

THC7984

10-bit 3-channel Video Signal Digitizer

General Description

The THC7984 integrates all the functions to digitize analog video signals on a single chip.

Acceptable Signals

PC Graphics (RGB) : VGA-UXGA

- Separate Sync
- Composite Sync
- Sync on Green

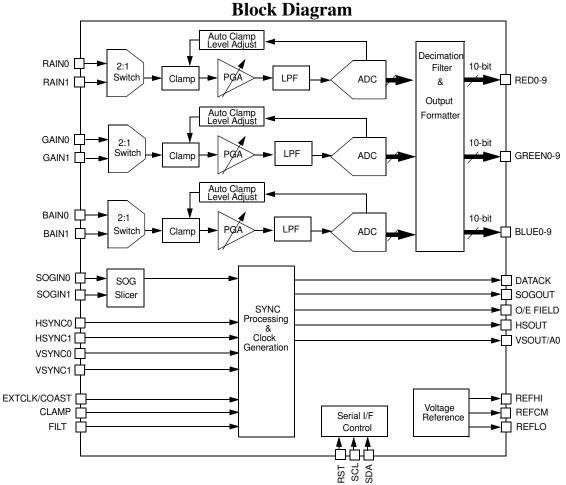
Component Video (YPbPr):

- SDTV (480i / 480p) 2-level Sync
- HDTV (1080i / 720p / 1080p) 3-level Sync
- Protection Signal

Applications

LCD TV / PDP TV Rear-Projection TV LCD Display / PDP Display Front Projector etc.

Features


- 170 MSPS 10-bit ADC
- Internal 14-bit ADCs
- Oversampling functions (2x, 4x, and 8x)
- Line-locked PLL with low jitter
- Phase adjustment: 64 steps

Fine clamp / preamp

- Pedestal / center clamp
- Clamp level auto adjust
- Very low gain mismatch
- Gain adjustment: 2048 steps
- Video Filter (LPF)
- Bandwidth adjustment: 28 steps (6MHz 310MHz)

Sync Processor

- 2-level / 3-level sync slicer
- Advanced sync detection / measurement
- Automatic sync processing mode
- IRQ Output
- 2-wire serial interface
- LQFP 80-pin package

Specifications

VD=1.8V, VDD=3.3V, PVD=1.8V, DAVDD=1.8V, ADC Clock=Maximum Conversion Rate, Full Temperature Range=0° C to 70° C Analog Input Voltage=0.5 to 1.0Vpp

