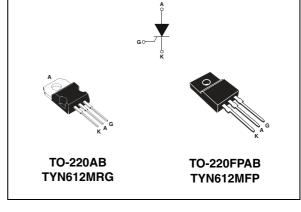
TYN612M

12 A SCR


Main features

Symbol	Value	Unit
I _{T(RMS)}	12	А
V _{DRM} /V _{RRM}	600	V
I _{GT} (min / max)	1.5 / 5	mA

Description

The TYN612M SCR is suitable to fit modes of control found in applications such as voltage regulation circuits for motorbikes, overvoltage crowbar protection, motor control circuits in power tools and kitchen aids, inrush current limiting circuits, capacitive discharge ignition.

The insulated fullpack package allows a back to back configuration.

Order codes

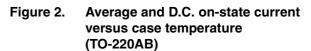
Part Numbers	Marking
TYN612MRG	TYN612M
TYN612MFP	TYN612MFP

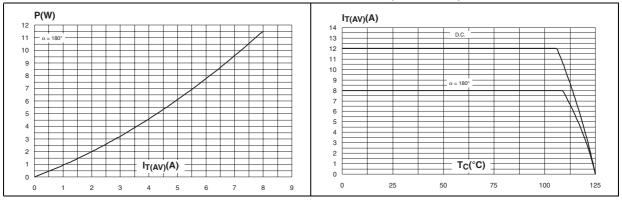
Symbol	Param	Value	Unit			
1	RMS on-state current	TO-220AB	$T_c = 105^\circ C$	12	۸	
I _{T(RMS)}	(180° conduction angle)	TO-220FPAB	$T_c = 70^\circ C$	12	A	
1	Average on-state current	TO-220AB	$T_c = 105^\circ C$	8	A	
I _{T(AV)}	(180° conduction angle)	TO-220FPAB	$T_c = 70^\circ C$	8		
	Non repetitive surge peak on-state	t _p = 8.3 ms	T - 25° C	125	A	
I _{TSM}	current	t _p = 10 ms	— T _j = 25° C	120		
l ² t	I ² t Value for fusing	t _p = 10 ms	$T_j = 25^\circ C$	72	A ² s	
dl/dt	Critical rate of rise of on-state current $I_G = 2 \times I_{GT}$, $t_r \le 100 \text{ ns}$	F = 60 Hz	T _j = 125° C	50	A/µs	
I _{GM}	Peak gate current	t _p = 20 μs	$T_j = 125^\circ C$	4	А	
P _{G(AV)}	Average gate power dissipation		$T_j = 125^\circ C$	1	W	
T _{stg} T _j	Storage junction temperature range Operating junction temperature range			- 40 to + 150 - 40 to + 125	° C	
V _{RGM}	Maximum peak reverse gate voltage			5	V	

Table 1. Absolute ratings (limiting values)

57

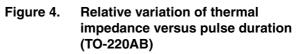
Characteristics 1


Table 2.	Electrical characteristics ($T_j = 25^{\circ} C$, unless otherwise specifi	ed)


Table 2.	Electrical characteristics ($I_j = 25^{\circ}$ C, unless otherwise specified)						
Symbol	Test Con		Value	Unit			
	I_{GT} $V_{D} = 12 V$ $R_{L} = 140 \Omega$		MIN.	1.5			
^I GT			MAX.	5	mA		
			MIN.	0.5	V		
V _{GT}	$V_D = 12 V$ $R_L = 140 \Omega$		TYP.	0.7			
			MAX.	1.3			
V _{GD}	$V_D = V_{DRM}$ $R_L = 3.3 \text{ k}\Omega$	T _j = 125° C	MIN.	0.2	V		
I _H	I _T = 500 mA Gate open	MAX.	20	mA			
١ _L	$I_{G} = 1.2 I_{GT}$	$I_{G} = 1.2 I_{GT}$			mA		
dV/dt	V _D = 67 % V _{DRM} Gate open	T _j =125° C	MIN.	50	V/µs		
V _{TM}	I _{TM} = 24 A t _p = 380 μs	$T_j = 25^\circ C$	MAX.	1.6	V		
V _{t0}	Threshold voltage	T _j = 125° C	MAX.	0.85	V		
R _d	Dynamic resistance	T _j = 125° C	MAX.	30	mΩ		
I _{DRM}	$T_j = 25^\circ C$		MAX.	5	μA		
I _{RRM}	$V_{DRM} = V_{RRM}$	T _j = 125° C		2	mA		

Thermal resistance Table 3.

