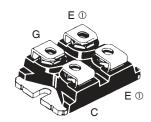


Advance Technical Information

IXGN82N120C3H1

GenX3™ 1200V IGBT w/ Diode


High-Speed PT IGBT for 20-50 kHz Switching

Symbol	Test Conditions		Maximum	Ratings
V _{ces}	$T_{\rm J} = 25^{\circ}C \text{ to } 150^{\circ}C$	0	1200	V
V _{cgr}	$T_{J} = 25^{\circ}C \text{ to } 150^{\circ}C$	C, $R_{GE} = 1M\Omega$	1200	V
V _{GES}	Continuous		±20	V
V _{GEM}	Transient		±30	V
I _{C25}	$T_c = 25^{\circ}C$		130	A
I _{C110}	$T_{c} = 110^{\circ}C$		58	A
I _{F110}	T _c = 110°C		42	A
I _{CM}	$T_c = 25^{\circ}C$, 1ms		500	A
SSOA	V _{GE} = 15V, T _{VJ} = 12	5°C, R _g = 3Ω	I _{CM} = 164	A
(RBSOA)	Clamped Inductive Load		$V_{CE} \leq V_{CES}$	
P _c	$T_c = 25^{\circ}C$		595	W
T,			-55 +150	°C
T _{JM}			150	°C
T _{stg}			-55 +150	°C
V _{ISOL}	50/60Hz	t = 1min	2500	V~
ISOL	$I_{ISOL} \leq 1mA$	t = 1s	3000	V~
M _d	Mounting Torque		1.5/13	Nm/lb.in.
4	Terminal Connection	n Torque	1.3/11.5	Nm/lb.in.
Weight			30	g

Symbol **Test Conditions Characteristic Values** (T₁ = 25°C, Unless Otherwise Specified) Max. Min. Typ. $V_{GE(th)}$ 3.0 5.0 V I_{c} = 1mA, V_{ce} = V_{ge} $V_{CE} = V_{CES}, V_{GE} = 0V, Note 1$ μA 50 I_{CES} T_. = 125°C 6 mΑ $V_{_{CE}}$ = 0V, $V_{_{GE}}$ = ± 20V ±200 nA GES $I_{c} = 82A, V_{GE} = 15V, Note 2$ 3.3 3.9 V V_{CE(sat)}

V_{CES} = 1200V I_{C110} = 58A $V_{CE(sat)}$ ≤£ 3.9V

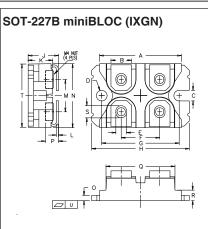
 $\begin{array}{l} \mathsf{G} = \mathsf{Gate}, \, \mathsf{C} = \mathsf{Collector}, \, \mathsf{E} = \mathsf{Emitter} \\ \mathbb{O} \quad \text{either emitter terminal can be used as} \\ \text{Main or Kelvin Emitter} \end{array}$

Features

Optimized for Low Switching Losses

- Square RBSOA
- High Current Capability
- Isolation Voltage 2500 V~
- Anti-Parallel Ultra Fast Diode
- International Standard Package

Advantages


- High Power Density
- Low Gate Drive Requirement

Applications

- Power Inverters
- UPS
- SMPS
- PFC Circuits
- Welding Machines
- Lamp Ballasts

	XYS				
Symbol	Test Conditions	acteristic Values			
$(T_{J} = 25^{\circ}C,$	Unless Otherwise Specified)	Min.	Тур.	Max.	
9 _{fs}	$I_{c} = 60A, V_{ce} = 10V, Note 2$	38	62		S
C _{ies}			7900		pF
C _{oes}	$V_{ce} = 25V, V_{ge} = 0V, f = 1 MHz$		685		pF
C _{res}			197		рF
Q _{g(on)}			340		nC
Q _{ge} }	$I_{c} = 82A, V_{ge} = 15V, V_{ce} = 0.5 \bullet V_{ces}$		55		nC
			145		nC
t _{d(on)}			30		ns
t _{ri}	Inductive load, $T_J = 25^{\circ}C$		77		ns
E _{on}	I _c = 82A, V _{GE} = 15V		5.0		mJ
t _{d(off)}	$V_{ce} = 0.5 \bullet V_{ces}, R_g = 2\Omega$		194		ns
t _{fi}	Note 3		100		ns
E _{off} /			2.5	5.0	mJ
t _{d(on)}			32		ns
t _{ri}	Inductive load, T _J = 125°C		80		ns
E _{on}	$I_{c} = 82A, V_{GE} = 15V$		6.8		mJ
t _{d(off)}	$V_{ce} = 0.5 \bullet V_{ces}, R_g = 2\Omega$		230		ns
t _{fi}	Note 3		270		ns
E _{off}			4.0		mJ
R _{thJC}				0.21	°C/W
R _{thCK}			0.05		°C/W