		T	Test	THC	7984-17	7	ي: ما ا
	Parameter	Temp	Level	Min	Тур	Max	Unit
RESOLUTION	Number of Bits				10		Bits
	LSB Size				0.098		%FS
DC ACCURACY	Differential Nonlinearity	25° C	I		± 0.75		LSB
		Full	VI			-1.0/+1.25	LSB
	Integral Nonlinearity	25° C	I		± 1.5	<u>± 3</u>	LSB
	No Mississ Octo	Full	VI		<u> </u>	± 4	LSB
ANALOG INPUT	No Missing Code Minimum Input Voltage	25°C Full	I VI	G	uarante		V a a
ANALUG INPUT	Maximum Input Voltage	Full	VI	1.0		0.5	V p-p V p-p
	Gain Tempco	25° C	V	1.0	100		ppm/°C
	Input Bias Current ^{*1}	25° C	ĪV		100	1	μΑ
	Input Blas Current	Full	IV			1	μΑ
	Input Offset Voltage	Full	VI		± 1		LSB
	Input Full-Scale Matching	Full	VI		0.2	0.8	%
	Between Channels	Full	V I		0.2	0.8	70
	Offset Adjustment Range	Full	VI		50		%FS
SWITCHING	Maximum Conversion Rate	Full	VI	170			MSPS
PERFORMANCE	Minimum Conversion Rate	Full	IV			10	MSPS
	Data Setup Time to Clock ^{*2}	Full	IV	0.48Tpixel-2.1			ns
	Data Hold Time to Clock ^{*2}	Full	IV	0.48Tpixel-0.4			ns
	Duty Cycle, DATACK *2	Full	IV	40	50	60	%
	HSYNC Input Frequency	Full	IV	15		110	kHz
	Maximum PLL Clock Rate	Full	VI	170			MHz
	Minimum PLL Clock Rate	Full	IV			10	MHz
	PLL Jitter *3	25° C	V		500		ps p-p
	Sampling Phase Tempco	Full	IV		15		ps∕°C
2-WIRE SERIAL	SCL Clock Frequency(fSCL)	Full	IV			100	kHz
INTERFACE	tBUFF	Full	IV	4.7			μs
	tSTAH	Full	IV	4.0			μs
	tDHO	Full	IV	0		3.45	μs
	tDAL	Full	IV	4.7			μs
	tDAH	Full	IV	4.0			μs
	tDSU tSTASU	Full Full	IV IV	<u>250</u> 4.7			ns
	tSTASU	Full	IV	4.0			µs µs
	Tr	Full	IV	4.0		1000	µs ns
	Tf	Full	IV			150	ns
	Capacitive Load (Cb)	Full	IV			400	pF
	Noise margin at the LOW level (VnL)	Full	IV	0.2			V
	Noise margin at the HIGH level (VnH)	Full	IV	0.25			V
DIGITAL INPUTS	Input Voltage, High (VIH)	Full	VI	1.4			V
	Input Voltage, Low (VIL)	Full	VI			0.8	V
	Input Current, High (IIH)	Full	V			10	μA
	Input Current, Low (IIL)	Full	V			10	μA
	Input Capacitance	25° C	V		2		рF
DIGITAL OUTPUTS	Output Voltage, High (VOH)	Full	VI	VDD-0.2			V
	Output Voltage, Low (VOL)	Full	VI			0.2	V
	Output Coding			· -	Binary		
POWER SUPPLY	VD Supply Voltage	Full	IV	1.7	1.8	1.9	V
	VDD Supply Voltage	Full	IV	2.3	3.3	3.45	V
	PVD Supply Voltage	Full	IV IV	<u>1.7</u> 1.7	1.8 1.8	1.9	V V
	DAVDD Supply Voltage ID Supply Current (VD)	Full 25°C	V	1.7	1.8	1.9 295	•
							m A
	IDD Supply Current (VDD) *4	25°C 25°C	V V			180 30	m A
	IPVD Supply Current (PVD) IDAVDD Supply Current (DAVDD)	25 C 25° C	V			<u>30</u> 65	m A m A
	Total Power Dissipation	Z5 C Full	VI			1350	m A m W
	Power-Down Supply Current	Full	VI		10	20	m vv m A
	Power-Down Dissipation	Full	VI		20	40	mW
THERMAL	Operating Ambient Temperature	1 011	IV	0	20	70	°C
CHARACTERISTICS	θ JC Junction-to-Case Thermal Resistance	25° C	V	Ŭ	4		° C/W
	θ JA Junction-to-Ambient Thermal Resistance	25° C	V		37		° C/W
	i nermai Resistance						

*1 Input Bias Voltage: 0.05V to VD-0.05V *2 See "Data/Clock Output Test Condition". *3 THC7984-17: UXGA@60Hz

*4 Output Load Capacitance per Pin: 15pF

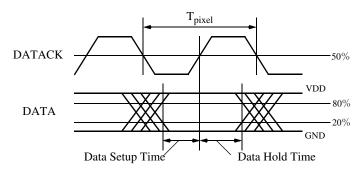
EXPLANATION OF TEST LEVELS

Test Level

I. 100% production tested.

II. 100% production tested at +25° C and sample tested at specified temperatures.

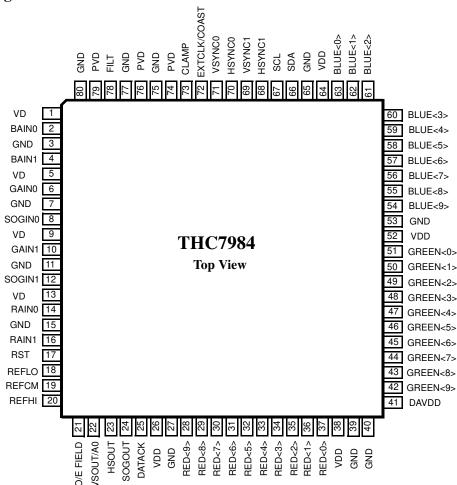
III. Sample tested only.


