General Description

The MAX791 microprocessor (µP) supervisory circuit reduces the complexity and number of components needed to monitor power-supply and battery-control functions in µP systems. The 50µA supply current makes the MAX791 ideal for use in portable equipment, while the 6ns chip-enable propagation delay and 250mA output capability (25mA in battery-backup mode) make it suitable for larger, higher-performance equipment.

The MAX791 comes in 16-pin DIP, TSSOP, and narrow SO packages and provides the following functions:

- uP reset. RESET output is asserted during power-up, power-down, and brownout conditions, and is guaranteed to be in the correct state for V_{CC} down to 1V, even with no battery in the circuit.
- Manual-reset input.
- A 1.25V threshold detector provides for power-fail warning and low-battery detection, or monitors a power supply other than +5V.
- Two-stage power-fail warning. A separate low-line comparator compares VCC to a threshold 150mV above the reset threshold.
- Backup-battery switchover for CMOS RAM, real-time clocks, µPs, or other low-power logic.
- Software monitoring of backup-battery voltage.
- A watchdog-fault output is asserted if the watchdog input has not been toggled within either a preset or an adjustable timeout period.
- Write protection of CMOS RAM or EEPROM.
- Pulsed watchdog output to give advance warning of

imponding WDO coortion caused by ustables timeout Puised watchdog output to give advance warning of
impending WDO assertion caused by watchdog timeout.

Applications

Controllers **Intelligent Instruments** Portable/Battery-Powered Equipment

Computers Critical µP Power Monitoring

MaxCap is a registered trademark of Cesiwid Inc. SuperCap is a registered trademark of Baknor Industries.

1-888-629-4642, or visit Maxim's website at www.maxim-ic.com.

/VI A XI*/V*I

__ Maxim Integrated Products 1

For pricing, delivery, and ordering information, please contact Maxim/Dallas Direct! at

Features

- ♦ **Precision 4.65V Voltage Monitoring**
- ♦ **200ms Power-OK/Reset Time Delay**
- ♦ **Independent Watchdog Timer—Preset or Adjustable**
- ♦ **1µA Standby Current**
- ♦ **Power Switching**
	- **250mA Output in V_{CC} Mode 25mA Output in Battery-Backup Mode**
- ♦ **On-Board Gating of Chip-Enable Signals Memory Write-Cycle Completion 6ns CE Gate Propagation Delay**
- ♦ **MaxCap or SuperCap Compatible**
- ♦ **Voltage Monitor for Power-Fail or Low-Battery Warning**
- ♦ **Backup-Battery Monitor**
- ◆ Guaranteed RESET Valid to V_{CC} = 1V

Ordering Information

* Dice are specified at $T_A = +25^{\circ}C$.

Devices in PDIP, SO and TSSOP packages are available in both leaded and lead-free packaging. Specify lead free by adding the $+$ symbol at the end of the part number when ordering. Lead free not available for CERDIP package.

Typical Operating Circuit

ABSOLUTE MAXIMUM RATINGS

Input Voltage (with respect to GND)

Stresses beyond those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

ELECTRICAL CHARACTERISTICS

(V_{CC} = 4.75V to 5.5V, VBATT = 2.8V, T_A = T_{MIN} to T_{MAX} , unless otherwise noted.)

MAX79

ELECTRICAL CHARACTERISTICS (continued)

(V $_{\rm CC}$ = 4.75V to 5.5V, VBATT = 2.8V, T $_{\rm A}$ = T $_{\rm MIN}$ to T $_{\rm MAX}$, unless otherwise noted.)

ELECTRICAL CHARACTERISTICS (continued)

(V_{CC} = 4.75V to 5.5V, VBATT = 2.8V, T_A = T_{MIN} to T_{MAX} , unless otherwise noted.)

Note 1: Either V_{CC} or VBATT can go to 0V, if the other is greater than 2.0V.

Note 2: The supply current drawn by the MAX791 from the battery (excluding I_{OUT}) typically goes to 10µA when

(VBATT - 1V) < V_{CC} < VBATT. In most applications, this is a brief period as V_{CC} falls through this region.

Note 3: "+" = battery-discharging current, "-" = battery-charging current.

