


## FERD30SM100S

### Field effect rectifier

Datasheet - production data



#### **Features**

- ST proprietary process
- Reduce leakage current
- Low forward voltage drop
- High frequency operation
- ECOPACK<sup>®</sup>2 compliant component

### **Description**

The FERD30SM100S is based on a proprietary technology that achieves the best in class  $V_{\rm F}/I_{\rm R}$  trade-off for a given silicon surface.

This 100 V rectifier has been optimized for use in confined applications where both efficiency and thermal performance are key.

Table 1. Device summary

| Symbol               | Value   |
|----------------------|---------|
| I <sub>F(AV)</sub>   | 30 A    |
| $V_{RRM}$            | 100 V   |
| T <sub>j</sub> (max) | +175 °C |
| V <sub>F</sub> (typ) | 0.39 V  |

Characteristics FERD30SM100S

### 1 Characteristics

Table 2. Absolute ratings (limiting values, at 25 °C, unless otherwise specified, anode terminals short-circuited)

| Symbol                        | Parameter                                                             |  | Value        | Unit |
|-------------------------------|-----------------------------------------------------------------------|--|--------------|------|
| $V_{RRM}$                     | Repetitive peak reverse voltage                                       |  | 100          | V    |
| I <sub>F(RMS)</sub>           | Forward rms current                                                   |  | 60           | Α    |
| I <sub>F(AV)</sub>            | Average forward current, $\delta = 0.5$ $T_c = 130  ^{\circ}C$        |  | 30           | Α    |
| I <sub>FSM</sub>              | Surge non repetitive forward current $t_p = 10 \text{ ms}$ sinusoidal |  | 250          | Α    |
| T <sub>stg</sub>              | Storage temperature range                                             |  | -65 to + 175 | °C   |
| T <sub>j</sub> <sup>(1)</sup> | Maximum operating junction temperature                                |  | 175          | °C   |

<sup>1.</sup>  $\frac{dPtot}{dT_i} < \frac{1}{Rth(i-a)}$  condition to avoid thermal runaway for a diode on its own heatsink.

Table 3. Thermal resistance

| Symbol               | Parameter        | Value (max) | Unit |
|----------------------|------------------|-------------|------|
| R <sub>th(j-c)</sub> | Junction to case | 1.6         | °C/W |

Table 4. Static electrical characteristics (anode terminals short-circuited)

| Symbol                        | Parameter                                             | Test conditions         |                         | Min. | Тур. | Max.  | Unit |
|-------------------------------|-------------------------------------------------------|-------------------------|-------------------------|------|------|-------|------|
|                               | I <sub>R</sub> <sup>(1)</sup> Reverse leakage current | T <sub>j</sub> = 25 °C  | $V_R = V_{RRM}$         | -    | -    | 150   | μΑ   |
| I <sub>R</sub> <sup>(1)</sup> |                                                       | T <sub>j</sub> = 125 °C |                         | -    | 8    | 16    | mA   |
|                               |                                                       | T <sub>j</sub> = 125 °C | V <sub>R</sub> = 70 V   | -    | -    | 9     | IIIA |
|                               | V <sub>F</sub> <sup>(2)</sup> Forward voltage drop    | T <sub>j</sub> = 25 °C  | I <sub>F</sub> = 5 A    | -    | -    | 0.475 |      |
|                               |                                                       | T <sub>j</sub> = 125 °C |                         | -    | 0.39 | 0.43  |      |
| v (2)                         |                                                       | T <sub>j</sub> = 25 °C  |                         | -    | -    | 0.585 | V    |
| <b>v</b> <sub>F</sub> , ,     |                                                       | T <sub>j</sub> = 125 °C |                         | -    | 0.50 | 0.545 | V    |
|                               |                                                       | T <sub>j</sub> = 25 °C  | I <sub>F</sub> = 30 A   | -    |      | 0.95  |      |
|                               |                                                       | T <sub>j</sub> = 125 °C | 7 I <sub>F</sub> = 30 A | -    | 0.64 | 0.71  |      |

<sup>1.</sup> Pulse test:  $t_p = 5$  ms,  $\delta < 2\%$ 

To evaluate the conduction losses use the following equation:

$$P = 0.56 \times I_{F(AV)} + 0.005 I_{F^{2}(RMS)}$$

<sup>2.</sup> Pulse test:  $t_p$  = 380  $\mu$ s,  $\delta$  < 2%

FERD30SM100S Characteristics

Figure 1. Average forward power dissipation versus average forward current



Figure 2. Average forward current versus ambient temperature ( $\delta$  = 0.5)

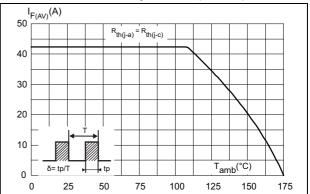
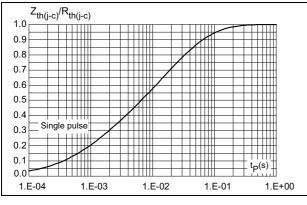




