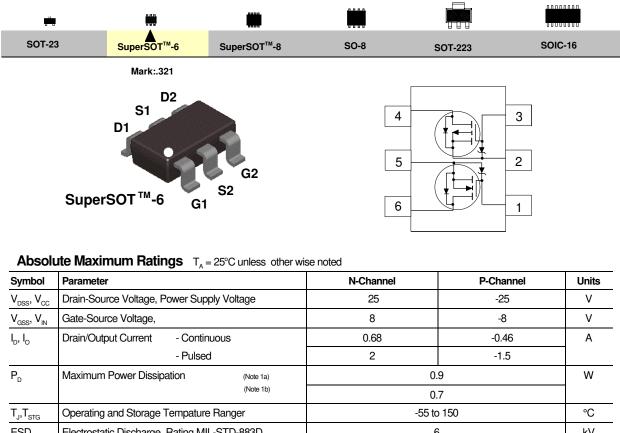


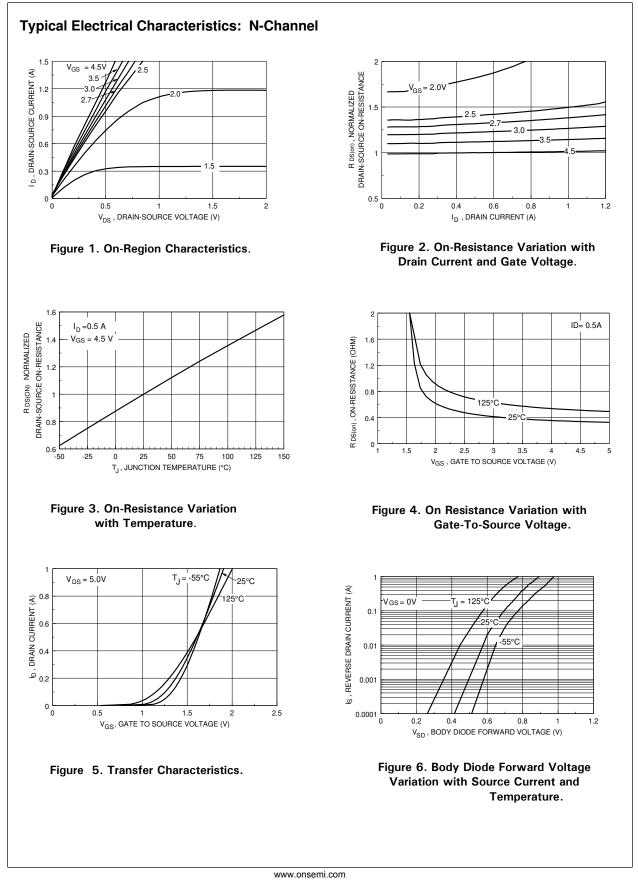
ON Semiconductor®

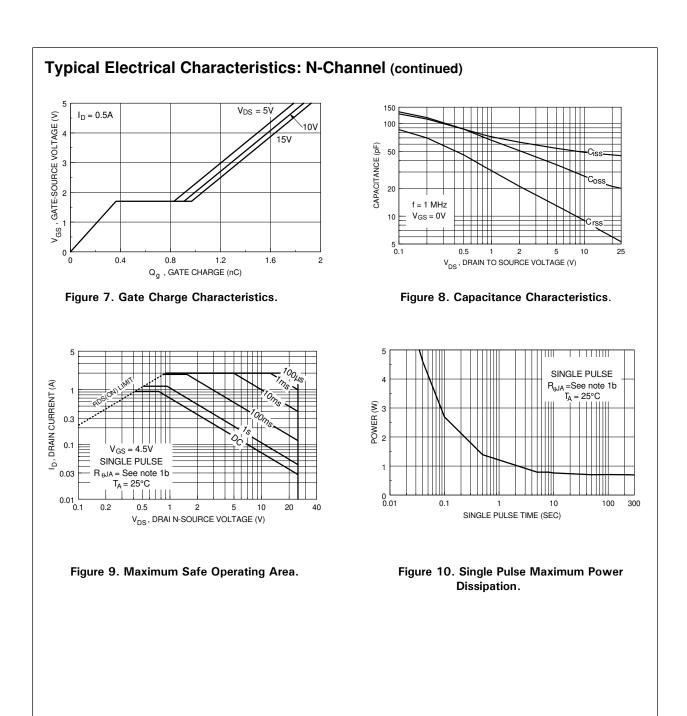

FDC6321C Dual N & P Channel , Digital FET

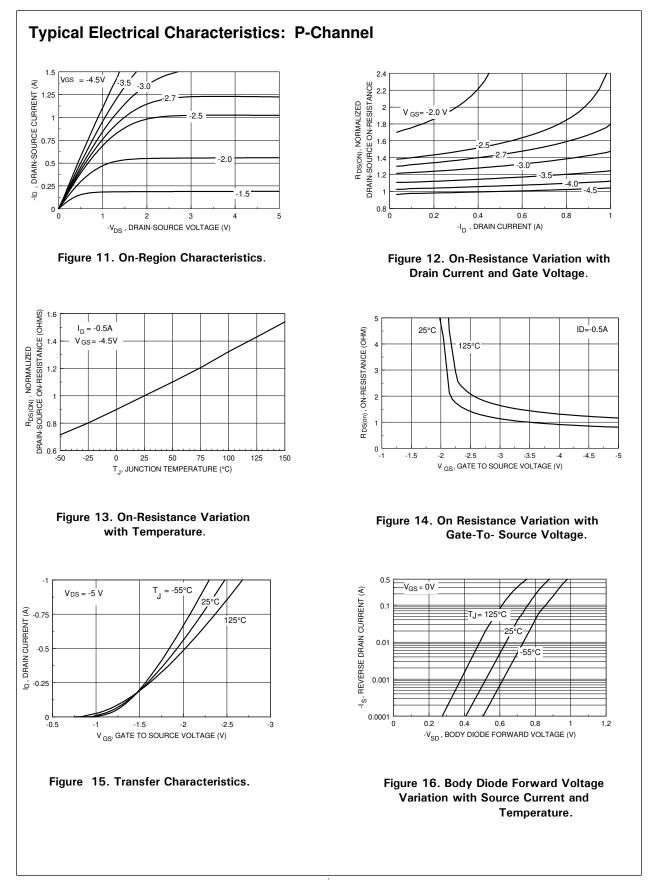
General Description

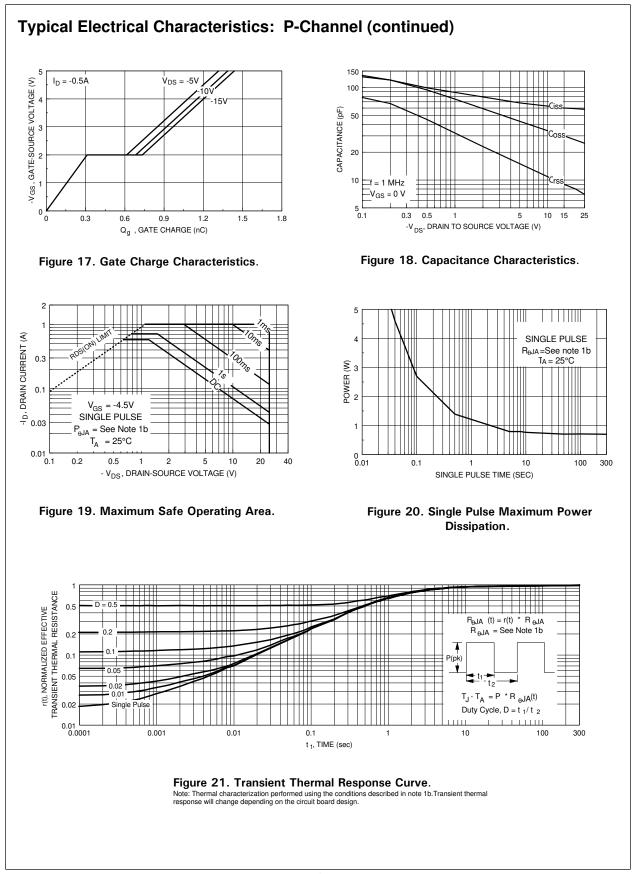
These dual N & P Channel logic level enhancement mode field effect transistors are produced using ON Semiconductor's proprietary, high cell density, DMOS technology. This very high density process is especially tailored to minimize on-state resistance. This device has been designed especially for low voltage applications as a replacement for digital transistors in load switching applications. Since bias resistors are not required this dual digital FET can replace several digital transistors with different bias resistors.

