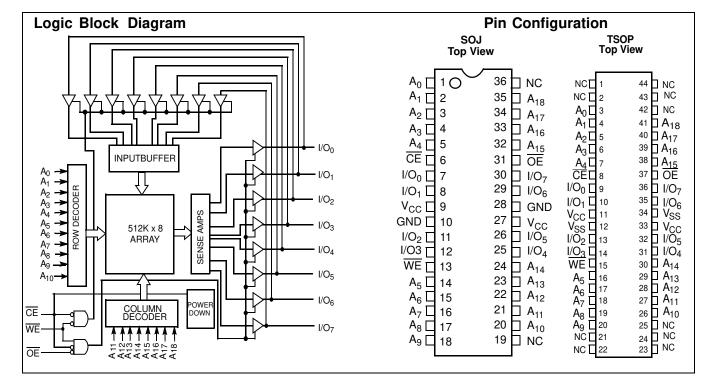


512K x 8 Static RAM

Features

- High speed
- t_{AA} = 12 ns
- Low active power
 504 mW (max.)
- Low CMOS standby power (Commercial L version) — 1.8 mW (max.)
- 2.0V Data Retention (660 μW at 2.0V retention)
- Automatic power-down when deselected
- TTL-compatible inputs and outputs
- Easy memory expansion with CE and OE features


Functional Description^[1]

The CY7C1049BNV33 is a high-performance CMOS Static RAM organized as 524,288 words by 8 bits. Easy <u>memory</u> expansion is provided by an active LOW Chip Enable (\overline{CE}), an active LOW Output Enable (\overline{OE}), and three-state drivers. <u>Writing to the device is accomplished by taking Chip Enable</u> (\overline{CE}) and Write Enable (\overline{WE}) inputs LOW. Data on the eight I/O pins (I/O₀ through I/O₇) is then written into the location specified on the address pins (A₀ through A₁₈).

Reading from the device is accomplished by taking Chip Enable (\overline{OE}) and Output Enable (\overline{OE}) LOW while forcing Write Enable (WE) HIGH. Under these conditions, the contents of the memory location specified by the address pins will appear on the I/O pins.

The eight input/output pins (I/O₀ through I/O₇) are placed in <u>a</u> high-impedance state when the <u>device</u> is deselected (CE HIGH), the <u>outputs</u> are disabled (OE HIGH), or during a write operation (CE LOW, and WE LOW).

The CY7C1049BNV33 is available in a standard 400-mil-wide 36-pin SOJ and 44-pin TSOPII packages with center power and ground (revolutionary) pinout.

CY7C1049BNV33

Selection Guide

		-12	-15	-20
Maximum Access Time (ns)	12	15	20	
Maximum Operating Current (mA)	Com'l	200	180	160
	Ind'l	220	200	170
Maximum CMOS Standby Current (mA)	Com'l/Ind'l	8	8	8
	Com'l L	0.5	0.5	0.5

Maximum Ratings

(Above which the useful life may be impaired. For user guidelines, not tested.)

Storage Temperature	–65°C to +150°C
Ambient Temperature with	
Power Applied	–55°C to +125°C
Supply Voltage on V _{CC} to Relative GND ^{[2}	^{2]} –0.5V to +4.6V
DC Voltage Applied to Outputs ^[2]	
in High Z State	-0.5V to V _{CC} + 0.5V

DC Electrical Characteristics Over the Operating Range

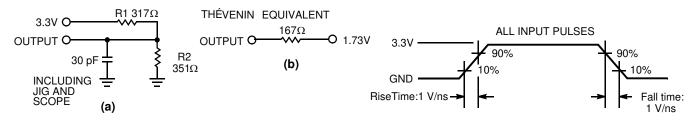
DC Input Voltage^[2]-0.5V to V_{CC} + 0.5V Current into Outputs (LOW)...... 20 mA

Operating Range

Range	Ambient Temperature	v _{cc}
Commercial	0°C to +70°C	$3.3V\pm0.3V$
Industrial	–40°C to +85°C	

