

General Description

The MAX9310 is a fast, low-skew 1:5 differential driver with selectable LVPECL/HSTL inputs and LVDS outputs, designed for clock distribution applications. This device features an ultra-low propagation delay of 345ps with 45.5mA of supply current.

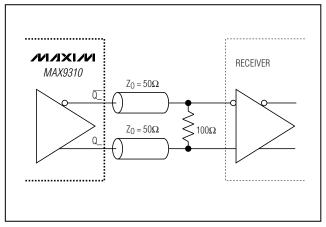
The MAX9310 operates from a 2.375V to 2.625V power supply for use in 2.5V systems. A 2:1 input multiplexer is used to select one of two differential inputs. The input selection is controlled through the CLKSEL pin. This device also features a synchronous enable function.

The MAX9310 is offered in a space-saving 20-pin TSSOP package and operates over the extended temperature range from -40°C to +85°C.

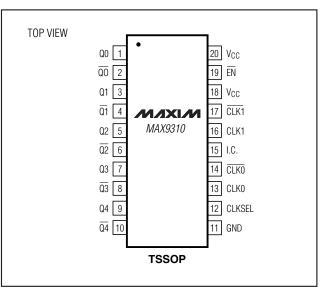
Applications

Data and Clock Drivers and Buffers Central-Office Backplane Clock Distribution **DSLAM Base Stations** ATF

Features


- ♦ Guaranteed 1.0GHz Operating Frequency
- ♦ 8ps Output-to-Output Skew
- ♦ 345ps Propagation Delay
- ♦ Accepts LVPECL and Differential HSTL Inputs
- ♦ Synchronous Output Enable/Disable
- **♦ Two Selectable Differential Inputs**
- ♦ 2.375V to 2.625V Supply Voltage
- ♦ ESD Protection: ±2kV (Human Body Model)
- ♦ Input Bias Resistors Drive Output Low for Open Inputs

Ordering Information


PART	TEMP RANGE	PIN-PACKAGE
MAX9310EUP	-40°C to +85°C	20 TSSOP

Functional diagram appears at end of data sheet.

Typical Application Circuit

Pin Configuration

NIXIN

Maxim Integrated Products 1

ABSOLUTE MAXIMUM RATINGS

V _{CC} to GND0.3V to +4.1V
$\overline{\text{EN}}$, CLKSEL, CLK_, $\overline{\text{CLK}}$, to GND0.3V to (V _{CC} + 0.3V)
CLK_ to $\overline{\text{CLK}}$
Continuous Output Current24mA
Surge Output Current50mA
Continuous Power Dissipation ($T_A = +70^{\circ}C$)
Single-Layer PC Board
20-Pin TSSOP (derate 7.69mW/°C above +70°C)615mW
Multilayer PC Board
20-Pin TSSOP (derate 11mW/°C above +70°C)879mW
Junction-to-Ambient Thermal Resistance in Still Air
Single-Layer PC Board
20-Pin TSSOP+130°C/W

Multilayer PC Board 20-Pin TSSOP Junction-to-Ambient Thermal Resistance with	·
Airflow Single-Layer PC board	
20-Pin TSSOP	+96°C/W
Junction-to-Case Thermal Resistance	
20-Pin TSSOP	+20°C/W
Operating Temperature Range	40°C to +85°C
Junction Temperature	+150°C
Storage Temperature Range	65°C to +150°C
ESD Protection	
Human Body Model (inputs and outputs)	±2kV
Lead Temperature (soldering, 10s)	

Stresses beyond those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

DC ELECTRICAL CHARACTERISTICS

 $(V_{CC}$ - GND = 2.375V to 2.625V, outputs terminated with 100 Ω ±1%, unless otherwise noted. Typical values are at V_{CC} - GND = 2.5V, $V_{IHD} = V_{CC}$ - 1.0V, $V_{ILD} = V_{CC}$ - 1.5V, unless otherwise noted.) (Notes 1, 2, and 3)

