STL57N65M5

N-channel 650 V, 0.061 Ω typ., 22.5 A MDmesh™ M5 Power MOSFET in a PowerFLAT™ 8x8 HV package

Datasheet - production data

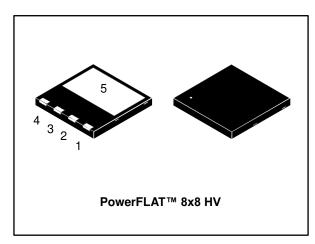
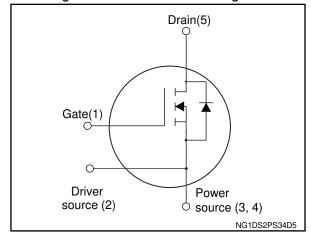



Figure 1: Internal schematic diagram

Features

Order code	V _{DS} @ T _{Jmax}	R _{DS(on)} max.	I _D
STL57N65M5	710 V	0.069Ω	22.5 A

- Extremely low R_{DS(on)}
- Low gate charge and input capacitance
- Excellent switching performance
- 100% avalanche tested

Applications

Switching applications

Description

This device is an N-channel Power MOSFET based on the MDmesh™ M5 innovative vertical process technology combined with the well-known PowerMESH™ horizontal layout. The resulting product offers extremely low onresistance, making it particularly suitable for applications requiring high power and superior efficiency.

Table 1: Device summary

Order code	Marking	Package	Packing
STL57N65M5	57N65M5	PowerFLAT™ 8x8 HV	Tape and reel

Contents STL57N65M5

Contents

1	Electric	eal ratings	3
2	Electric	cal characteristics	4
	2.1	Electrical characteristics (curves)	6
3	Test cir	cuits	9
4	Packag	e information	10
	4.1	PowerFLAT™ 8x8 HV package information	11
	4.2	PowerFLAT™ 8x8 HV packing information	13
5	Revisio	n history	15

STL57N65M5 Electrical ratings

1 Electrical ratings

Table 2: Absolute maximum ratings

Symbol	Parameter	Value	Unit
V _{DS}	Drain-source voltage	650	V
V_{GS}	Gate-source voltage	± 25	٧
I _D ⁽¹⁾	Drain current (continuous) at T _C = 25 °C	22.5	Α
I _D ⁽¹⁾	Drain current (continuous) at T _C = 100 °C	22	Α
I _{DM} ⁽¹⁾⁽²⁾	Drain current (pulsed)	90	Α
I _D ⁽³⁾	Drain current (continuous) at T _{pcb} = 25 °C	4.3	Α
I _D ⁽³⁾	Drain current (continuous) at T _{pcb} = 100 °C	2.7	Α
P _{TOT} ⁽³⁾	Total dissipation at T _{pcb} = 25 °C	2.8	W
P _{TOT} ⁽¹⁾	Total dissipation at T _C = 25 °C	189	W
I _{AR}	Avalanche current, repetitive or not repetitive (pulse width limited by Tj max)	9	Α
E _{AS}	Single pulse avalanche energy (starting $T_j = 25$ °C, $I_D = I_{AR}$, $V_{DD} = 50$ V)		mJ
dv/dt ⁽⁴⁾	Peak diode recovery voltage slope	15	V/ns
T _{stg}	Storage temperature	- 55 to 150	°C
Tj	Max. operating junction temperature	150	C

Notes

Table 3: Thermal data

Symbol	Parameter	Value	Unit
R _{thj-case}	Thermal resistance junction-case max	0.66	°C/W
R _{thj-pcb} ⁽¹⁾	Thermal resistance junction-pcb max	45	°C/W

Notes:

 $[\]ensuremath{^{(1)}}$ The value is rated according to $R_{thj\text{-case rated}}$ and limited by package.

⁽²⁾Pulse width limited by safe operating area.

 $[\]ensuremath{^{(3)}}\xspace$ When mounted on FR-4 board of 1 inch² , 2oz Cu.