Symbol	Parameter			Unit
Р	lungtion to energ (DC)	TO-220AB	1.3	° C/W
R _{th(j-c)}	Junction to case (DC) TO-220FPAE	TO-220FPAB	4.5	C/VV
D	lunction to ambient (DC)	TO-220AB	55	° C/W
R _{th(j-a)}	Junction to ambient (DC)	TO-220FPAB	55	0/10

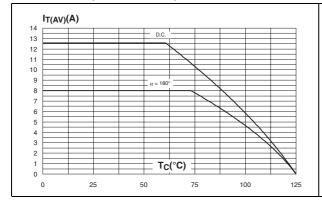

Figure 1. Maximum average power dissipation versus average on-state current

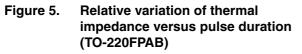
57

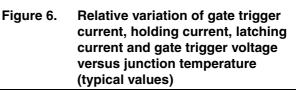
Figure 3. Average and D.C. on-state current Fiversus case temperature (TO-220FPAB)

K=[Zth/Rth]

1.E+00


1.E-01


1.E-02


1.E-03

1.E-02

1.E-01

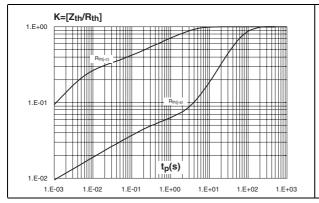
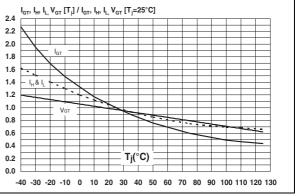
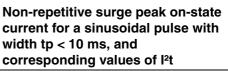
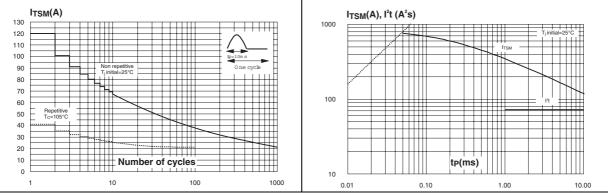
t_p(s)

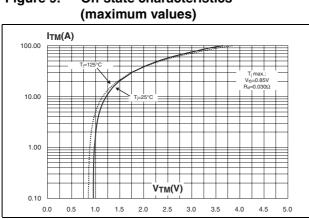
1.E+00

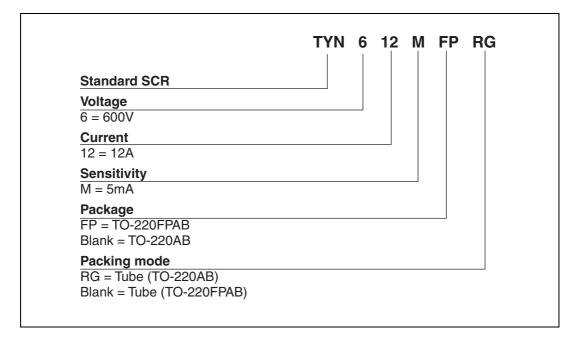
1.E+01

1.E+02

1.E+03


Figure 7. Surge peak on-state current versus Figure 8. number of cycles



3/8

Figure 9. **On-state characteristics**

Ordering information scheme

2

3 Package information

• Epoxy meets UL94, V0

Table 4. TO-220AB dimensions

					Dimer	nsions		
		Ref.	Mi	illimete	rs		Inches	
			Min.	Тур.	Max.	Min.	Тур.	Max.
		А	15.20		15.90	0.598		0.625
в	с	a1		3.75			0.147	
ØI bi	← →.	a2	13.00		14.00	0.511		0.551
		В	10.00		10.40	0.393		0.409
	F	b1	0.61		0.88	0.024		0.034
A .	C2	b2	1.23		1.32	0.048		0.051
14 I3		С	4.40		4.60	0.173		0.181
		c1	0.49		0.70	0.019		0.027
		c2	2.40		2.72	0.094		0.107
12 a2		е	2.40		2.70	0.094		0.106
		F	6.20		6.60	0.244		0.259
i → i → b1 e	M ↓ c1	ØI	3.75		3.85	0.147		0.151
e '		14	15.80	16.40	16.80	0.622	0.646	0.661
		L	2.65		2.95	0.104		0.116
		12	1.14		1.70	0.044		0.066
		13	1.14		1.70	0.044		0.066
		Μ		2.60			0.102	