DADAMETED	OVMDOL	CONDITIONS		-40°C			+25°C		+85°C			
PARAMETER	SYMBOL	CONDITIONS	MIN	TYP	MAX	MIN	TYP	MAX	MIN	TYP	MAX	UNITS
SINGLE-ENDED	INPUTS (C	LKSEL, EN)										
Input High Voltage	VIH		V _{CC} - 1.165		V _{CC} - 0.88	V _{CC} - 1.165		V _{CC} - 0.88	V _{CC} - 1.165		V _{CC} - 0.88	V
Input Low Voltage	VIL		V _{CC} - 1.81		V _{CC} - 1.475	V _{CC} - 1.81		V _{CC} - 1.475	V _{CC} - 1.81		V _{CC} - 1.475	V
Input Current	I _{IN}	VIH(MAX), VIL(MAX)	-150		+50	-150		+50	-150		+50	μА
DIFFERENTIAL I	DIFFERENTIAL INPUTS (CLK_, CLK_)											
Differential Input High Voltage	V _{IHD}	Figure 1	1.2		Vcc	1.2		V _C C	1.2		V _C C	V
Differential Input Low Voltage	V _{ILD}	Figure 1	GND		V _{CC} - 0.095	GND		V _{CC} - 0.095	GND		V _{CC} - 0.095	V
Differential Input Voltage	V _{ID}	V _{IHD} - V _{ILD}	0.095		Vcc	0.095		Vcc	0.095		Vcc	V
Input Current	I _{IH} , I _{IL}	CLK_, or CLK_ = V _{IHD} or V _{ILD}	-60		+50	-60		+50	-60		+60	μА
OUTPUTS (Q_, G	OUTPUTS (Q_, \overline{Q_})											
Output High Voltage	VoH	Figure 1			1.6			1.6			1.6	V
Output Low Voltage	VoL	Figure 1	0.9			0.9			0.9			V
Differential Output Voltage	V _{OD}	V _{OH} - V _{OL} , Figure 1	250	350	450	250	350	450	250	350	450	mV

DC ELECTRICAL CHARACTERISTICS (continued)

 $(V_{CC}$ - GND = 2.375V to 2.625V, outputs terminated with 100 Ω ±1%, unless otherwise noted. Typical values are at V_{CC} - GND = 2.5V, V_{IHD} = V_{CC} - 1.0V, V_{ILD} = V_{CC} - 1.5V, unless otherwise noted.) (Notes 1, 2, and 3)

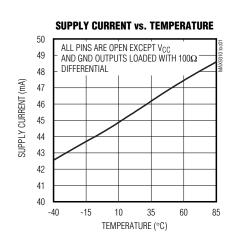
DADAMETED	SYMBOL	CONDITIONS		-40°C		+25°C			+85°C			UNITS
PARAMETER	SYMBOL	CONDITIONS	MIN	TYP	MAX	MIN	TYP	MAX	MIN	TYP	MAX	UNITS
Change in V _{OD} Between Complementary Output States	ΔV _{OD}				40			40			40	mV
Output Offset Voltage	Vos		1.125	1.25	1.375	1.125	1.25	1.375	1.125	1.25	1.375	mV
Change in V _{OS} Between Complementary Output States	ΔV _{OCM}				25			25			25	mV
Output Short-		Q_ shorted to Q_			12			12			12	
Circuit Current	losc	Q_ or Q_ shorted to GND			28			28			28	mA
POWER SUPPLY	1											
Power-Supply Current	Icc	(Note 4)		42	75		45.5	75		48.5	75	mA

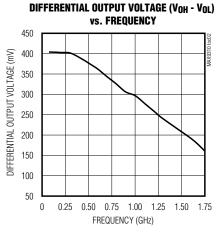
AC ELECTRICAL CHARACTERISTICS

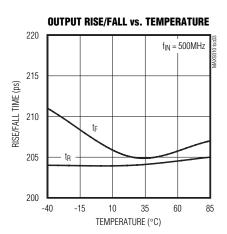
 $(V_{CC}$ - GND = 2.375V to 2.625V, outputs terminated with 100 Ω ±1%, $f_{IN} \le$ 1.0GHz, input transition time = 125ps (20% to 80%), V_{IHD} - V_{ILD} = 0.15V to V_{CC} , unless otherwise noted. Typical values are at V_{CC} - GND = 2.5V, V_{IHD} = V_{CC} - 1.0V, V_{ILD} = V_{CC} - 1.5V, unless otherwise noted.) (Notes 1 and 5)

PARAMETER	SYMBOL	CONDITIONS		-40°C			+25°C			+85°C		UNITS
PARAMETER	STIVIBUL	CONDITIONS	MIN	TYP	MAX	MIN	TYP	MAX	MIN	TYP	MAX	UNITS
Propagation Delay CLK_, CLK_ to Q_, Q_	tphL, tpLH	Figure 1	250	335	600	250	345	600	250	345	600	ps
Output-to- Output Skew	tskoo	(Note 6)		10	25		8	25		5	25	ps
Part-to-Part Skew	tskpp	(Note 7)			145			145			145	ps
Added Random Jitter	t _{RJ}	f _{IN} = 1.0GHz, clock pattern (Note 8)		0.4	1.0		0.4	1.0		0.4	1.0	ps (RMS)
Added Deterministic Jitter	t _D J	f _{IN} = 1.0Gsps, 2 ²³ - 1 PRBS pattern (Note 8)		41	52		41	52		41	52	ps (P-P)