 $^{^{(4)}}I_{SD} \leq 22.5$ A, di/dt ≤ 400 A/µs; $V_{DS(peak)} < V_{(BR)DSS}, \ V_{DD} = 400$ V.

 $^{^{(1)}}$ When mounted on FR-4 board of 1 inch², 2oz Cu.

Electrical characteristics STL57N65M5

2 Electrical characteristics

T_C = 25 °C unless otherwise specified

Table 4: On/off states

Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit
$V_{(BR)DSS}$	Drain-source breakdown voltage	$V_{GS} = 0 \text{ V}, I_D = 1 \text{ mA}$	650			V
	Zoro gato voltago Drain	$V_{GS} = 0 \text{ V}, V_{DS} = 650 \text{ V}$			1	μΑ
I _{DSS}	Zero gate voltage Drain current	$V_{GS} = 0 \text{ V}, V_{DS} = 650 \text{ V},$ $T_{C} = 125 \text{ °C}$			100	μΑ
I _{GSS}	Gate-body leakage current	$V_{GS} = \pm 25 \text{ V}, V_{DS} = 0 \text{ V}$			±100	nA
V _{GS(th)}	Gate threshold voltage	$V_{DS}=V_{GS},I_D=250\;\mu A$	3	4	5	V
R _{DS(on)}	Static drain-source on- resistance	$V_{GS} = 10 \text{ V}, I_D = 17.5 \text{ A}$		0.061	0.069	Ω

Table 5: Dynamic

Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit
C _{iss}	Input capacitance		-	4200	1	pF
Coss	Output capacitance	$V_{DS} = 100 \text{ V}, f = 1 \text{ MHz}, $ $V_{GS} = 0 \text{ V}$	-	100	-	pF
C_{rss}	Reverse transfer capacitance	143	-	6	1	pF
C _{o(er)} ⁽¹⁾	Equivalent output capacitance energy related	$V_{\rm GS} = 0 \text{ V}$, $V_{\rm DS} = 0 \text{ to } 80\%$		97	ı	pF
C _{o(tr)} (2)	Equivalent output capacitance time related	V _{(BR)DSS}	-	344	ı	pF
R_{G}	Intrinsic gate resistance $f = 1 \text{ MHz}, I_D = 0 \text{ A}$		-	1.4	1	Ω
Q_g	Total gate charge $V_{DD} = 520 \text{ V}, I_D = 17.5 \text{ A},$		-	96	1	nC
Q_{gs}	Gate-source charge	V _{GS} = 10 V	-	24	-	nC
Q_{gd}	Gate-drain charge	(see Figure 15: "Gate charge test circuit")	-	40	-	nC

Notes:

 $^{^{(1)}}C_{o(er)}$ is defined as a constant equivalent capacitance giving the same stored energy as C_{oss} when V_{DS} increases from 0 to 80% V_{DSS}

 $^{^{(2)}}C_{o(tr)} \ \text{is defined as a constant equivalent capacitance giving the same charging time as C_{oss} when V_{DS} increases from 0 to 80% V_{DSS}}$

Table 6: Switching times

1 22.0 0. 0.11.0.11.19 t.11.00						
Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit
t _{d(V)}	Voltage delay time	V_{DD} = 400 V, I_{D} = 22.5 A R_{G} = 4.7 Ω , V_{GS} = 10 V (see Figure 16: "Test circuit for inductive load switching and diode recovery times"and Figure 19: "Switching time waveform")	-	84	ı	ns
t _{r(V)}	Voltage rise time		-	10.8	-	ns
t _{f(i)}	Crossing fall time		-	11	-	ns
t _{C(off)}	Crossing time	,	-	16.5	-	ns

