

UMIL 25

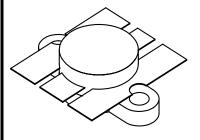
25 Watts, 28 Volts, Class AB Defcom 225 - 400 MHz

GENERAL DESCRIPTION

The UMIL 25 is an input matched COMMON EMITTER broadband transistor specifically intended for use in the 225-400 MHz frequency band. It may be operated in Class AB or C. Gold metallization and silicon diffused resistors ensure ruggedness and high reliability.

ABSOLUTE MAXIMUM RATINGS

Maximum Power Dissipation @ 25°C 70 Watts

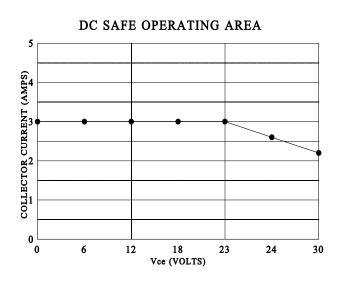

Maximum Voltage and Current

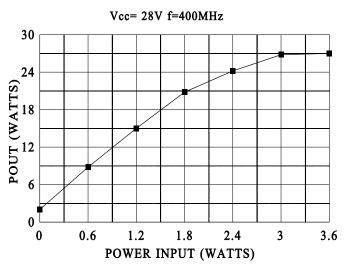
BVces Collector to Emitter Voltage 60 Volts
BVebo Emitter to Base Voltage 4.0 Volts
Ic Collector Current 3 A

Maximum Temperatures

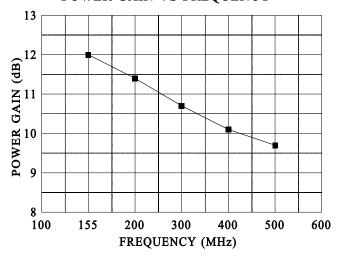
Storage Temperature - 65 to +150°C Operating Junction Temperature +200°C

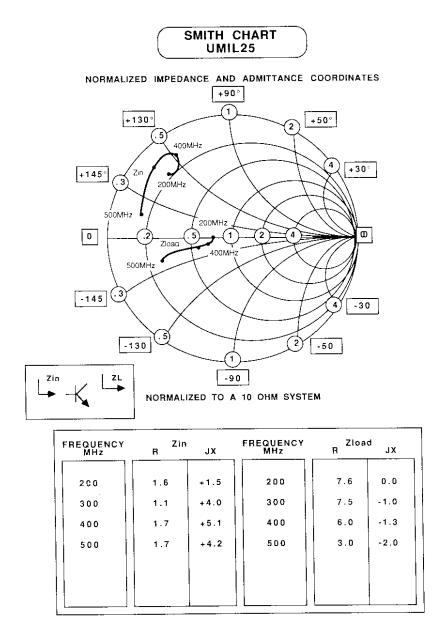
CASE OUTLINE 55HV, Style 2

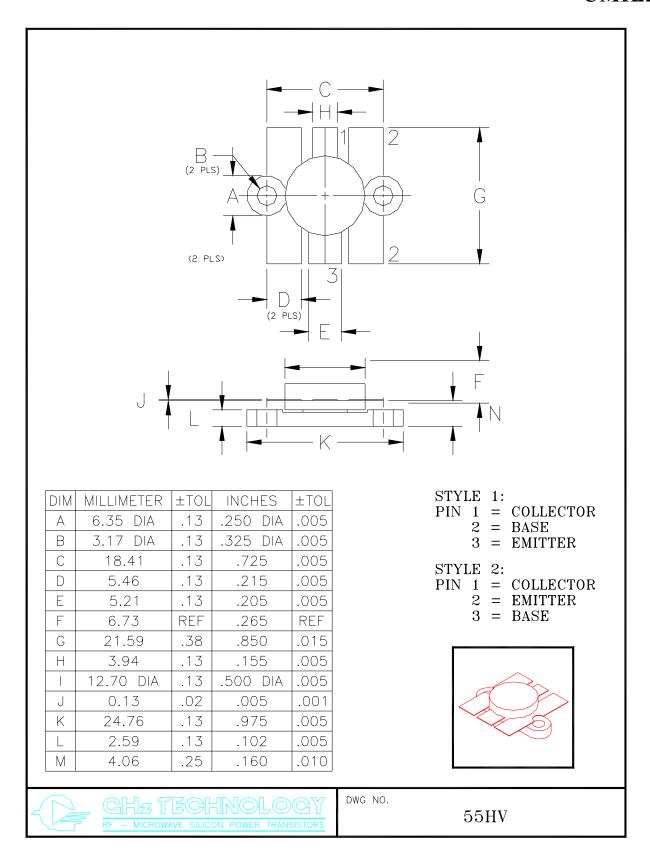

ELECTRICAL CHARACTERISTICS @ 25 °C


SYMBOL	CHARACTERISTICS	TEST CONDITIONS	MIN	TYP	MAX	UNITS
P_{OUT}	Power Output	F = 400 MHz	25			W
P_{IN}	Power Input	$V_{cc} = 28 \text{ Volts}$			3.2	W
P_G	Power Gain		8.9	10		dB
η_c	Collector Efficiency			50		%
VSWR	Load Mismatch Tolerance ¹				5:1	

BV_{EBO}	Emitter to Base Breakdown	Ie = 5 mA	4.0			Volts
BV_{CES}	Collector to Emitter Breakdown	Ic = 50 mA	65			Volts
BV_{CEO}	Collector to Emitter Breakdown	Ie = 50 mA	33			Volts
h_{FE}	DC - Current Gain	Ic = 0.5 A, Vce = 5 V	10			
θjc ¹	Thermal Resistance				2.5	°C/W
Cob	Output Capacitance	Vcb = 28 V, F = 1 MHz		22	27	pF
I_{EBO}	Emitter to Base Leakage	Veb = 2 V			2	mA
I_{CBO}	Collector to Base Leakage	Vcb = 20 V			2	mA


Rev. A - Apr 2004


POWER OUTPUT vs POWER INPUT



POWER GAIN VS FREQUENCY