- **Note 4:** WDI is internally connected to a voltage-divider between V_{OUT} and GND. If unconnected, WDI is driven to 1.6V (typ), disabling the watchdog function.
- **Note 5:** The chip-enable resistance is tested with $V_{CC} = 4.75V$ V \overline{CE} IN = V \overline{CE} OUT = V_{CC} / 2.

Note 6: The chip-enable propagation delay is measured from the 50% point at $\overline{\text{CE}}$ IN to the 50% point at $\overline{\text{CE}}$ OUT.

Typical Operating Characteristics

 $(T_A = +25^{\circ}C,$ unless otherwise noted.)

MAXIM

MAX791

NAX791

$(T_A = +25^{\circ}C,$ unless otherwise noted.) CHIP-ENABLE PROPAGATION DELAY BATTERY CURRENT WATCHDOG TIMEOUT vs. TIMING CAPACITOR vs. INPUT SUPPLY VOLTAGE vs. CE OUT LOAD CAPACITANCE 20 250 20 MAX791-12 MAX791-11 **AX79** 16 200 16 WATCHDOG TIMEOUT (ms) WATCHDOG TIMEOUT (ms) PROPAGATION DELAY (ns) PROPAGATION DELAY (ns) IBATT (µA) 12 150 12 8 100 8 V_{CC} = +5V
CE IN = 0V TO 5V 4 50 DRIVER SOURCE 4 $VBATT = 2.8V$ V_{CC} = +5V IMPEDANCE = 50Ω $I_{OUT} = 0A$ $V\widetilde{B}ATT = 2.8V$ $\boldsymbol{0}$ $\boldsymbol{0}$ 0 0 50 100 150 200 250 300 0 10 20 30 40 50 60 70 80 90 100 0 1 2 3 4 1 5 $V_{CC} (V)$ TIMING CAPACITOR (nF) C_L _{OAD} (pF)

Typical Operating Characteristics (continued)

VCC - VOUT (mV)

 $V_{CC} - V_{OUT}$ (mV)

MAX791

Pin Description

_______________Detailed Description

Manual Reset Input

Many µP-based products require manual-reset capability, allowing the operator or test technician to initiate a reset. The Manual Reset Input (MR) can be connected directly to a switch, without an external pull-up resistor or debouncing network. It connects to a 1.25V comparator, and has a pull-up to V_{OUT} as shown in Figure 1. The propagation delay from asserting MR to RESET asserted is 4µs typ. Pulsing MR low for a minimum of 15µs resets all the internal counters, sets the Watchdog Output (WDO) and Watchdog-Pulse Output (WDPO)

Figure 2. Manual-Reset Timing Diagram

Figure 3. Diode "OR" Connections Allow Multiple Reset Sources to Connect to MR

high, and sets the Set Watchdog-Timeout (SWT) input to V_{OUT} - 0.6V, if it is not already connected to V_{OUT} (for internal timeouts). It also disables the chip-enable function, setting the Chip-Enable Output (CE OUT) to a high state. The RESET output remains active as long as MR is held low, and the reset-timeout period begins after MR returns high (Figure 2).

Use this input as either a digital-logic input or a second low-line comparator. Normal TTL/CMOS levels can be wire-OR connected via pull-down diodes (Figure 3), and open-drain/collector outputs can be wire-ORed directly.

Figure 4. Adding an External Pull-Down Resistor Ensures **RESET** is Valid with V_{CC} Down to GND

RESET Output

The MAX791's RESET output ensures that the uP powers up in a known state, and prevents code-execution errors during power-down or brownout conditions.

The RESET output is active low, and typically sinks 3.2mA at 0.1V saturation voltage in its active state. When deasserted, RESET sources 1.6mA at typically VOUT - 0.5V. When no backup battery is used, RESET output is guaranteed to be valid down to $V_{CC} = 1V$, and an external 10kΩ pull-down resistor on RESET ensures that RESET will be valid with VCC down to GND (Figure 4). As V_{CC} goes below 1V, the gate drive to the RESET output switch reduces accordingly, increasing the rDS(ON) and the saturation voltage. The 10k Ω pull-down resistor ensures the parallel combination of switch plus resistor is around 10kΩ and the output saturation voltage is below 0.4V while sinking 40µA. When using a 10kΩ external pull-down resistor, the high state for the RESET output with $V_{CC} = 4.75V$ is 4.5V typ. For battery voltages ≥ 2V connected to VBATT, RESET remains valid for V_{CC} from 0V to 5.5V.