AC ELECTRICAL CHARACTERISTICS (continued)

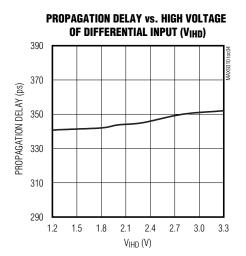

 $(V_{CC}$ - GND = 2.375V to 2.625V, outputs terminated with 100 Ω ±1%, $f_{IN} \le$ 1.0GHz, input transition time = 125ps (20% to 80%), V_{IHD} - V_{ILD} = 0.15V to V_{CC} , unless otherwise noted. Typical values are at V_{CC} - GND = 2.5V, V_{IHD} = V_{CC} - 1.0V, V_{ILD} = V_{CC} - 1.5V, unless otherwise noted.) (Notes 1 and 5)

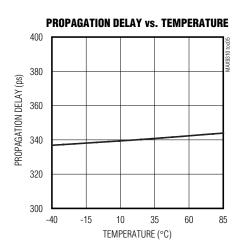

PARAMETER	SYMBOL	CAMBOI	CVMBOL	CVMBOL	CVMBOL	CVMBOL	CVMPOL	CVMPOL	CVMPOL	CVMBOL	CVMPOL	CVMDOL	CONDITIONS		-40°C			+25°C			+85°C		UNITS
PANAMETER		COMPLITIONS	MIN	TYP	MAX	MIN	TYP	MAX	MIN	TYP	MAX	UNITS											
Operating Frequency	fMAX	V _{OD} ≥ 250mV	1.0			1.0			1.0			GHz											
Differential Output Rise/Fall Time	t _{R/tF}	20% to 80%, Figure 1	140	205	300	140	205	300	140	205	300	ps											


- Note 1: Measurements are made with the device in thermal equilibrium.
- Note 2: Current into a pin is defined as positive. Current out of a pin is defined as negative.
- **Note 3:** DC parameters are production tested at +25°C. DC limits are guaranteed by design and characterized over the full operating temperature range.
- **Note 4:** All pins are open except V_{CC} and GND, all outputs are loaded with 100Ω differentially.
- Note 5: Guaranteed by design and characterization. Limits are set to ±6 sigma.
- **Note 6:** Measured between outputs of the same part at the signal crossing points for a same-edge transition.
- **Note 7:** Measured between outputs of different parts at the signal crossing points under identical conditions for a same-edge transition.
- Note 8: Device jitter added to the input signal.

Typical Operating Characteristics

 $(V_{CC}$ - GND = 2.5V, outputs terminated with 100 Ω ±1%, f_{IN} = 1.0GHz, input transition time = 125ps (20% to 80%), V_{IHD} = V_{CC} - 1.0V, V_{ILD} = V_{CC} - 1.5V, unless otherwise noted.)





Typical Operating Characteristics (continued)

 $(V_{CC}$ - GND = 2.5V, outputs terminated with 100 Ω ±1%, f_{IN} = 1.0GHz, input transition time = 125ps (20% to 80%), V_{IHD} = V_{CC} - 1.0V, V_{ILD} = V_{CC} - 1.5V, unless otherwise noted.)

