \text{ GHz}$
Output Mismatch Stress	VSWR	_	5:1	_	Ψ	No damage at all phase angles, $V_{\rm DD} = 28 \text{V}$, $I_{\rm DQ} = 800 \text{mA}$, $P_{\rm OUT} = 30 \text{W}$


Notes

¹ Eutectic die attach using 80/20 AuSn mounted to a 40 mil thick CPC carrier

¹ Scaled from PCM data

 $^{^2}$ All data pulse tested on-wafer with Pulse Width = 10 $\mu s,$ Duty Cycle = 0.1%

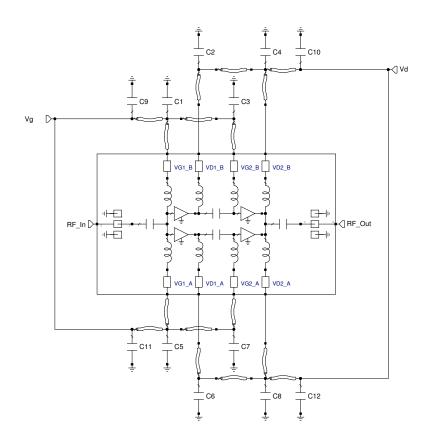
DIE Dimensions (units in microns)

Overall die size $4780 \times 3610 (+0/-50)$ microns, die thickness 100 (+/-10) micron. All Gate and Drain pads must be wire bonded for electrical connection.

Pad	Function	Description	Pad Size (microns)	Note
1	RF-IN	RF-Input pad. Matched to 50 ohm.	190 x 165	4
2	VG1_A	Gate control for stage 1. $V_{\rm G}$ ~ 2.0 - 3.5 V.	110 x 110	1,2
3	VG1_B	Gate control for stage 1. $V_{\rm G}$ ~ 2.0 - 3.5 V.	110 x 110	1,2
4	VD1_A	Drain supply for stage 1. $V_D = 28 \text{ V}$.	110 x 110	1
5	VD1_B	Drain supply for stage 1. $V_D = 28 \text{ V}$.	110 x 110	1
6	VG2_A	Gate control for stage 2A. $V_{\rm G}$ ~ 2.0 - 3.5 V.	110 x 110	1,3
7	VG2_B	Gate control for stage 2A. $V_{\rm G}$ ~ 2.0 - 3.5 V.	110 x 110	1,3
8	VD2_A	Drain supply for stage 2A. $V_D = 28 \text{ V}$.	274 x 140	1
9	VD2_B	Drain supply for stage 2B. $V_D = 28 \text{ V}$.	274 x 140	1
10	RF-Out	RF-Output pad. Matched to 50 ohm.	150 x 150	4

Note 1: Attach bypass capacitor to pads 2-9 per application circuit

 $Note\ 2: VG1_A\ and\ VG1_B\ are\ connected\ internally\ so\ it\ would\ be\ enough\ to\ connect\ either\ one\ for\ proper\ operation$


Note 3: VG2_A and VG2_B are connected internally so it would be enough to connect either one for proper operation

Note 4: The RF Input and Output pad have a ground-signal-ground with a nominal pitch of 1 mil (25 um). The RF ground pads are 110 x 110 microns

Die Assembly Notes:

- Recommended solder is AuSn (80/20) solder. Refer to Cree's website for the Eutectic Die Bond Procedure
 application note at http://www.cree.com/products/wireless_documents.asp
- Vacuum collet is the preferred method of pick-up
- The backside of the die is the Source (ground) contact
- Die back side gold plating is 5 microns thick minimum
- Thermosonic ball or wedge bonding are the preferred connection methods
- Gold wire must be used for connections
- Use the die label (XX-YY) for correct orientation

Block Diagram Showing Additional Capacitors for Operation Over 8.0 to 11.0 GHz

Designator	Description	Qty
C1,C2,C3,C4,C5,C6,C7,C8	CAP, 51pF, +/-10%, SINGLE LAYER, 0.035", Er 3300, 100V, Ni/Au TERMINATION	8
C9,C10,C11,C12	CAP, 680pF, +/-10%, SINGLE LAYER, 0.070", Er 3300, 100V, Ni/Au TERMINATION	4

Notes:

 $^{^1}$ The input, output and decoupling capacitors should be attached as close as possible to the die-typical distance is 5 to 10 mils with a maximum of 15 mils.

² The MMIC die and capacitors should be connected with 2 mil gold bond wires.