RESET will be asserted during the following conditions:

- V_{CC} < 4.65V (typ).
- $MR < 1.25V$ (typ).
- RESET remains asserted for 200ms (typ) after V_{CC} rises above 4.65V or after MR has exceeded 1.25V.

The MAX791 battery-switchover comparator does not affect RESET assertion. However, RESET is asserted in battery-backup mode since V_{CC} must be below the reset threshold to enter this mode.

Watchdog Function

The watchdog monitors μ P activity via the Watchdog Input (WDI). If the µP becomes inactive, WDO and WDPO are asserted. To use the watchdog function, connect WDI to a bus line or µP I/O line. If WDI remains

MAXM

high or low for longer than the watchdog timeout period (1.6s nominal), WDPO and WDO are asserted, indicating a software fault condition (see Watchdog Output and Watchdog-Pulse Output sections).

Watchdog Input

A change of state (high to low, low to high, or a minimum 100ns pulse) at WDI during the watchdog period resets the watchdog timer. The watchdog default timeout is 1.6s. Select alternative timeout periods by connecting an external capacitor from SWT to GND (see Selecting an Alternative Watchdog Timeout Period section).

To disable the watchdog function, leave WDI floating. An internal resistor network (100kΩ equivalent impedance at WDI) biases WDI to approximately 1.6V. Internal comparators detect this level and disable the watchdog timer. When V_{CC} is below the reset threshold, the watchdog function is disabled and WDI is disconnected from its internal resistor network, thus becoming high impedance.

Watchdog Output

WDO remains high if there is a transition or pulse at WDI during the watchdog-timeout period. The watchdog function is disabled and WDO is a logic high when V_{CC} is below the reset threshold, battery-backup mode is enabled, or WDI is an open circuit. In watchdog mode, if no transition occurs at WDI during the watchdog-timeout period, WDO goes low 70ns after the falling edge of WDPO and remains low until the next transition at WDI (Figure 5). A flip-flop can force the system into a hardware shutdown if there are two successive watchdog faults (Figure 6). WDO has a 2 x TTL output characteristic.

Figure 5. WDI, WDO, and WDPO Timing Diagram (Vcc Mode)

MAX79

Figure 6. Two Consecutive Watchdog Faults Latch the System in Reset

Watchdog-Pulse Output

As described in the preceding section, WDPO can be used as the clock input to an external D flip-flop. Upon the absence of a watchdog edge or pulse at WDI at the end of a watchdog-timeout period, WDPO will pulse low for 1ms. The falling edge of WDPO precedes WDO by 70ns. Since WDO is high when WDPO goes low, the flip-flop's Q output remains high as WDO goes low (Figure 5). If the watchdog timer is not reset by a transition at WDI, WDO remains low and WDPO clocks a logic low to the Q output, causing the MAX791 to latch in reset. If the watchdog timer is reset by a transition at WDI, WDO goes high and the flip-flop's Q output remains high. Thus, a system shutdown is only caused by two successive watchdog faults.

The internal pull-up resistors associated with WDO and WDPO connect to VOUT. Therefore, do not connect these outputs directly to CMOS logic that is powered from V_{CC} since, in the absence of V_{CC} (i.e., battery mode), excessive current will flow from WDO or WDPO through the protection diode(s) of the CMOSlogic inputs to ground.

Selecting an Alternative Watchdog-Timeout Period

SWT input controls the watchdog-timeout period. Connecting SWT to VOUT selects the internal 1.6s watchdog-timeout period. Select an alternative timeout period by connecting a capacitor between SWT and GND. Do not leave SWT floating, and do not connect it to ground. The following formula determines the watchdog-timeout period:

Watchdog-timeout period $= 2.1 \times$ (capacitor value in nF) ms

This formula is valid for capacitance values between 4.7nF and 100nF (see the Watchdog Timeout vs. Timing Capacitor graph in the Typical Operating Characteristics). SWT is internally connected to a ±100nA (typ) current source, which charges and discharges the timing capacitor to create the oscillator frequency that sets the watchdog-timeout period (see Connecting a Timing Capacitor to SWT section).