Figure 3. Relative variation of thermal impedance junction to case versus pulse duration

Figure 4. Reverse leakage current versus reverse voltage applied (typical values)



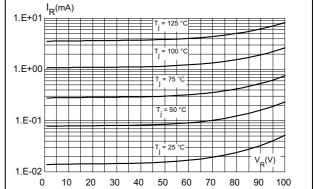
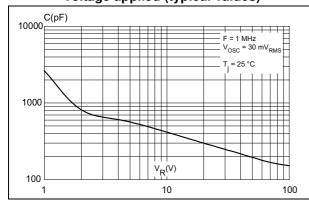
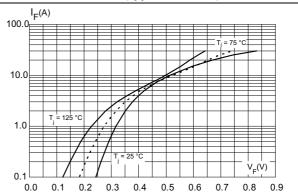





Figure 5. Junction capacitance versus reverse voltage applied (typical values)

Figure 6. Forward voltage drop versus forward current (typical values)





**Package information** FERD30SM100S

#### 2 **Package information**

Epoxy meets UL94, V0

Cooling method: by conduction (C)

Recommended torque value: 0.55 N·m

Maximum torque value: 0.77 N·m

In order to meet environmental requirements, ST offers these devices in different grades of ECOPACK® packages, depending on their level of environmental compliance. ECOPACK® specifications, grade definitions and product status are available at: www.st.com. ECOPACK® is an ST trademark.

Ε ØP Resin gate 0.5 mm max. protrusion<sup>(1)</sup> Q H1 D D1 L30 L20 L1 b1 L b Resin gate С 0.5 mm max. protrusion(1) (1) Resin gate position accepted in each of the two position shown as well as the symmetrical opposites

Figure 7. TO-220AB dimension definitions

Table 5. TO-220AB dimension values

|      | Dimensions |        |           |       |  |
|------|------------|--------|-----------|-------|--|
| Ref. | Millim     | neters | Inches    |       |  |
|      | Min.       | Max.   | Min.      | Max.  |  |
| Α    | 4.40       | 4.60   | 0.17      | 0.18  |  |
| b    | 0.61       | 0.88   | 0.024     | 0.035 |  |
| b1   | 1.14       | 1.70   | 0.045     | 0.067 |  |
| С    | 0.48       | 0.70   | 0.019     | 0.027 |  |
| D    | 15.25      | 15.75  | 0.60      | 0.62  |  |
| D1   | 1.27       | typ.   | 0.05      | typ.  |  |
| E    | 10         | 10.40  | 0.39      | 0.41  |  |
| е    | 2.40       | 2.70   | 0.094     | 0.106 |  |
| e1   | 4.95       | 5.15   | 0.19      | 0.20  |  |
| F    | 1.23       | 1.32   | 0.048     | 0.052 |  |
| H1   | 6.20       | 6.60   | 0.24      | 0.26  |  |
| J1   | 2.40       | 2.72   | 0.094     | 0.107 |  |
| L    | 13         | 14     | 0.51      | 0.55  |  |
| L1   | 3.50       | 3.93   | 0.137     | 0.154 |  |
| L20  | 16.40 typ. |        | 0.64 typ. |       |  |
| L30  | 28.90 typ. |        | 1.13 typ. |       |  |
| ØP   | 3.75       | 3.85   | 0.147     | 0.151 |  |
| Q    | 2.65       | 2.95   | 0.104     | 0.116 |  |

Ordering information FERD30SM100S

# 3 Ordering information

**Table 6. Ordering information** 

| Order code    | Marking       | Package  | Weight | Base qty | Delivery mode |
|---------------|---------------|----------|--------|----------|---------------|
| FERD30SM100ST | FERD30SM100ST | TO-220AB | 1.9 g  | 50       | Tube          |

# 4 Revision history

**Table 7. Document revision history** 

| Date        | Revision | Changes          |
|-------------|----------|------------------|
| 12-Jan-2015 | 1        | Initial release. |

#### IMPORTANT NOTICE - PLEASE READ CAREFULLY

STMicroelectronics NV and its subsidiaries ("ST") reserve the right to make changes, corrections, enhancements, modifications, and improvements to ST products and/or to this document at any time without notice. Purchasers should obtain the latest relevant information on ST products before placing orders. ST products are sold pursuant to ST's terms and conditions of sale in place at the time of order acknowledgement.

Purchasers are solely responsible for the choice, selection, and use of ST products and ST assumes no liability for application assistance or the design of Purchasers' products.

No license, express or implied, to any intellectual property right is granted by ST herein.

Resale of ST products with provisions different from the information set forth herein shall void any warranty granted by ST for such product.

ST and the ST logo are trademarks of ST. All other product or service names are the property of their respective owners.

Information in this document supersedes and replaces information previously supplied in any prior versions of this document.

© 2015 STMicroelectronics - All rights reserved