Table 7: Source drain diode

Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit
I _{SD} ⁽¹⁾	Source-drain current		-		22.5	Α
I _{SDM} ⁽¹⁾ , ⁽²⁾	Source-drain current (pulsed)		-		90	Α
V _{SD} ⁽³⁾	Forward on voltage	$V_{GS} = 0 \text{ V}, I_{SD} = 22.5 \text{ A}$	ı		1.5	V
t _{rr}	Reverse recovery time		-	378		ns
Q _{rr}	Reverse recovery charge	I_{SD} = 22.5 A, di/dt = 100 A/µs, V_{DD} = 100 V (see Figure 16: " Test circuit for inductive load switching and diode recovery times")	-	7		μС
I _{RRM}	Reverse recovery current		-	37		Α
t _{rr}	Reverse recovery time		-	454		ns
Q _{rr}	Reverse recovery charge	I_{SD} = 22.5 A, di/dt = 100 A/ μ s, V _{DD} = 100 V, T _j = 150 °C (see <i>Figure 16: " Test circuit for inductive load switching and diode</i>	-	9.5		μС
I _{RRM}	Reverse recovery current	recovery times")	-	42		Α

Notes:

 $[\]ensuremath{^{(1)}}\xspace$ The value is rated according to $R_{thj\mbox{-}case}$ and limited by package.

 $[\]ensuremath{^{(2)}}\mbox{Pulse}$ width is limited by safe operating area

 $^{^{(3)}\}text{Pulsed:}$ pulse duration = 300 $\mu\text{s},$ duty cycle 1.5%

2.1 Electrical characteristics (curves)

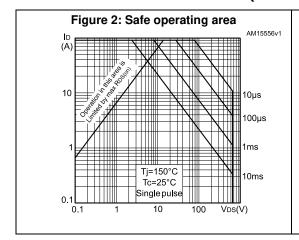
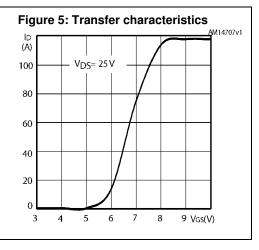
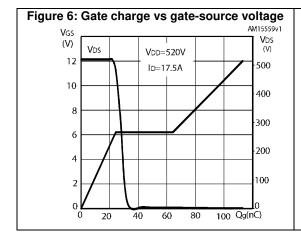




Figure 4: Output characteristics (A) V_{GS}= 9, 10V $V_{GS}=8$ 100 90 80 $V_{GS} = 7V$ 70 60 50 40 30 20 $V_{GS} = 6V$ 10 15 25 Vps(V)

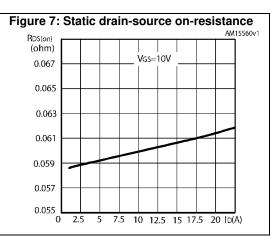


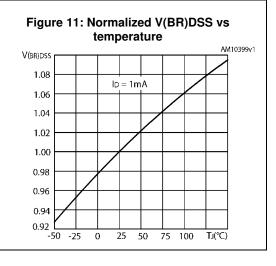
Figure 8: Capacitance variations

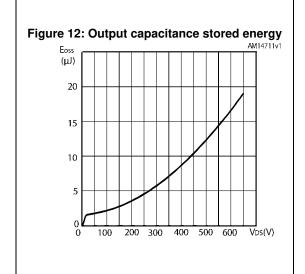
(pF)

10000

1000

Coss


Coss


Coss

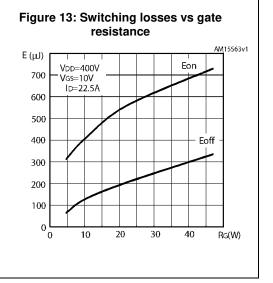
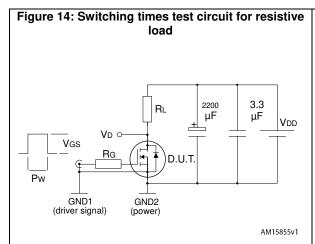

Crss

Figure 9: Normalized gate threshold voltage vs temperature AM05459v1 VGS(th) (norm) 1.10 $ID = 250 \, \mu A$ 1.00 0.90 0.80 0.70 -25 25 50 -50 0 75 TJ(℃)

Figure 10: Normalized on-resistance vs temperature RDS(on) (norm) V_{GS}= 10V I_D= 17.5 A 1.9 1.7 1.5 1.3 1.1 0.9 0.7 0.5 0 50 75 100



The previous figure E_{on} includes reverse recovery of a SiC diode.