Chip-Enable Signal Gating

The MAX791 provides internal gating of chip-enable (CE) signals to prevent erroneous data from corrupting the CMOS RAM in the event of a power failure. During normal operation, the CE gate is enabled and passes all CE transitions. When reset is asserted, this path becomes disabled, preventing erroneous data from corrupting the CMOS RAM. The MAX791 uses a series transmission gate from the Chip-Enable Input (CE IN) to CE OUT (Figure 1).

The 10ns max CE propagation from CE IN to CE OUT

Figure 7. Reset and Chip-Enable Timing

enables the MAX791 to be used with most μ Ps.

Chip-Enable Input

CE IN is high impedance (disabled mode) while RESET is asserted.

During a power-down sequence where V_{CC} passes 4.65V, CE IN assumes a high-impedance state when the voltage at CE IN goes high or 15µs after reset is asserted, whichever occurs first (Figure 7).

During a power-up sequence, CE IN remains high impedance, regardless of CE IN activity, until reset is deasserted following the reset-timeout period.

In the high-impedance mode, the leakage currents into this input are $\pm 1\mu A$ max over temperature. In the lowimpedance mode, the impedance of CE IN appears as a 75Ω resistor in series with the load at CE OUT.

The propagation delay through the CE transmission gate depends on both the source impedance of the drive to CE IN and the capacitive loading on CE OUT (see the Chip-Enable Propagation Delay vs. CE OUT Load Capacitance graph in the Typical Operating Characteristics). The CE propagation delay is production tested from the 50% point on CE IN to the 50% point on CE OUT using a 50Ω driver and 50pF of load capacitance (Figure 8). For minimum propagation delay, minimize the capacitive load at CE OUT and use

Figure 8. CE Propagation Delay Test Circuit

a low output-impedance driver.

Chip-Enable Output

MAX791

LGZXVM

In the enabled mode, the impedance of CE OUT is equivalent to 75Ω in series with the source driving CE IN. In the disabled mode, the 75Ω transmission gate is off and CE OUT is actively pulled to V_{OUT} . This source turns off when the transmission gate is enabled.

LOWLINE Output

The low-line comparator monitors V_{CC} with a typical threshold voltage 150mV above the reset threshold, and has 15mV of hysteresis. LOWLINE typically sinks 3.2mA at 0.1V. For normal operation (Vcc above the LOWLINE threshold), LOWLINE is pulled to VOUT. If access to the unregulated supply is unavailable, use LOWLINE to provide a nonmaskable interrupt (NMI) to the µP as V_{CC} begins to fall (Figure 9a).

Power-Fail Comparator

The power-fail comparator is an uncommitted comparator that has no effect on the other functions of the IC. Common uses include monitoring supplies other than 5V (see the Typical Operating Circuit and the Monitoring a Negative Voltage section) and early power-fail detection when the unregulated power is easily accessible (Figure 9b).

MAXM

Figure 9. a) If the unregulated supply is inaccessible, LOWLINE generates the NMI for the µP. b) Use PFO to generate the µP NMI if the unregulated supply is inaccessible.

Power-Fail Input

PFI is the input to the power-fail comparator. PFI has a guaranteed input leakage of ±25nA max over temperature. The typical comparator delay is 15 μ s from V_{IL} to VOL (power failing), and 55µs from VIH to VOH (power being restored). If unused, connect this input to ground.

