ON Semiconductor

Is Now

To learn more about onsemi™, please visit our website at www.onsemi.com

onsemi and ONSEMI. and other names, marks, and brands are registered and/or common law trademarks of Semiconductor Components Industries, LLC dba "onsemi" or its affiliates and/or subsidiaries in the United States and/or other countries. onsemi owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of onsemi product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. onsemi reserves the right to make changes at any time to any products or information herein is provided "as-is" and onsemi makes no warranty, representation or guarantee regarding the accuracy of the information, product features, availability, functionality, or suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using onsemi products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by onsemi. "Typical" parameters which may be provided in onsemi data sheets and/ or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. onsemi does not convey any license under any of its intellectual property rights nor the rights of others. onsemi products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use onsemi products for any such unintended or unauthorized application,

Amplifier Transistor

NPN Silicon

Features

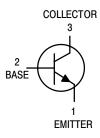
• Pb-Free Package is Available*

MAXIMUM RATINGS

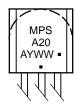
Rating	Symbol	Value	Unit
Collector – Emitter Voltage	V _{CEO}	40	Vdc
Collector - Base Voltage	V _{CBO}	4.0	Vdc
Collector Current – Continuous	Ic	100	mAdc
Total Device Dissipation @ T _A = 25°C Derate above 25°C	P _D	625 5.0	mW mW/°C
Total Device Dissipation @ T _C = 25°C Derate above 25°C	P _D	1.5 12	W mW/°C
Operating and Storage Junction Temperature Range	T _J , T _{stg}	-55 to +150	°C

THERMAL CHARACTERISTICS

Characteristic	Symbol	Max	Unit
Thermal Resistance, Junction-to-Ambient (Note 1)	$R_{\theta JA}$	200	°C/W
Thermal Resistance, Junction-to-Case	$R_{\theta JC}$	83.3	°C/W


Maximum ratings are those values beyond which device damage can occur. Maximum ratings applied to the device are individual stress limit values (not normal operating conditions) and are not valid simultaneously. If these limits are exceeded, device functional operation is not implied, damage may occur and reliability may be affected.

1. $R_{\theta JA}$ is measured with the device soldered into a typical printed circuit board.


ON Semiconductor®

http://onsemi.com

MARKING DIAGRAM

MPSA20 = Device Code A = Assembly Location

Y = Year WW = Work Week ■ Pb-Free Package

(Note: Microdot may be in either location)

ORDERING INFORMATION

Device	Package	Shipping
MPSA20	TO-92	5,000 Units / Box
MPSA20G	TO-92 (Pb-Free)	5,000 Units / Box

^{*}For additional information on our Pb–Free strategy and soldering details, please download the ON Semiconductor Soldering and Mounting Techniques Reference Manual, SOLDERRM/D.

ELECTRICAL CHARACTERISTICS (T_A = 25°C unless otherwise noted)

Characteristic	Symbol	Min	Max	Unit
OFF CHARACTERISTICS	•			
Collector – Emitter Breakdown Voltage (Note 2) $(I_C = 1.0 \text{ mAdc}, I_B = 0)$	V _(BR) CEO	40	-	Vdc
Emitter – Base Breakdown Voltage ($I_E = 100 \mu Adc, I_C = 0$)	V _{(BR)EBO}	4.0	-	Vdc
Collector Cutoff Current (V _{CB} = 30 Vdc, I _E = 0)	I _{CBO}	-	100	nAdc
ON CHARACTERISTICS				
DC Current Gain (Note 2) (I _C = 5.0 mAdc, V _{CE} = 10 Vdc)	h _{FE}	40	400	-
Collector – Emitter Saturation Voltage ($I_C = 10 \text{ mAdc}, I_B = 1.0 \text{ mAdc}$)	V _{CE(sat)}	-	0.25	Vdc
SMALL-SIGNAL CHARACTERISTICS				
Current – Gain – Bandwidth Product (Note 2) (I _C = 5.0 mAdc, V _{CE} = 10 Vdc, f = 100 MHz)	f _T	125	-	MHz
Output Capacitance (V _{CB} = 10 Vdc, I _E = 0, f = 1.0 MHz)	C _{obo}	_	4.0	pF

^{2.} Pulse Test: Pulse Width ≤ 300 μs, Duty Cycle ≤ 2.0%.