					-12		-15	-20		
Parameter	Description	Test Conditi	Test Conditions		Max.	Min.	Max.	Min.	Max.	Unit
V _{OH}	Output HIGH Voltage	V _{CC} = Min., I _{OH} = -4.0 mA				2.4		2.4		V
V _{OL}	Output LOW Voltage	V _{CC} = Min., I _{OL} = 8.0 mA			0.4		0.4		0.4	V
V _{IH}	Input HIGH Voltage			2.2	$V_{CC} + 0.5$	2.2	$V_{CC} + 0.5$	2.2	$V_{CC} + 0.5$	V
V _{IL}	Input LOW Voltage ^[2]			-0.5	0.8	-0.5	0.8	-0.5	0.8	V
I _{IX}	Input Leakage Current	$GND \le V_I \le V_{CC}$		-1	+1	-1	+1	-1	+1	μA
I _{OZ}	Output Leakage Current	$GND \leq V_{OUT} \leq V_{CC},$ Output Disabled		-1	+1	-1	+1	-1	+1	μA
I _{CC}	V _{CC} Operating	V _{CC} = Max.,	Com'l		200		180		160	mA
	Supply Current	$f = f_{MAX} = 1/t_{RC}$	Ind'l		220		200		170	mA
I _{SB1}	Automatic CE Power-Down Current —TTL Inputs	$\begin{array}{l} \text{Max. } V_{CC}, \ \overline{CE} \geq V_{IH} \\ V_{IN} \geq V_{IH} \text{ or } \\ V_{IN} \leq V_{IL}, \ f = f_{MAX} \end{array}$			30		30		30	mA
I _{SB2}	Automatic CE	<u>Ma</u> x. V _{CC} ,	Com'l/Ind'l		8		8		8	mA
	Power-Down Current —CMOS Inputs	$\begin{array}{l} \text{CE} \geq V_{CC} - 0.3\text{V}, \\ \text{V}_{\text{IN}} \geq V_{CC} - 0.3\text{V}, \\ \text{or } V_{\text{IN}} \leq 0.3\text{V}, \text{ f} = 0 \end{array}$	Com'l L		0.5		0.5		0.5	mA

Capacitance^[3]


Parameter	Description	Test Conditions	Max.	Unit
C _{IN}	Input Capacitance	$ \begin{array}{l} T_A = 25^\circ C, \ f = 1 \ \text{MHz}, \\ V_{CC} = 3.3 V \end{array} $	8	pF
C _{OUT}	I/O Capacitance		8	pF

Notes:

For guidelines on SRAM system design, please refer to the 'System Design Guidelines' Cypress application note, available on the internet at www.cypress.com.
V_{IL} (min.) = -2.0V for pulse durations of less than 20 ns.
Tested initially and after any design or process changes that may affect these parameters.

AC Test Loads and Waveforms

AC Switching Characteristics^[4] Over the Operating Range

		-	12	-	15	-2	20	
Parameter	Description	Min.	Max.	Min.	Max.	Min.	Max.	Unit
Read Cycle								•
t _{power}	V _{CC} (typical) to the First Access ^[5]	1		1		1		μs
t _{RC}	Read Cycle Time	12		15		20		ns
t _{AA}	Address to Data Valid		12		15		20	ns
t _{OHA}	Data Hold from Address Change	3		3		3		ns
t _{ACE}	CE LOW to Data Valid		12		15		20	ns
t _{DOE}	OE LOW to Data Valid		6		7		8	ns
t _{LZOE}	OE LOW to Low Z	0		0		0		ns
t _{HZOE}	OE HIGH to High Z ^[6, 7]		6		7		8	ns
t _{LZCE}	CE LOW to Low Z ^[7]	3		3		3		ns
t _{HZCE}	CE HIGH to High Z ^[6, 7]		6		7		8	ns
t _{PU}	CE LOW to Power-Up	0		0		0		ns
t _{PD}	CE HIGH to Power-Down		12		15		20	ns
Write Cycle [[]	8, 9]					-		
t _{WC}	Write Cycle Time	12		15		20		ns
t _{SCE}	CE LOW to Write End	10		12		13		ns
t _{AW}	Address Set-Up to Write End	10		12		13		ns
t _{HA}	Address Hold from Write End	0		0		0		ns
t _{SA}	Address Set-Up to Write Start	0		0		0		ns
t _{PWE}	WE Pulse Width	10		12		13		ns
t _{SD}	Data Set-Up to Write End	7		8		9		ns
t _{HD}	Data Hold from Write End	0		0		0		ns
t _{LZWE}	WE HIGH to Low Z ^[7]	3		3		3		ns
t _{HZWE}	WE LOW to High Z ^[6, 7]		6		7		8	ns