Power-Fail Output

The Power-Fail Output (PFO) goes low when PFI goes below 1.25V. It typically sinks 3.2mA with a saturation voltage of 0.1V. With PFI above 1.25V, PFO is actively pulled to VOUT. Connecting PFI through a voltagedivider to an unregulated supply allows PFO to generate an NMI as the unregulated power begins to fall (Figure 9b). If the unregulated supply is inaccessible,

Table 1. Input and Output States in Battery-Backup Mode

PIN	NAME	STATUS
1	VBATT	Supply current is 1µA maximum.
2	VOUT	VOUT is connected to VBATT through an internal PMOS switch.
3	Vcc	Battery-switchover comparator monitors V _{CC} for active switchover.
$\overline{4}$	GND	GND-OV reference for all signals.
5	BATT ON	Logic high. The open-circuit output is equal to VOUT.
6	PFO	The power-fail comparator remains active in the battery-backup mode for $V_{CC} \geq VBATT - 1.2V$ typ. Below this voltage, PFO is forced low.
$\overline{7}$	PFI	The power-fail comparator remains active in the battery-backup mode for $V_{CC} \geq VBAT - 1.2V$ typ.
8	SWT	SWT is ignored.
9	MR	MR is ignored.
10	LOWLINE	Logic low*
11	WDI	WDI is ignored, and goes high impedance.
12	CE OUT	Logic high. The open-circuit output voltage is equal to VOUT.
13	CE IN	High impedance
14	WDO	Logic high. The open-circuit output voltage is equal to VOUT.
15	RESET	Logic low*
16	WDPO	Logic high. The open-circuit output voltage is equal to VOUT.

^{*} VCC must be below the reset threshold to enter batterybackup mode.

use LOWLINE to generate the NMI. The LOWLINE threshold is typically 150mV above the reset threshold (see LOWLINE Output section).

Battery-Backup Mode

The MAX791 requires two conditions to switch to battery-backup mode: 1) V_{CC} must be below the reset threshold; 2) V_{CC} must be below VBATT. Table 1 lists the status of the inputs and outputs in battery-backup mode.

200ms TYP RESET **THRESHOLD** VCC **RESE** CE IN CE OUT SECOND CE PULSE ABSENT WHEN VBATT < 2V

Figure 10. V_{CC} and VBATT-to-V_{OUT} Switch

Figure 11. Backup-Battery Monitor Timing Diagram

Battery On Output

The Battery On (BATT ON) output indicates the status of the internal V_{CC}/battery-switchover comparator, which controls the internal V_{CC} and VBATT switches. For V_{CC} greater than VBATT (ignoring the small hysteresis effect), BATT ON typically sinks 3.2mA at 0.1V saturation voltage. In battery-backup mode, this terminal sources approximately 10µA from VOUT. Use BATT ON to indicate battery-switchover status or to supply base drive to an external pass transistor for higher-current applications (see Typical Operating Circuit).

Input Supply Voltage

The Input Supply Voltage (V_{CC}) should be a regulated $+5V$. VCC connects to VOUT via a parallel diode and a large PMOS switch. The switch carries the entire current load for currents less than 250mA. The parallel diode carries any current in excess of 250mA. Both the switch and the diode have impedances less than 1Ω each (Figure 10). The maximum continuous current is 250mA, but power-on transients may reach a maximum of 1A.

Backup-Battery Input

The Backup-Battery Input (VBATT) is similar to VCC, except the PMOS switch and parallel diode are much smaller. Accordingly, the on-resistances of the diode and the switch are each approximately 10 Ω . Continuous current should be limited to 25mA and peak currents (only during power-up) limited to 250mA. The

reverse leakage of this input is less than 1µA over temperature and supply voltage.

Output Supply Voltage

MAX791

ASZXAM

The Output Supply Voltage (VOUT) is internally connected to the substrate of the IC and supplies all the current to the external system and internal circuitry. All opencircuit outputs will, for example, assume the VOUT voltage in their high states rather than the V_{CC} voltage. At the maximum source current of $250mA$, V_{OUT} will typically be 200mV below V_{CC}. Decouple this terminal with a 0.1µF capacitor.

Low-Battery Monitor

The MAX791 low-battery voltage function monitors VBATT. Low-battery detection of $2.0V$ \pm 0.15V is monitored only during the reset-timeout period (200ms) that occurs either after a normal power-up sequence or after the MR reset input has been returned to its high state. If the battery voltage is below 2.0V, the second CE pulse is inhibited after reset timeout. If the battery voltage is above 2.0V, all CE pulses are allowed through the CE gate after the reset timeout period. To use this function, after the 200ms reset delay, write 00 (HEX) to a location using the first CE pulse, and write FF (HEX) to the same location using the second CE pulse following RESET going inactive on power-up. The contents of the memory then indicates a good battery (FF) or a low battery (00) (Figure 11).