Typical Performance of the CMPA801B030D

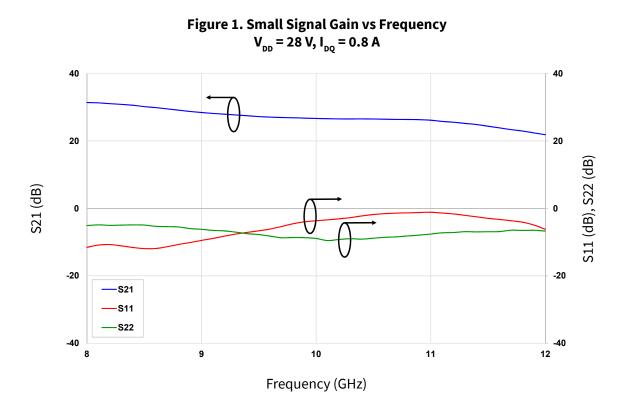
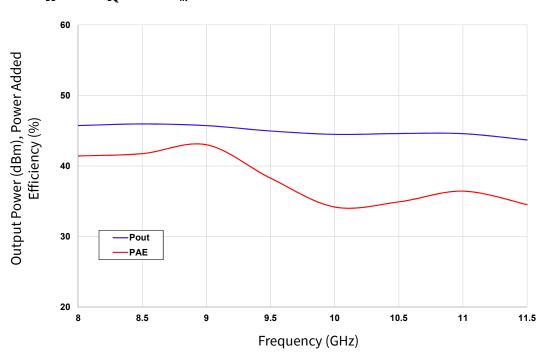
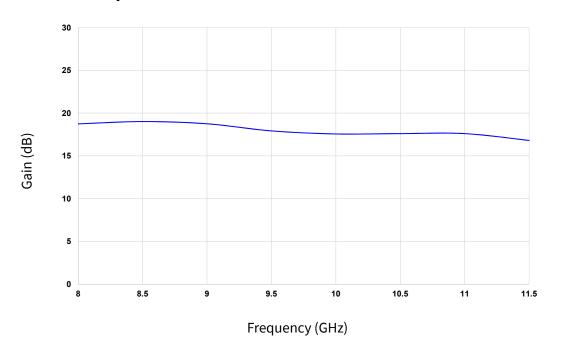




Figure 2. Output Power & Power Added Efficiency vs Frequency V_{DD} = 28 V, I_{DQ} = 0.8 A, P_{IN} = 27 dBm, Pulse Width = 100 μ s, 10% Duty Cycle, Tc = 85°C

Typical Performance of the CMPA801B030D

Figure 3. Associated Gain vs Frequency V_{DD} = 28 V, I_{DQ} = 0.8 A, P_{IN} = 27 dBm, Pulse Width = 100 μ s, 10% Duty Cycle, Tc = 85°C

Part Number System

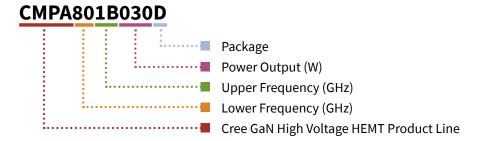


Table 1.

Parameter	Value	Units
Lower Frequency	8.0	GHz
Upper Frequency ¹	11.0	GHz
Power Output	30	W
Package	Bare Die	-

Note¹: Alpha characters used in frequency code indicate a value greater than 9.9 GHz. See Table 2 for value.

Table 2.

Character Code	Code Value
A	0
В	1
С	2
D	3
Е	4
F	5
G	6
Н	7
J	8
К	9
Examples:	1A = 10.0 GHz 2H = 27.0 GHz

Product Ordering Information

Order Number	Description	Unit of Measure
CMPA801B030D	GaN MMIC Bare Die	Each

For more information, please contact:

4600 Silicon Drive Durham, North Carolina, USA 27703 www.wolfspeed.com/RF

Sales Contact RFSales@cree.com

Notes

Disclaimer

Specifications are subject to change without notice. "Typical" parameters are the average values expected by Cree in large quantities and are provided for information purposes only. Cree products are not warranted or authorized for use as critical components in medical, life-saving, or life-sustaining applications, or other applications where a failure would reasonably be expected to cause severe personal injury or death. No responsibility is assumed by Cree for any infringement of patents or other rights of third parties which may result from use of the information contained herein. No license is granted by implication or otherwise under any patent or patent rights of Cree.

 $@\ 2019-2020\ Cree, Inc.\ All\ rights\ reserved.\ Wolfspeed \\ @\ and\ the\ Wolfspeed\ logo\ are\ registered\ trademarks\ of\ Cree, Inc.\ Property of\ Cree, Inc.\ Property of\ Cree, Inc.\ Property\ Propert$