EQUIVALENT SWITCHING TIME TEST CIRCUITS

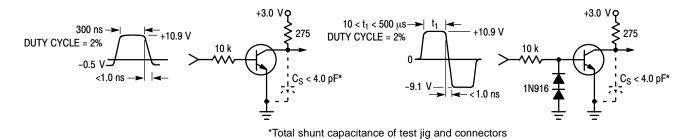


Figure 1. Turn-On Time

Figure 2. Turn-Off Time

NOISE FIGURE CONTOURS

 $(V_{CE} = 5.0 \text{ Vdc}, T_A = 25^{\circ}C)$

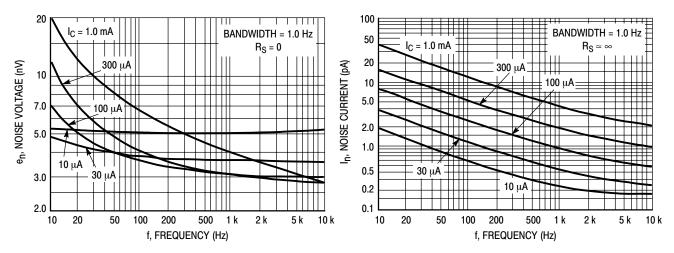


Figure 3. Noise Voltage

Figure 4. Noise Current

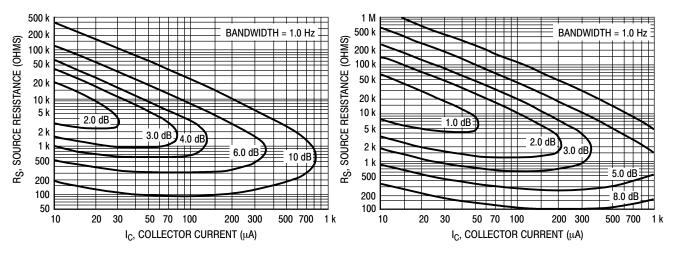


Figure 5. Narrow Band, 100 Hz

Figure 6. Narrow Band, 1.0 kHz

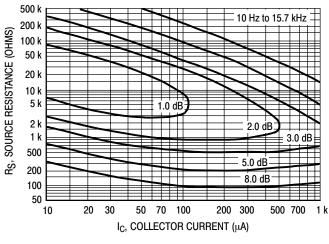


Figure 7. Wideband

Noise Figure is defined as:

$$\text{NF} = 20 \, \text{log}_{10} \left(\frac{e_n{}^2 \, + \, 4 \text{KTR}_S \, + \, I_n \, {}^2 \text{R}_S {}^2}{4 \text{KTR}_S} \right)^{1/2}$$

 $e_n\,$ = Noise Voltage of the Transistor referred to the input. (Figure 3)

n = Noise Current of the Transistor referred to the input. (Figure 4)

 $K = Boltzman's Constant (1.38 x 10^{-23} j/{}^{\circ}K)$

T = Temperature of the Source Resistance (°K)

R_S = Source Resistance (Ohms)