Features


- N-Ch 25 V, 0.68 A, $R_{DS(ON)} = 0.45 \Omega @ V_{GS} = 4.5 V$
- P-Ch -25 V, -0.46 A, R_{DS(ON)} = 1.1 Ω @ V_{GS}= -4.5 V.
- Very low level gate drive requirements allowing direct operation in 3 V circuits. V_{GS(th)} < 1.0V.
- Gate-Source Zener for ESD ruggedness.
 >6kV Human Body Model
- Replace multiple dual NPN & PNP digital transistors.




EOD	Human Body Model (100pf / 1500 Ohm)	0	κv
THERM	AL CHARACTERISTICS		
$R_{_{\!\!\!\!\!\!\!\ThetaJA}}$	Thermal Resistance, Junction-to-Ambient (Note 1a)	140	°C/W
$R_{_{\!$	Thermal Resistance, Junction-to-Case (Note 1)	60	°C/W


Symbol	Parameter	Conditions		Туре	Min	Тур	Max	Units	
OFF CHAR	ACTERISTICS			. 760					
BV _{DSS}	Drain-Source Breakdown Voltage	$V_{GS} = 0 V, I_{D} = 250 \mu A$		N-Ch	25			V	
- DSS	Drain Cource Dreakdown Vollage	$V_{GS} = 0 V, I_D = -250 \mu A$		P-Ch	-25				
$\Delta BV_{DSS} / \Delta T_{J}$	Breakdown Voltage Temp. Coefficient	I_{D} = 250 µA, Referenced to 25 °C		N-Ch		26		mV /ºC	
		I_{D} = -250 µA, Referenced to 25 °C		P-Ch		-22			
I _{DSS}	Zero Gate Voltage Drain Current	$V_{DS} = 20 \text{ V}, V_{GS} = 0 \text{ V},$		N-Ch			1	μA	
		<u>1</u> 3 · 43 ·	T _{.1} = 55°C				10		
I _{DSS}	Zero Gate Voltage Drain Current	$V_{DS} = -20 \text{ V}, V_{GS} = 0 \text{ V},$	0	P-Ch			-1	μA	
			T _{.1} = 55°C				-10		
GSS	Gate - Body Leakage Current	$V_{GS} = 8 V, V_{DS} = 0 V$	<u> </u>	N-Ch			100	nA	
		$V_{GS} = -8 V, V_{DS} = 0 V$		P-Ch			-100	nA	
ON CHARAC	CTERISTICS (Note 2)								
$\Delta V_{GS(th)} / \Delta T_J$	Gate Threshold Voltage Temp. Coefficient	$I_{\rm D}$ = 250 μ A, Referenced	to 25°C	N-Ch		-2.6		mV / °C	
GS(II) J		I_{p} = -250 µA, Referenced	to 25°C	P-Ch		2.1			
V _{GS(th)}	Gate Threshold Voltage	$V_{DS} = V_{GS}, I_{D} = 250 \mu A$		N-Ch	0.65	0.8	1.5	V	
		$V_{\rm DS} = V_{\rm GS}, \ I_{\rm D} = -250 \ \mu A$		P-Ch	-0.65	-0.86	-1.5		
R _{DS(ON)}	Static Drain-Source On-Resistance	$V_{GS} = 4.5 \text{ V}, \ \text{I}_{D} = 0.5 \text{ A}$		N-Ch		0.33	0.45	Ω	
. ,			T _J =125°C			0.51	0.72		
		$V_{GS} = 2.7 \text{ V}, \ I_{D} = 0.25 \text{ A}$				0.44	0.6		
		$V_{\rm GS} = -4.5 \text{ V}, \ I_{\rm D} = -0.5 \text{ A}$		P-Ch		0.87	1.1		
			T _J =125°C			1.21	1.8		
		$V_{\rm GS} = -2.7 \ V, \ I_{\rm D} = -0.25 \ A$	4			1.22	1.5		
I _{D(ON)}	On-State Drain Current	$V_{GS} = 4.5 \text{ V}, \ V_{DS} = 5 \text{ V}$		N-Ch	1			A	
		$V_{GS} = -4.5 V, V_{DS} = -5 V$		P-Ch	-1				
9 _{FS}	Forward Transconductance	$V_{DS} = 5 \text{ V}, \ \text{I}_{D} = \ 0.5 \text{ A}$		N-Ch		1.45		S	
		$V_{\rm DS} = -5 \ V, \ I_{\rm D} = -0.5 \ A$		P-Ch		0.8			
YNAMIC CH	HARACTERISTICS								
C _{iss}	Input Capacitance	N-Channel		N-Ch		50		pF	
		V_{DS} = 10 V, V_{GS} = 0 V,		P-Ch		63			
C _{oss}	Output Capacitance	f = 1.0 MHz		N-Ch		28		pF	
		P-Channel		P-Ch		34			
C _{rss}	Reverse Transfer Capacitance	V_{DS} = -10 V, V_{GS} = 0V,		N-Ch		9		pF	
		f = 1.0 MHz		P-Ch		10			