Pin Description

PIN	NAME	FUNCTION
1	Q0	Noninverting Differential Output 0. Typically terminated with 100Ω to $\overline{Q0}$.
2	Q0	Inverting Differential Output 0. Typically terminated with 100Ω to Q0.
3	Q1	Noninverting Differential Output 1. Typically terminated with 100Ω to $\overline{Q1}$.
4	Q1	Inverting Differential Output 1. Typically terminated with 100Ω to Q1.
5	Q2	Noninverting Differential Output 2. Typically terminated with 100Ω to $\overline{\Omega 2}$.
6	Q2	Inverting Differential Output 2. Typically terminated with 100Ω to Q2.
7	Q3	Noninverting Differential Output 3. Typically terminated with 100Ω to $\overline{\text{Q3}}$.
8	Q3	Inverting Differential Output 3. Typically terminated with 100Ω to Q3.
9	Q4	Noninverting Differential Output 4. Typically terminated with 100Ω to $\overline{Q4}$.
10	Q4	Inverting Differential Output 4. Typically terminated with 100Ω to Q4.
11	GND	Ground
12	CLKSEL	Clock Select Input. Drive low to select the CLK0, $\overline{\text{CLK0}}$ input. Drive high to select the CLK1, $\overline{\text{CLK1}}$ input. Internal 60k Ω pulldown to GND.
13	CLK0	Noninverting Differential Clock Input 0. Internal 75kΩ pulldown to GND.
14	CLK0	Inverting Differential Clock Input 0. Internal 75k Ω pullup to V _{CC} and 75k Ω pulldown to GND.
15	I.C.	Internally Connect. Do not connect externally.
16	CLK1	Noninverting Differential Input 1. Internal 75k Ω pulldown to GND.
17	CLK1	Inverting Differential Input 1. Internal 75k Ω pullup to V _{CC} and 75k Ω pulldown to GND.

Pin Description (continued)

PIN	NAME	FUNCTION
18, 20	Vcc	Positive Supply Voltage. Bypass each V_{CC} to GND with $0.1\mu F$ and $0.01\mu F$ ceramic capacitors. Place the capacitors as close to the device as possible with the smaller value capacitor closest to the device.
19	ĒN	Output Enable Input. Outputs are synchronously enabled on the falling edge of the selected clock input when $\overline{\text{EN}}$ is low. Outputs are synchronously driven to a differential low state on the falling edge of the selected clock input when $\overline{\text{EN}}$ is high. Internal $60\text{k}\Omega$ pulldown to GND (Figure 2).

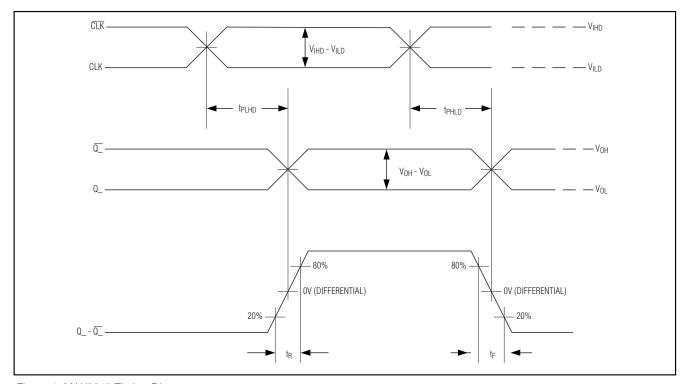


Figure 1. MAX9310 Timing Diagram

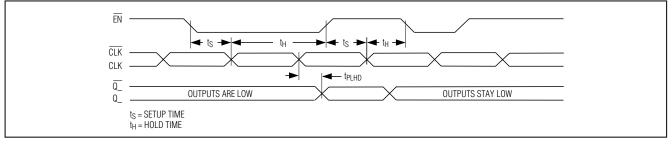


Figure 2. MAX9310 EN Timing Diagram

Detailed Description

The MAX9310 is a low-skew 1:5 differential driver with two selectable LVPECL inputs and LVDS outputs, designed for clock distribution applications. The selected clock accepts a differential input signal and reproduces it on five separate differential LVDS outputs. The inputs are biased with internal resistors such that the output is differential low when inputs are open. The output drivers are guaranteed to operate at frequencies up to 1.0GHz with LVDS output levels conforming to the EIA/TIA-644 standard.

The MAX9310 is designed for 2.375V to 2.625V operation in systems with a nominal 2.5V supply.

Differential LVPECL Input

The MAX9310 has two input differential pairs that accept differential LVPECL/HSTL inputs. Each differential input pair has to be independently terminated. A select pin (CLKSEL) is used to activate the desired input. The maximum magnitude of the differential signal applied to the input is VCC. Specifications for the high and low voltages of a differential input (VIHD and VILD) and the differential input voltage (VIHD - VILD) apply simultaneously.

Synchronous Enable

The MAX9310 is synchronously enabled and disabled with outputs in a differential low state to eliminate shortened clock pulses. \overline{EN} is connected to the input of an edge-triggered D flip-flop. After power-up, drive \overline{EN} low and toggle the selected clock input to enable the outputs. The outputs are enabled on the falling edge of the selected clock input after \overline{EN} goes low. The outputs are set to a differential low state on the falling edge of the selected clock input after \overline{EN} goes high (Figure 2).