STL57N65M5 Test circuits

3 Test circuits

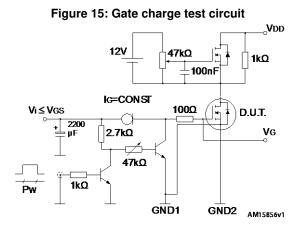
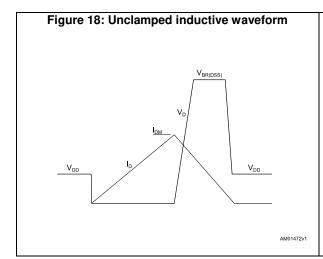


Figure 17: Unclamped inductive load test circuit

VD

QUE

QUE


QUE


QUE

QUE

QUE

AM15858v1

4 Package information

In order to meet environmental requirements, ST offers these devices in different grades of ECOPACK® packages, depending on their level of environmental compliance. ECOPACK® specifications, grade definitions and product status are available at: **www.st.com**. ECOPACK® is an ST trademark.

STL57N65M5 Package information

4.1 PowerFLAT™ 8x8 HV package information

Figure 20: PowerFLAT™ 8x8 HV drawing

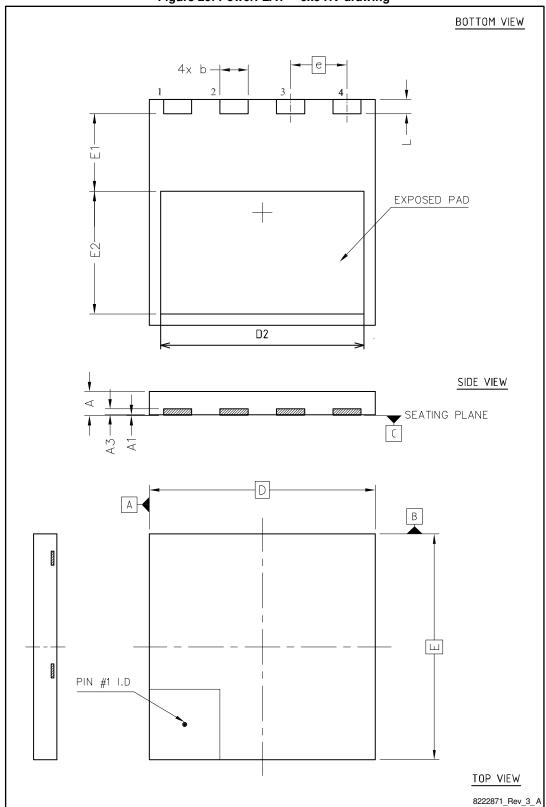
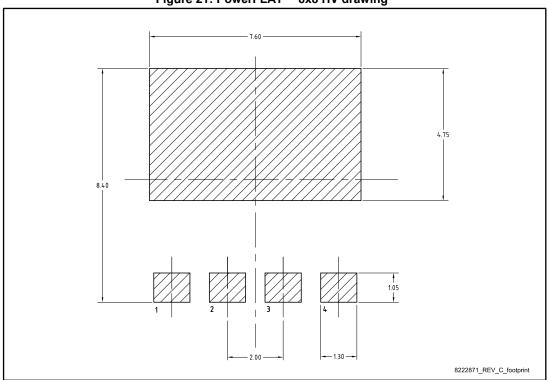