	NG CHARACTERISTICS (Note 2)	1						
mbol	Parameter	Conditions		Туре	Min	Тур	Max	Units
t _{D(on)}	Turn - On Delay Time	N-Channel		N-Ch		3	6	nS
		$V_{DD} = 6 V, I_{D} = 0.5 A,$		P-Ch		7	20	
	Turn - On Rise Time	V_{Gs} = 4.5 V, R_{GEN} = 50 Ω		N-Ch		8	16	nS
				P-Ch		9	18	
(ff)	Turn - Off Delay Time	P-Channel		N-Ch		17	30	nS
	$V_{DD} = -6 V, I_{D} = -0.5 A,$		P-Ch		55	110		
	Turn - Off Fall Time	$V_{\text{Gen}} = -4.5 \text{ V}, \text{ R}_{\text{GEN}} = 50 \text{ S}$	Ω	N-Ch		13	25	nS
				P-Ch		35	70	
	Total Gate Charge	N-Channel		N-Ch		1.64	2.3	nC
		$V_{\rm DS} = 5 \ V, \ I_{\rm D} = 0.5 \ A,$		P-Ch		1.1	1.5	
s	Gate-Source Charge	$V_{GS} = 4.5 V$		N-Ch		0.38		nC
		P- Channel		P-Ch		0.32		
d	Gate-Drain Charge	$V_{DS} = -5 V,$		N-Ch		0.45		nC
		$I_{\rm D}$ = -0.25 A, $V_{\rm GS}$ = -4.5 V		P-Ch		0.25		
RAIN-SO	URCE DIODE CHARACTERISTICS AN					1		
	Maximum Continuous Drain-Source	Diode Forward Current	Forward Current				0.3	A
				P-Ch			-0.5	
V_{SD}	Drain-Source Diode Forward Voltag	$V_{GS} = 0 V, I_S = 0.5 A$ (No		N-Ch		0.83	1.2	V
		$V_{GS} = 0 V$, $I_{S} = -0.5 A$ (No	T _J =125°C			0.69	0.85	-
		$V_{GS} = 0 V, I_{S} = -0.5 A$ (No	T, =125°C	P-Ch		-0.89	-1.2	-
	a. 140°C/W on a 0.125 in² pad of 2oz copper.	b. 180°C/W on a 0.005 in² of pad of 2oz copper.						

ON Semiconductor and are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of ON Semiconductor's product/patent coverage may be accessed at <u>www.onsemi.com/site/pdf/Patent-Marking.pdf</u>. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using ON Semiconductor products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by ON Semiconductor "Typical" parameters which may be provided in ON Semiconductor data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. ON Semiconductor does not convey any license under its patent rights of others. ON Semiconductor products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use ON Semiconductor haves, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such uninten

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT:

Literature Distribution Center for ON Semiconductor 19521 E. 32nd Pkwy, Aurora, Colorado 80011 USA Phone: 303-675-2175 or 800-344-3860 Toll Free USA/Canada Fax: 303-675-2176 or 800-344-3867 Toll Free USA/Canada Email: orderlit@onsemi.com N. American Technical Support: 800–282–9855 Toll Free USA/Canada Europe, Middle East and Africa Technical Support: Phone: 421 33 790 2910

Japan Customer Focus Center Phone: 81–3–5817–1050 ON Semiconductor Website: www.onsemi.com

Order Literature: http://www.onsemi.com/orderlit

For additional information, please contact your local Sales Representative