Input Bias Resistors

Internal biasing resistors ensure a (differential) output low condition in the event that the inputs are not connected. The inverting input (\overline{CLK}_-) is biased with a $75k\Omega$ pulldown to GND and a $75k\Omega$ pullup to VCC. The noninverting input (CLK_) is biased with a $75k\Omega$ pulldown to GND.

Differential LVDS Output

The LVDS outputs must be terminated with 100Ω across Q_ and \overline{Q} , as shown in the *Typical Application Circuit*. The outputs are short-circuit protected.

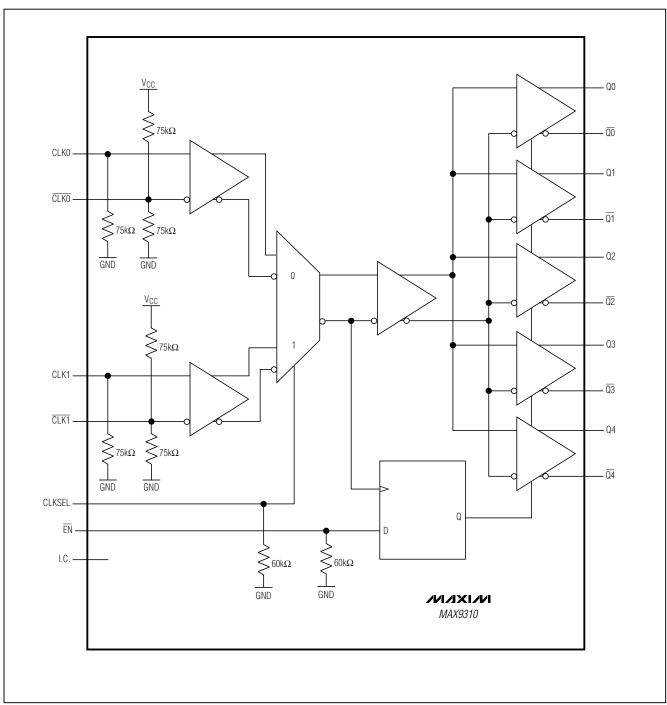
Applications Information

Supply Bypassing

Bypass each VCC to GND with high-frequency surface-mount ceramic $0.1\mu\text{F}$ and $0.01\mu\text{F}$ capacitors in parallel as close to the device as possible, with the $0.01\mu\text{F}$ capacitor closest to the device. Use multiple parallel vias to minimize parasitic inductance and reduce power-supply bounce with high-current transients.

Controlled-Impedance Traces

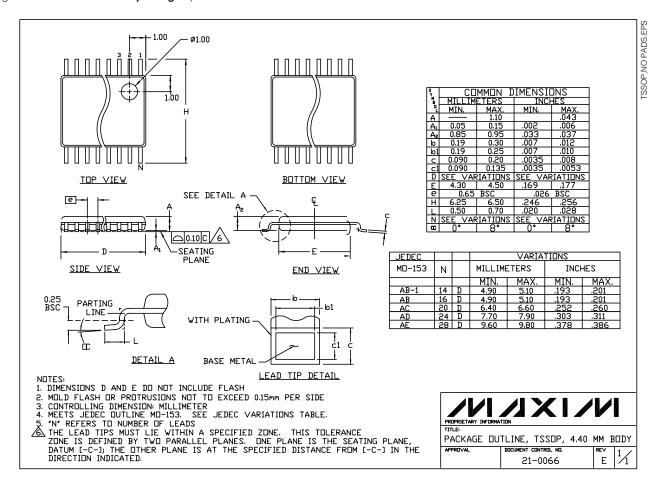
Input and output trace characteristics affect the performance of the MAX9310. Connect high-frequency input and output signals to 50Ω characteristic impedance traces. Minimize the number of vias to prevent impedance discontinuities. Reduce reflections by maintaining the 50Ω characteristic impedance through cables and connectors. Reduce skew within a differential pair by matching the electrical length of the traces.


Output Termination

Terminate the outputs with 100Ω across Q_ and \overline{Q} , as shown in the *Typical Application Circuit*.

Chip Information

TRANSISTOR COUNT: 716 PROCESS: Bipolar


_Functional Diagram

8 ______ MIXI/N

Package Information

(The package drawing(s) in this data sheet may not reflect the most current specifications. For the latest package outline information, go to **www.maxim-ic.com/packages**.)

Maxim cannot assume responsibility for use of any circuitry other than circuitry entirely embodied in a Maxim product. No circuit patent licenses are implied. Maxim reserves the right to change the circuitry and specifications without notice at any time.