Notes:

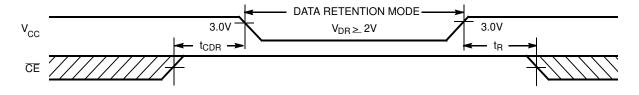
4. Test conditions assume signal transition time of 3 ns or less, timing reference levels of 1.5V, input pulse levels of 0 to 3.0V, and output loading of the specified l_{OL}/l_{OH} and 30-pF load capacitance.
5. This part has a voltage regulator which steps down the voltage from 5V to 3.3V internally. T_{power} time has to be provided initially before a read/write operation is capacitance.

started.

6. tHZOE, tHZCE, and tHZWE are specified with a load capacitance of 5 pF as in part (b) of AC Test Loads. Transition is measured ± 500 mV from steady-state voltage.

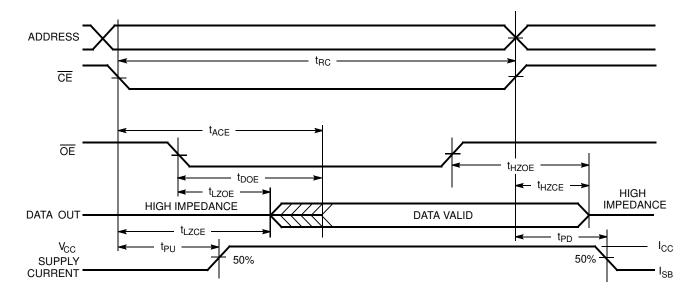
At any given temperature and voltage condition, t_{HZCE} is less than t_{LZCE}, t_{HZCE} is less than t_{LZCE}, t_{HZCE} is less than t_{LZCE} is less than t_{LZCE}. t_{HZCE} is less than t_{LZCE} is less than t_{LZCE}. t_{HZCE} is less than t_{LZCE} is less than t_{LZCE}. t_{HZCE} is less than t_{LZCE} is less than t_{LZCE}. t_{HZCE} is less than t_{LZCE} is less than t_{LZCE}. t_{HZCE} is less than t_{LZCE} is less than t_{LZCE}. t_{HZCE} is less than t_{LZCE} is less than t_{LZCE}. t_{HZCE} is less than t_{LZCE} is less than t_{LZCE}. The internal write time of the memory is defined by the overlap of CE LOW, and WE LOW. CE and WE must be LOW to initiate a write, and the transition of either of these signals can terminate the write. The input data set-up and hold timing should be referenced to the leading edge of the signal that terminates the write.
The minimum write cycle time for Write Cycle No. 3 (WE controlled, OE LOW) is the sum of t_{HZWE} and t_{SD}.

10. No input may exceed V_{CC} + 0.5V


11. $t_r \le 3$ ns for the -12 and -15 speeds. $t_r \le 5$ ns for the -20 ns and slower speeds.