Table 8: PowerFLAT™ 8x8 HV mechanical data

Di	mm				
Dim.	Min.	Тур.	Max.		
Α	0.75	0.85	0.95		
A1	0.00		0.05		
A3	0.10	0.20	0.30		
b	0.90	1.00	1.10		
D	7.90	8.00	8.10		
Е	7.90	8.00	8.10		
D2	7.10	7.20	7.30		
E1	2.65	2.75	2.85		
E2	4.25	4.35	4.45		
е		2.00			
L	0.40	0.50	0.60		

Figure 21: PowerFLAT™ 8x8 HV drawing

3

All dimensions are in millimeters.

STL57N65M5 Package information

4.2 PowerFLAT™ 8x8 HV packing information

Figure 22: PowerFLAT™ 8x8 HV tape

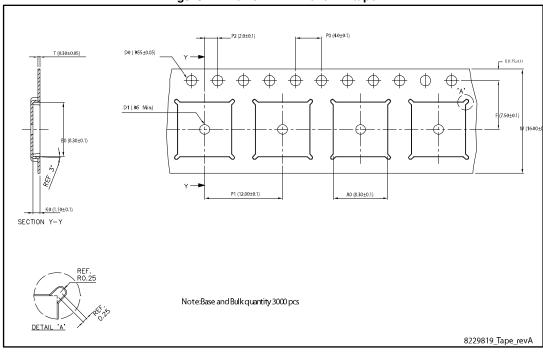
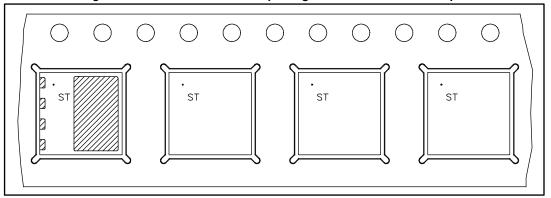



Figure 23: PowerFLAT™ 8x8 HV package orientation in carrier tape

#330.0±08

RST.7

RS

Figure 24: PowerFLAT™ 8x8 HV reel

8229819_Reel_revA

STL57N65M5 Revision history

5 Revision history

Table 9: Document revision history

Date	Revisi on	Changes		
14-May-2012	1	First release.		
25-Jan-2013	2	-Modified ID value and note 1 on first page -Modified: I _D , P _{TOT} , I _{AR} values, and note1, 4 on Table 2 -Modified: Rthj-case value on Table 3 -Modified: R _{DS(on)} on Table 4 -Modified: typical values on Table 5 and 6 -Modified: typical and max values on Table 7 -Inserted: Section 2.1: Electrical characteristics (curves) -Document staus promoted from preliminary data to production data.		
09-Oct-2015 3		Updated title, features and description Text and formatting changes throughout document. Updated Section 1: "Electrical ratings" and Section 2: "Electrical characteristics" Changes according to PCN9187: Updated package silhouette and figure Figure 1: "Internal schematic diagram" on cover page. Updated Section 4.1: "PowerFLAT™ 8x8 HV package information".		

IMPORTANT NOTICE - PLEASE READ CAREFULLY

STMicroelectronics NV and its subsidiaries ("ST") reserve the right to make changes, corrections, enhancements, modifications, and improvements to ST products and/or to this document at any time without notice. Purchasers should obtain the latest relevant information on ST products before placing orders. ST products are sold pursuant to ST's terms and conditions of sale in place at the time of order acknowledgement.

Purchasers are solely responsible for the choice, selection, and use of ST products and ST assumes no liability for application assistance or the design of Purchasers' products.

No license, express or implied, to any intellectual property right is granted by ST herein.

Resale of ST products with provisions different from the information set forth herein shall void any warranty granted by ST for such product.

ST and the ST logo are trademarks of ST. All other product or service names are the property of their respective owners.

Information in this document supersedes and replaces information previously supplied in any prior versions of this document.

© 2015 STMicroelectronics - All rights reserved