TYPICAL STATIC CHARACTERISTICS

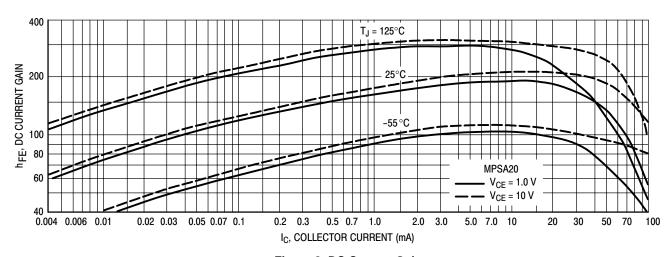


Figure 8. DC Current Gain

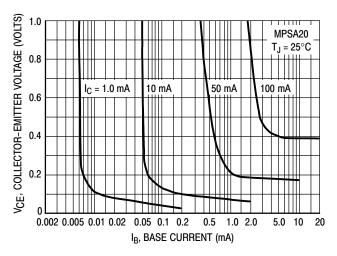


Figure 9. Collector Saturation Region

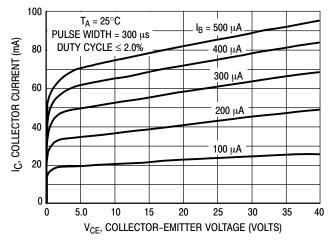


Figure 10. Collector Characteristics

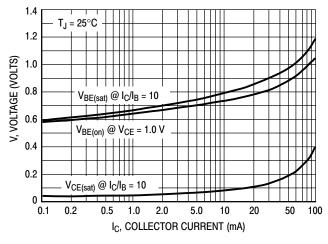


Figure 11. "On" Voltages

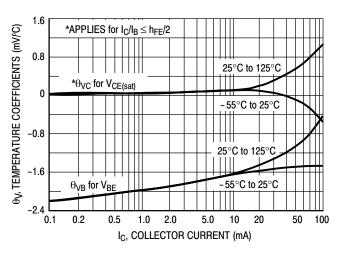


Figure 12. Temperature Coefficients

TYPICAL DYNAMIC CHARACTERISTICS

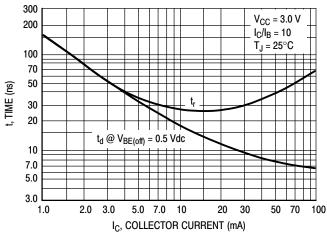


Figure 13. Turn-On Time

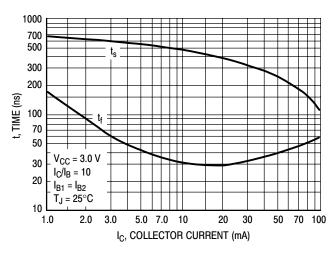


Figure 14. Turn-Off Time

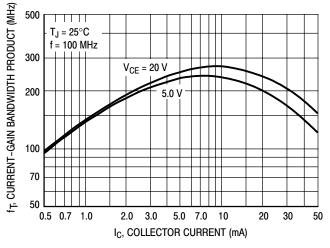


Figure 15. Current-Gain - Bandwidth Product

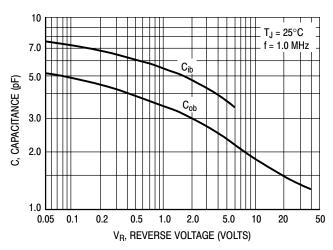


Figure 16. Capacitance

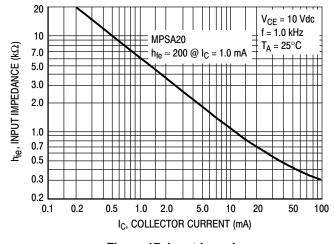


Figure 17. Input Impedance

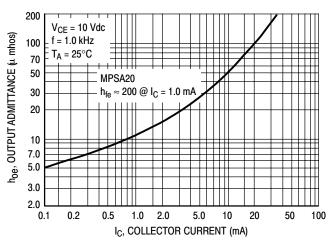


Figure 18. Output Admittance

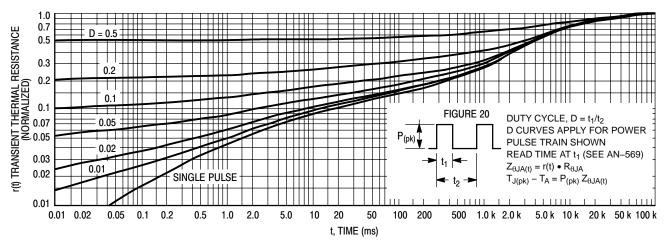


Figure 19. Thermal Response

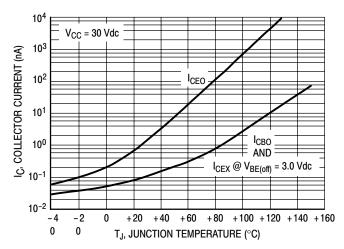


Figure 21.

400 1.0 ms 200 IC, COLLECTOR CURRENT (mA) 100 60 T_A = 25°C 40 20 $T_J = 150^{\circ}C$ 10 **CURRENT LIMIT** THERMAL LIMIT 6.0 SECOND BREAKDOWN LIMIT 4.0 2.0 4.0 8.0 10 40 V_{CE}, COLLECTOR-EMITTER VOLTAGE (VOLTS)

Figure 22.