Parameter	Description	Conditions ^[10]	Min.	Max	Unit
V _{DR}	V _{CC} for Data Retention		2.0		V
I _{CCDR}	Data Retention Current	$\label{eq:CC} \begin{array}{l} \underline{V}_{CC} = V_{DR} = 2.0V, \\ \overline{CE} \geq V_{CC} - 0.3V \end{array}$		330	μA
t _{CDR} ^[3]	Chip Deselect to Data Retention Time	$CE \ge V_{CC} - 0.3V$ $V_{IN} \ge V_{CC} - 0.3V$ or $V_{IN} \le 0.3V$	0		ns
t _R ^[11]	Operation Recovery Time		t _{RC}		ns

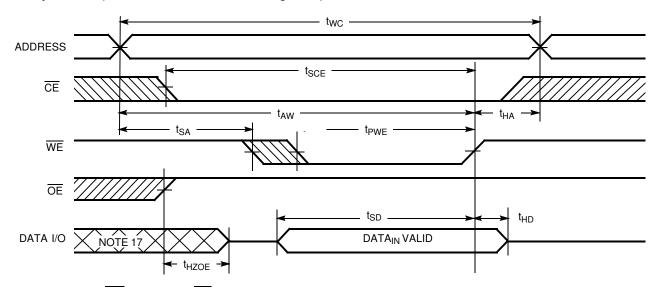
Data Retention Characteristics Over the Operating Range (For L version only)


Data Retention Waveform

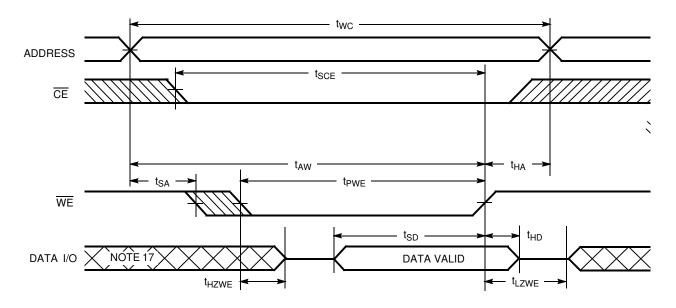
Switching Waveforms

Read Cycle No. 1^[12, 13]

t_{RC}


Notes: 12. <u>Dev</u>ice is continuously selected. \overline{OE} , $\overline{CE} = V_{IL}$. 13. WE is HIGH for read cycle. 14. Address valid prior to or coincident with \overline{CE} transition LOW.

ADDRESS t_{AA} t_{OHA} DATA OUT PREVIOUS DATA VALID DATA VALID Read Cycle No. 2 (OE Controlled)^[13, 14]



Switching Waveforms (continued)

Write Cycle No. 1 (WE Controlled, OE HIGH During Write)^[15, 16]

Write Cycle No. 2 ($\overline{\text{WE}}$ Controlled, $\overline{\text{OE}}$ LOW)^[16]

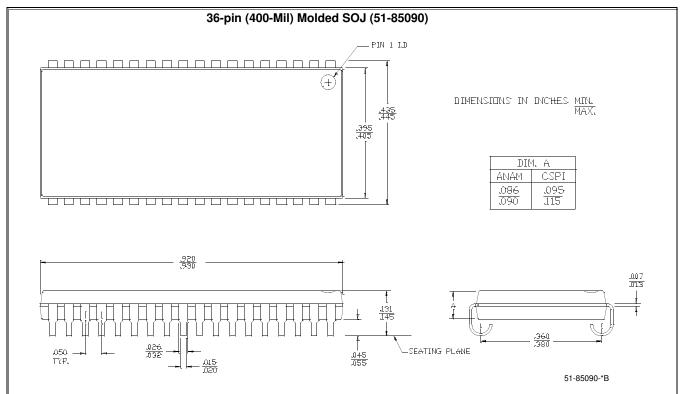
Truth Table

CE	OE	WE	I/O ₀ – I/O ₇	Mode	Power
Н	х	Х	High Z	Power-Down	Standby (I _{SB})
L	L	Н	Data Out	Read	Active (I _{CC})
L	Х	L	Data In	Write	Active (I _{CC})
L	Н	Н	High Z	Selected, Outputs Disabled	Active (I _{CC})

Notes:

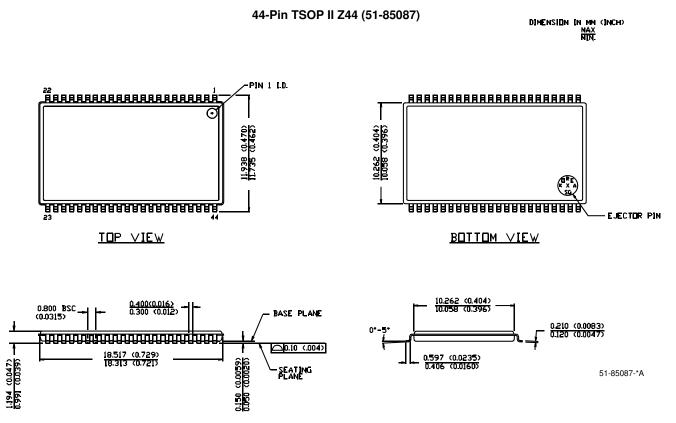
15. Data I/O is high-impedance if $\overline{OE} = V_{|H}$. 16. If \overline{CE} goes HIGH simultaneously with WE going HIGH, the output remains in a high-impedance state.

17. During this period the I/Os are in the output state and input signals should not be applied.



Ordering Information

Speed (ns)	Ordering Code	Package Name	Package Type	Operating Range
12	CY7C1049BNV33-12ZC	51-85087	44-Pin TSOP II Z44	Commercial
	CY7C1049BNV33-12VXC	51-85090	36-Lead (400-Mil) Molded SOJ (Pb-free)	
	CY7C1049BNV33-12VI	51-85090	36-Lead (400-Mil) Molded SOJ	Industrial
	CY7C1049BNV33-12VXI	51-85090	36-Lead (400-Mil) Molded SOJ (Pb-free)	
15	CY7C1049BNV33-15VC	51-85090	36-Lead (400-Mil) Molded SOJ	Commercial
	CY7C1049BNV33-15VXC	51-85090	36-Lead (400-Mil) Molded SOJ (Pb-free)	
	CY7C1049BNV33L-15VXC	51-85090	36-Lead (400-Mil) Molded SOJ (Pb-free)	
	CY7C1049BNV33-15ZC	51-85087	44-Pin TSOP II Z44	
	CY7C1049BNV33-15VI	51-85090	36-Lead (400-Mil) Molded SOJ	Industrial
	CY7C1049BNV33-15VXI	51-85090	36-Lead (400-Mil) Molded SOJ (Pb-free)	
	CY7C1049BNV33-15ZI	51-85087	44-Pin TSOP II Z44	
20	CY7C1049BNV33-20VC	51-85090	36-Lead (400-Mil) Molded SOJ	Commercial
	CY7C1049BNV33-20VXC	51-85090	36-Lead (400-Mil) Molded SOJ (Pb-free)	
	CY7C1049BNV33-20VXI	51-85090	36-Lead (400-Mil) Molded SOJ (Pb-free)	Industrial


Please contact local sales representative regarding availability of these parts

Package Diagrams

Package Diagrams (continued)

All product and company names mentioned in this document may be the trademarks of their respective holders.

© Cypress Semiconductor Corporation, 2006. The information contained herein is subject to change without notice. Cypress Semiconductor Corporation assumes no responsibility for the use of any circuitry other than circuitry embodied in a Cypress product. Nor does it convey or imply any license under patent or other rights. Cypress products are not warranted nor intended to be used for medical, life support, life saving, critical control or safety applications, unless pursuant to an express written agreement with Cypress. Furthermore, Cypress does not authorize its products for use as critical components in life-support systems where a malfunction or failure may reasonably be expected to result in significant injury to the user. The inclusion of Cypress products in life-support systems application implies that the manufacturer assumes all risk of such use and in doing so indemnifies Cypress against all charges.

Document History Page

	Document Title: CY7C1049BNV33 512K x 8 Static RAM Document Number: 001-06432					
REV.	ECN NO.	lssue Date	Orig. of Change	Description of Change		
**	423847	See ECN	NXR	New Data Sheet		