Figure 12. SuperCap or MaxCap on VBATT

Applications Information

The MAX791 is not short-circuit protected. Shorting VOUT to ground, other than power-up transients such as charging a decoupling capacitor, destroys the device.

All open-circuit outputs swing between VOUT and GND rather than V_{CC} and GND.

If long leads connect to the chip inputs, ensure that these lines are free from ringing and other conditions that would forward bias the chip's protection diodes.

There are three distinct modes of operation:

- 1) Normal operating mode with all circuitry powered up. Typical supply current from V_{CC} is 60µA, while only leakage currents flow from the battery.
- 2) Battery-backup mode where V_{CC} is typically within 0.7V below VBATT. All circuitry is powered up and the supply current from the battery is typically less than 60µA.
- 3) Battery-backup mode where V_{CC} is less than VBATT by at least 0.7V. VBATT supply current is less than 1µA max.

Using SuperCaps or MaxCaps with the MAX791

VBATT has the same operating voltage range as Vcc, and the battery-switchover threshold voltages are typically ±30mV centered at VBATT, allowing use of a SuperCap and a simple charging circuit as a backup source (Figure 12).

If V_{CC} is above the reset threshold and VBATT is 0.5V above V_{CC}, current flows to V_{OUT} and V_{CC} from VBATT until the voltage at VBATT is less than 0.5V above VCC. For example, with a SuperCap connected to VBATT and through a diode to V_{CC}, if V_{CC} quickly changes from 5.4V to 4.9V, the capacitor discharges through VOUT and VCC until VBATT reaches 5.3V typ. Leakage current through the SuperCap charging diode and MAX791 internal power diode eventually discharges the SuperCap to V_{CC}. Also, if V_{CC} and VBATT start from 0.5V above the reset threshold and power is lost at V_{CC}, the SuperCap on VBATT discharges through V_{CC} until VBATT reaches the reset threshold; the MAX791 then switches to battery-backup mode and the current through V_{CC} goes to zero (Figure 10).

Using Separate Power Supplies for **VBATT** and **VCC**

If using separate power supplies for V_{CC} and VBATT, VBATT must be less than 0.3V above V_{CC} when V_{CC} is above the reset threshold. As described in the previous section, if VBATT exceeds this limit and power is lost at V_{CC}, current flows continuously from VBATT to V_{CC} via the VBATT-to-VOUT diode and the VOUT-to-VCC switch until the circuit is broken (Figure 10).

Alternative Chip-Enable Gating

Using memory devices with CE and CE inputs allows the MAX791 CE loop to be bypassed. To do this, connect CE IN to ground, pull up CE OUT to VOUT, and connect CE OUT to the CE input of each memory device (Figure 13). The CE input of each part then connects directly to the chip-select logic, which does not have to be gated by the MAX791.

Adding Hysteresis to the Power-Fail Comparator

Hysteresis adds a noise margin to the power-fail comparator and prevents repeated triggering of PFO when VIN is near the power-fail comparator trip point. Figure 14 shows how to add hysteresis to the power-fail comparator. Select the ratio of R1 and R2 so that PFI sees 1.25V when VIN falls to the desired trip point (VTRIP). Resistor R3 adds hysteresis. It will typically be an order of magnitude greater than R1 or R2. The current through R1 and R2 should be at least 1µA to ensure that the 25nA (max) PFI input current does not shift the trip point. R3 should be larger than $10kΩ$ to prevent it from loading down the PFO pin. Capacitor C1 adds additional noise rejection.

Figure 13. Alternate CE Gating

Monitoring a Negative Voltage

The power-fail comparator can be used to monitor a negative supply voltage using Figure 15's circuit. When the negative supply is valid, PFO is low. When the negative supply voltage drops, PFO goes high. This circuit's accuracy is affected by the PFI threshold tolerance, the V_{CC} voltage, and resistors R1 and R2.

Backup-Battery Replacement

The backup battery may be disconnected while VCC is above the reset threshold. No precautions are necessary to avoid spurious reset pulses.