DESIGN NOTE: USE OF THERMAL RESPONSE DATA

A train of periodical power pulses can be represented by the model as shown in Figure 20. Using the model and the device thermal response the normalized effective transient thermal resistance of Figure 19 was calculated for various duty cycles.

To find $Z_{\theta JA(t)}$, multiply the value obtained from Figure 19 by the steady state value $R_{\theta JA}$.

Example:

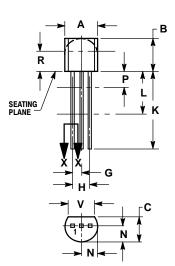
Dissipating 2.0 watts peak under the following conditions:

 $t_1 = 1.0 \text{ ms}, t_2 = 5.0 \text{ ms}. (D = 0.2)$

Using Figure 19 at a pulse width of 1.0 ms and D = 0.2, the reading of r(t) is 0.22.

The peak rise in junction temperature is therefore

 $\Delta T = r(t) \times P_{(pk)} \times R_{\theta JA} = 0.22 \times 2.0 \times 200 = 88^{\circ}C.$


For more information, see ON Semiconductor Application Note AN569/D, available on our website at **www.onsemi.com**.

The safe operating area curves indicate I_C – V_{CE} limits of the transistor that must be observed for reliable operation. Collector load lines for specific circuits must fall below the limits indicated by the applicable curve.

The data of Figure 22 is based upon $T_{J(pk)} = 150^{\circ}C$; T_C or T_A is variable depending upon conditions. Pulse curves are valid for duty cycles to 10% provided $T_{J(pk)} \le 150^{\circ}C$. $T_{J(pk)}$ may be calculated from the data in Figure 19. At high case or ambient temperatures, thermal limitations will reduce the power that can be handled to values less than the limitations imposed by second breakdown.

PACKAGE DIMENSIONS

TO-92 (TO-226) CASE 29-11 **ISSUE AL**

NOTES:

- DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 1982.
- 114-3M, 1902.
 CONTROLLING DIMENSION: INCH.
 CONTOUR OF PACKAGE BEYOND DIMENSION R
 IS UNCONTROLLED.
 LEAD DIMENSION IS UNCONTROLLED IN P AND
- BEYOND DIMENSION K MINIMUM.

	INCHES		MILLIN	IETERS
DIM	MIN	MAX	MIN	MAX
Α	0.175	0.205	4.45	5.20
В	0.170	0.210	4.32	5.33
С	0.125	0.165	3.18	4.19
D	0.016	0.021	0.407	0.533
G	0.045	0.055	1.15	1.39
Н	0.095	0.105	2.42	2.66
J	0.015	0.020	0.39	0.50
K	0.500		12.70	
L	0.250		6.35	
N	0.080	0.105	2.04	2.66
P		0.100		2.54
R	0.115		2.93	
v	0 135		3 43	

STYLE 1:

PIN 1. EMITTER

BASE 2.

COLLECTOR

ON Semiconductor and un are registered trademarks of Semiconductor Components Industries, LLC (SCILLC). SCILLC reserves the right to make changes without further notice to any products herein. SCILLC makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does SCILLC assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. "Typical" parameters which may be provided in SCILLC data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. SCILLC does not convey any license under its patent rights nor the rights of others. SCILLC products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the SCILLC product could create a situation where personal injury or death may occur. Should Buyer purchase or use SCILLC products for any such unintended or unauthorized application, Buyer shall indemnify and hold SCILLC and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that SCILLC was negligent regarding the design or manufacture of the part. SCILLC is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner.

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT:

Literature Distribution Center for ON Semiconductor P.O. Box 61312, Phoenix, Arizona 85082-1312 USA **Phone**: 480–829–7710 or 800–344–3860 Toll Free USA/Canada **Fax**: 480–829–7709 or 800–344–3867 Toll Free USA/Canada Email: orderlit@onsemi.com

N. American Technical Support: 800-282-9855 Toll Free

Japan: ON Semiconductor, Japan Customer Focus Center 2-9-1 Kamimeguro, Meguro-ku, Tokyo, Japan 153-0051 Phone: 81-3-5773-3850

ON Semiconductor Website: http://onsemi.com

Order Literature: http://www.onsemi.com/litorder

For additional information, please contact your local Sales Representative.