IXGN82N120C3H1

SYM	INCH	IES	MILLIMETERS		
31M	MIN	MAX	MIN	MAX	
Α	1.240	1.255	31.50	31.88	
В	.307	.323	7.80	8.20	
С	.161	.169	4.09	4.29	
D	.161	.169	4.09	4.29	
E	.161	.169	4.09	4.29	
F	.587	.595	14.91	15.11	
G	1.186	1.193	30.12	30.30	
Н	1.496	1.505	38.00	38.23	
J	.460	.481	11.68	12.22	
Κ	.351	.378	8.92	9.60	
L	.030	.033	0.76	0.84	
М	.496	.506	12.60	12.85	
Ν	.990	1.001	25.15	25.42	
0	.078	.084	1.98	2.13	
Ρ	.195	.235	4.95	5.97	
Q	1.045	1.059	26.54	26.90	
R	.155	.174	3.94	4.42	
S	.186	.191	4.72	4.85	
Т	.968	.987	24.59	25.07	
U	002	.004	-0.05	0.1	

Reverse Diode (FRED)

SymbolTest Conditions $(T_J = 25^{\circ}C, Unless Otherwise Specified)$				Characteristic Values Min.				
V_	I _E = 60A, V _{GE} = 0V, Note 1				2.5	V		
r	r GE	$T_J = 150^{\circ}C$		1.4	1.8	V		
I _{RM}	$\begin{cases} I_{F} = 60A, V_{GE} = 0V, \\ -di_{F}/dt = 200A/\mu s, V_{R} = 300V \end{cases}$	T _J = 100°C		8.3		A		
t _{rr}	$\int -di_{F}/dt = 200 \text{A}/\mu \text{s}, V_{R} = 300 \text{V}$			140		ns		
$\mathbf{R}_{_{\mathrm{thJC}}}$					0.42 °(C/W		

Notes:

- 1. Part must be heatsunk for high-temp Ices measurement.
- 2. Pulse test, t \leq 300 $\mu s,$ duty cycle, d \leq 2%.
- 3. Switching times & energy losses may increase for higher V_{CE} (Clamp), T_{J} or R_{G} .

ADVANCE TECHNICAL INFORMATION

The product presented herein is under development. The Technical Specifications offered are derived from a subjective evaluation of the design, based upon prior knowledge and experience, and constitute a "considered reflection" of the anticipated result. IXYS reserves the right to change limits, test conditions, and dimensions without notice.

IXYS Reserves the	Right to Change	Limits. Test	Conditions.	and Dimensions.

IXYS MOSFETs and IGBTs are covered	4,835,592	4,931,844	5,049,961	5,237,481	6,162,665	6,404,065 B1	6,683,344	6,727,585	7,005,734 B2	7,157,338B2
by one or moreof the following U.S. patents:	4,850,072	5,017,508	5,063,307	5,381,025	6,259,123 B1	6,534,343	6,710,405 B2	6,759,692	7,063,975 B2	
	4,881,106	5,034,796	5,187,117	5,486,715	6,306,728 B1	6,583,505	6,710,463	6,771,478 B2	7,071,537	

Disclaimer Notice - Information furnished is believed to be accurate and reliable. However, users should independently evaluate the suitability of and test each product selected for their own applications. Littelfuse products are not designed for, and may not be used in, all applications. Read complete Disclaimer Notice at www.littelfuse.com/disclaimer-electronics.