Negative-Going VCC Transients

While issuing resets to the uP during power-up, powerdown, and brownout conditions, these supervisors are relatively immune to short-duration negative-going V_{CC} transients (glitches). It is usually undesirable to reset the uP when V_{CC} experiences only small glitches.

Figure 16 shows maximum transient duration vs. reset comparator overdrive, for which reset pulses are not generated. The graph was produced using negative-

Figure 14. Adding Hysteresis to the Power-Fail Comparator

going VCC pulses, starting at 5V and ending below the reset threshold by the magnitude indicated (reset comparator overdrive). The graph shows the maximum pulse width that a negative-going V_{CC} transient may typically have without causing a reset pulse to be issued. As the amplitude of the transient increases (i.e., goes farther below the reset threshold), the maximum allowable pulse width decreases. Typically, a V_{CC} transient that goes 100mV below the reset threshold and lasts for 40µs or less will not cause a reset pulse to be issued.

A 100nF bypass capacitor mounted close to the V_{CC} pin provides additional transient immunity.

Connecting a Timing Capacitor to SWT

SWT is internally connected to a \pm 100nA current source. When a capacitor is connected from SWT to ground (to select an alternative watchdog-timeout period), the current source charges and discharges the timing capacitor to create the oscillator that controls the watchdog-timeout period. To prevent timing errors or oscillator start-up problems, minimize external current leakage sources at this pin, and locate the capacitor as

MAX791

ARTIX791

Figure 15. Monitoring a Negative Voltage

close to SWT as possible. The sum of PC board leakage + SWT capacitor leakage must be small compared to \pm 100nA.

Watchdog Software Considerations

A way to help the watchdog timer keep a closer watch on software execution involves setting and resetting the watchdog input at different points in the program, rather than "pulsing" the watchdog input high-low-high or low-high-low. This technique avoids a "stuck" loop where the watchdog timer continues to be reset within the loop, keeping the watchdog from timing out.

Figure 17 shows an example flow diagram where the I/O driving the watchdog input is set high at the beginning of the program, set low at the beginning of every subroutine or loop, then set high again when the pro-

Figure 16. Maximum Transient Duration Without Causing a Reset Pulse vs. Reset Comparator Overdrive

gram returns to the beginning. If the program should "hang" in any subroutine, the I/O is continually set low and the watchdog timer is allowed to time out, causing a reset or interrupt to be issued.

Maximum V_{CC} Fall Time

The V_{CC} fall time is limited by the propagation delay of the battery switchover comparator and should not exceed 0.03V/µs. A standard rule of thumb for filter capacitance on most regulators is on the order of 100µF per amp of current. When the power supply is shut off or the main battery is disconnected, the associated initial V_{CC} fall rate is just the inverse or 1A / 100µF $= 0.01$ V/µs. The V_{CC} fall rate decreases with time as V_{CC} falls exponentially, which more than satisfies the maximum fall-time requirement.

GND

VCC

Figure 17. Watchdog Flow Diagram

(2.794mm) CE OUT BATT ON PFO w **WDI** 汗渠河 v. **SWTPFI MR LOWLINE 0.07" (1.778mm)**

VOUT VBATT WDPO

TRANSISTOR COUNT: 729 SUBSTRATE CONNECTED TO VOUT

RESET

Chip Topography

WDO CE IN

0.11"

Package Information

(The package drawing(s) in this data sheet may not reflect the most current specifications. For the latest package outline information, go to **www.maxim-ic.com/packages**.)

Package Information (continued)

(The package drawing(s) in this data sheet may not reflect the most current specifications. For the latest package outline information, go to **www.maxim-ic.com/packages**.)

Maxim cannot assume responsibility for use of any circuitry other than circuitry entirely embodied in a Maxim product. No circuit patent licenses are implied. Maxim reserves the right to change the circuitry and specifications without notice at any time.

19 ____________________________Maxim Integrated Products, 120 San Gabriel Drive, Sunnyvale, CA 94086 (408) 737-7600

© 2005 Maxim Integrated Products Printed USA **MAXIM** is a registered trademark of Maxim Integrated Products, Inc.