IV. Parameter is guaranteed by design and characterization testing.

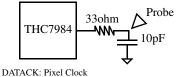
V. Parameter is a typical value only.
 VI. 100% production tested at +25° C; guaranteed by design and characterization testing.

Copyright©2013 THine Electronics, Inc.

< Data Setup/Hold Time to Clock >



Absolute Maximum Ratings


Parameter	Min	Max	Unit
VD		2.1	V
VDD		3.8	V
PVD		2.1	V
DAVDD		2.1	V
Analog Inputs	-0.2	VD+0.2 or 2.1 *1	V
Digital Inputs	-0.3	PVD+3.6 or 5.5V *1	V
Storage Temperature	-55	150	°C
Maximum Junction Temperature		125	°C

*1 Smaller Value is adopted.

Pin Configuration

< Data /Clock Output Test Condition >

DATACK: PIXel Clock DATACK Phase: 4 Output Format: Normal (not DDR) Output Drive Strength (VDD=3.3V) : Medium

*DATACK output phase is register programmable.

Pin List

Pin Name	Туре	Function
VD	P	Analog Power Supply
VDD	P	Output Power Supply
PVD	P	PLL Power Supply
DAVDD	P	Digital Core Power Supply
GND	P	Ground
BAINO	ĂI	B-ch Analog Input, Port 0
BAIN1	AI	B-ch Analog Input, Port 1
GAINO	AI	G-ch Analog Input, Port 0
SOGINO	AI	Sync on Green Input, Port 0
GAIN1	AI	G-ch Analog Input, Port 1
SOGIN1	AI	Sync on Green Input, Port 1
RAINO	AI	R-ch Analog Input, Port 0
RAIN1	AI	R-ch Analog Input, Port 1
RST	DI	Reset Input
	5.	Low: Normal Operation
		High: Power Down (Stand-by)
		High -> Low: Chip Reset
REFLO	_	Connection for External Capacitor
REFCM	_	Connection for External Capacitor
REFHI	_	Connection for External Capacitor
O/E FIELD	DO	Field Parity Output for Interlaced Video
O/ L TILLD	00	<pre><other function=""></other></pre>
		Data Enable (DE) Output
		Sync Processor IRQ Output
VSOUT/A0	DIO	VSYNC Output / Serial Interface Device Address bit 0 (A0)
HSOUT	DIO	HSYNC Output
SOGOUT	DO	SOG Slicer Output
DATACK	DO	Data Clock Output
RED<9:0>	DO	R-ch Data Output
GREEN<9:0>	DO	G-ch Data Output
BLUE<9:0>	DO	B-ch Data Output
SCL	DU	Serial Port Data Clock Input
SDA	DIO	Serial Port Data I/O
HSYNC1	DIO	HSYNC Input, Port 1
VSYNC1	DI	VSYNC Input, Port 1
HSYNC0	DI	HSYNC Input, Port 0
VSYNC0	DI	VSYNC Input, Port 0
EXTCLK/COAST	DI	External Clock Input / Coast Signal Input
CLAMP	DI	External Clock Input / Coast Signal Input
	DI	
		Reference Clock Input for HSYNC Period Measure
FILT	_	Connection for PLL Loop Filter
		Connection for PLL Loop Filter

P:Power AI:Analog Input DI:Digital Input DO:Digital Output DIO:Digital Input/Output

Digital Input

- All digital inputs are 5V tolerant during power-on.

Analog Input

- The THC7984 has two ports that each include three analog inputs for RGB or YPbPr. The input port can be selected by register.

- In case input signals are YPbPr, Y may be input into GAIN0 (or GAIN1) and SOGIN0 (or SOGIN1), Pr into RAIN0 (or RAIN1), and Pb into BAIN0 (or BAIN1).

- The THC7984 accommodates analog signals ranging from 0.5 Vpp to 1.0 Vpp.