			Dimer	nsions	
	Ref.	Millin	neters	Inches	
		Min.	Max.	Min.	Max.
	А	4.4	4.6	0.173	0.181
	В	2.5	2.7	0.098	0.106
H B	D	2.5	2.75	0.098	0.108
	Е	0.45	0.70	0.018	0.027
Dia	F	0.75	1	0.030	0.039
	F1	1.15	1.70	0.045	0.067
L2 L7	F2	1.15	1.70	0.045	0.067
	G	4.95	5.20	0.195	0.205
	G1	2.4	2.7	0.094	0.106
$\begin{array}{c} & & \\$	Н	10	10.4	0.393	0.409
L4 → ← <u>F2</u>	L2	16	16 Typ.		Тур.
↓↓───────────────────────────────────	L3	28.6	30.6	1.126	1.205
	L4	9.8	10.6	0.386	0.417
G	L5	2.9	3.6	0.114	0.142
	L6	15.9	16.4	0.626	0.646
	L7	9.00	9.30	0.354	0.366
	Dia.	3.00	3.20	0.118	0.126

Table 5.TO-220FPAB Dimensions

In order to meet environmental requirements, ST offers these devices in ECOPACK® packages. These packages have a lead-free second level interconnect. The category of second level interconnect is marked on the inner box label, in compliance with JEDEC Standard JESD97. The maximum ratings related to soldering conditions are also marked on the inner box label. ECOPACK is an ST trademark. ECOPACK specifications are available at: www.st.com.

4 Ordering information

Ordering type	Marking	Package	Weight	Base qty	Delivery mode
TYN612MRG	TYN612M	TO-220AB	2.3 g	50	Tube
TYN612MFP	TYN612MFP	TO-220AB	2.0 g	50	Tube

5 Revision history

Date	Revision	Description of Changes	
Sep-2002	1A	Last update.	
10-Fev-2005	2	TO-220FPAB package added.	
11-Apr-2007	3	Reformatted to current standards. Added typical and minimum values for V _{GT} in <i>Table 2</i> .	
17-Apr-2007	4	Added V _{GT} curve in <i>Figure 6</i> .	

Please Read Carefully:

Information in this document is provided solely in connection with ST products. STMicroelectronics NV and its subsidiaries ("ST") reserve the right to make changes, corrections, modifications or improvements, to this document, and the products and services described herein at any time, without notice.

All ST products are sold pursuant to ST's terms and conditions of sale.

Purchasers are solely responsible for the choice, selection and use of the ST products and services described herein, and ST assumes no liability whatsoever relating to the choice, selection or use of the ST products and services described herein.

No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted under this document. If any part of this document refers to any third party products or services it shall not be deemed a license grant by ST for the use of such third party products or services, or any intellectual property contained therein or considered as a warranty covering the use in any manner whatsoever of such third party products or services or any intellectual property contained therein.

UNLESS OTHERWISE SET FORTH IN ST'S TERMS AND CONDITIONS OF SALE ST DISCLAIMS ANY EXPRESS OR IMPLIED WARRANTY WITH RESPECT TO THE USE AND/OR SALE OF ST PRODUCTS INCLUDING WITHOUT LIMITATION IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE (AND THEIR EQUIVALENTS UNDER THE LAWS OF ANY JURISDICTION), OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT.

UNLESS EXPRESSLY APPROVED IN WRITING BY AN AUTHORIZED ST REPRESENTATIVE, ST PRODUCTS ARE NOT RECOMMENDED, AUTHORIZED OR WARRANTED FOR USE IN MILITARY, AIR CRAFT, SPACE, LIFE SAVING, OR LIFE SUSTAINING APPLICATIONS, NOR IN PRODUCTS OR SYSTEMS WHERE FAILURE OR MALFUNCTION MAY RESULT IN PERSONAL INJURY, DEATH, OR SEVERE PROPERTY OR ENVIRONMENTAL DAMAGE. ST PRODUCTS WHICH ARE NOT SPECIFIED AS "AUTOMOTIVE GRADE" MAY ONLY BE USED IN AUTOMOTIVE APPLICATIONS AT USER'S OWN RISK.

Resale of ST products with provisions different from the statements and/or technical features set forth in this document shall immediately void any warranty granted by ST for the ST product or service described herein and shall not create or extend in any manner whatsoever, any liability of ST.

ST and the ST logo are trademarks or registered trademarks of ST in various countries.

Information in this document supersedes and replaces all information previously supplied.

The ST logo is a registered trademark of STMicroelectronics. All other names are the property of their respective owners.

© 2007 STMicroelectronics - All rights reserved

STMicroelectronics group of companies

Australia - Belgium - Brazil - Canada - China - Czech Republic - Finland - France - Germany - Hong Kong - India - Israel - Italy - Japan -Malaysia - Malta - Morocco - Singapore - Spain - Sweden - Switzerland - United Kingdom - United States of America

www.st.com