Video Filter (LPF)

The THC7984 has 2 kinds of low-pass filters.

- 5th-order LPF for YPbPr, whose bandwidth is adjustable from 6 MHz to 92 MHz in 24 steps.
- 2nd-order LPF for RGB, whose bandwidth is adjustable in 4 steps (40 MHz, 90 MHz, 170 MHz, and 310 MHz) .

Serial Interface

- The THC7984 is controlled by 2-wire serial interface.

- Serial clock SCL supports up to 100 kHz.

Sync Input

- The THC7984 has two ports that each include two digital inputs for the separate sync (HSYNC and VSYNC). The input port can be selected by register.

- The THC7984 can process composite sync (CSYNC) . CSYNC may be input into HSYNC0 or HSYNC1.

Digital Output

- The digital outputs can operate from 2.5 V to 3.3 V (VDD) .
- The output drive strength is programmable by 2-bit registers (except SDA).

Clamp

- Pedestal clamp for RGB and Y (luminance) clamps black level to 0 with automatic offset cancel.
- Midscale clamp for PbPr clamps to 512 with automatic offset cancel.
- 256-level clamp for Y (luminance) clamps to 256 with automatic offset cancel. It can be used for A/D conversion of Y including sync signal. In this case, input signal needs to be attenuated to put it within the input rang of A/D converter.
- Clamp pulses can be input from CLAMP pin when external clamp is selected.

Gain, Offset

- Gain is programmable by 11-bit registers (2048 steps) .
- Offset from -256 to +255 can be added to the output code.
- Gain and offset can be adjusted independently.

Reference Voltage

- The THC7984 has Band Gap Reference inside and doesn't require external voltage reference.

- The internal reference voltages (REFHI, REFCM, and REFLO) must be bypassed to stabilize. Each pin (REFHI, REFCM, and REFLO) is connected to ground through a 10 µF capacitor.

Sampling Clock Generation

- The THC7984 has PLL to generate the sampling clock from HSYNC. The sampling clock frequency range is from 10MHz to 170 MHz.

- PLL divider ratio (the number of horizontal total pixels per line) can be set to the value between 200 to 8191.
- The sampling clock Phase can be adjusted in 64 steps of T/64.
- The external clock can be used as the sampling clock.

- It is required to set VCO Frequency Range and Charge Pump Current according to the input signal format (resolution).

Oversampling

- Oversampling is the function that enables sampling analog signals with higher rate than the pixel clock and downsampling to the pixel clock rate with decimation filter, which is effective for improving S/N ratio.

- Oversampling ratio can be selected among 1x (normal operation), 2x, 4x, and 8x. Even if any is selected, output frequency of the output clock and data is same as normal operation.

Output Clock (DATACK)

- The output clock phase can be selected in 8 steps for the data setup/hold adjustment.

- Divide-by-2 clock can be selected as the output clock for the dual edge data clocking at the subsequent stage. It can not be selected when oversampling.

SOG Slicer

- Sync on Green (SOG) is sliced at the threshold level above the sync tip to extract the sync signal. The threshold level can be set by a register ranging from 15 mV to 240 mV in steps of 15mV.

- Low pass filer prior to the slicer can be used to reduce high frequency noise, which can be disabled by a register.
- The slicer also has hysteresis (about 30mV), which can be disabled by a register.
- 3-level sync signal can be processed by slicing at the pedestal level.

Sync Processor

Sync Processor implements VSYNC separation from CSYNC, vertical timing generation, and detection and measurement of the sync signals. The various automatic sync-processing modes are realized by utilizing the sync detection and measurement.

The THC7984 can process the copy protection signal.

(1) VSYNC Separation

Extracting VSYNC from Composite sync (CSYNC) or Sync on Green (SOG).

- (2) Vertical Timing Generation
- VSYNC Output Generation
- PLL COAST Generation
- Clamp COAST Generation
- V-Blank of DE Generation
- (3) Sync Detection/Measurement
- Input Sync Type Detection (Separate sync, Composite sync, Sync on Green, and No input signal)
- HSYNC, VSYNC Input Polarity Detection
- 3-level Sync Detection
- Interlace Detection
- Vertical Total Line Measurement
- VSYNC Input Pulse Width Measurement
- HSYNC Period Measurement (Reference clock needs to be input into CLAMP pin.)
- SYNC Change Detection
- HSYNC Edge Detection
- Sync Processor IRQ Output

(4) Automatic Sync Processing Mode (Manual Setting Modes are also available)

- Auto Output Mode (All outputs are enabled when input signal is active)
- Input Port Auto Select (Selects the port whose input signal is active)
- Input Sync Type Auto Select (HSYNC Input, VSYNC Input)
- HSYNC, VSYNC Input Polarity Auto Select
- HSYNC, VSYNC Output Polarity Auto Select
- VSYNC Output Timing Auto Setting
- PLL COAST Timing Auto Setting

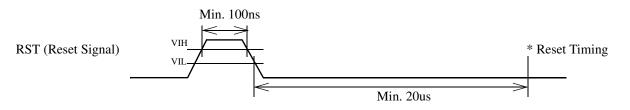
Power Control

- The THC7984 can be set to stand-by mode by a register or RST-pin.
- In stand-by mode, most of the analog circuits are powered down for low power dissipation.

- In stand-by mode, the sync detection and measurement are available nonetheless because SOG Slicer, Sync Processor, and 2-wire serial interface are still power-on.

- The THC7984 is set to stand-by mode when RST-pin is set to High. If unused, RST-pin must be pull-down to ground with a resistor.

Reset


- The logic circuit of the chip is reset when power is applied with RST-pin asserted Low (Power-on Reset) .

- The reset can be also triggered by RST-pin (Manual Reset). The reset is triggered when RST-pin falls from High to Low, that means the reset is triggered whenever the THC7984 gets out of stand-by mode by RST-pin.

- Reset after power-up is necessary to access the serial interface. Please power-up with RST-pin asserted Low or make RST-pin High then Low after power-up. If unused, RST-pin must be pull-down to ground with a resistor.

- The registers are set to the default values by the reset and the chip becomes stand-by mode and output disable (Hi-Z). For normal operation, the registers must be set to power-on and output enable by the serial interface.

- For Manual Reset, keep RST-pin Low more than 20 us after the transition from High to Low.

Device Address

- The LSB of 7-bit device address of serial interface (A0) is obtained from VSOUT/A0-pin at the reset.

Pull-down to ground with a resistor $(10 \text{ k}\Omega)$, then Device Address is set to 1001100 Pull-up to VDD with a resistor $(10 \text{ k}\Omega)$, then Device Address is set to 1001101

- The pull-up resistor must be connected to VDD.

Registers

Register Notation

The register is notated with "R" added to the head of the address in hexadecimal. e.g. R00: Register of address 0x00 The bit position is notated with "[]". e.g. R04[1:0]: Bit 1 and bit 0 of address 0x04 The register value in hexadecimal is notated with "h" added to the end. e.g. R01=18h The register value in binary is notated with "b" added to the end. e.g. R04[1:0]=11b The register value in decimal is notated without suffix. e.g. R15[7:0]=32

Register Classification

< Register Classification>

Sign	Category	Description	Register
R/W	Read/Write	Registers for configuration and adjustment	except below
R	Read Only	Registers which report the result of measurement and detection	R00, R2C~R30, R32~R34
A	Auto		R12[3], R12[1:0], R13[5], R13[4], R13[2], R13[1], R20[6:0], R21[5:0], R22[6:0], R23[6:0]
EVRC	Event Recorder	Registers which record the event that has occurred in Sync Processor. - 1 is set when the event occurs. - The value is cleared by writing 1 to the register.	R35

Default Value

All registers are set to the default values by the reset (Power-on Reset, Manual Reset) .

Minus Number Setting

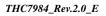
Some registers can be configured by two's complement.

< Minus Number Setting >

Function	Register	Range
Clamp Level Offset	R0C/R0D, R0E/R0F, R10/R11	-256 to +255
HSYNC Output Start Position	R14	-128 to +127
VSYNC Output Start Position	R20	-64 to +63

Register Map

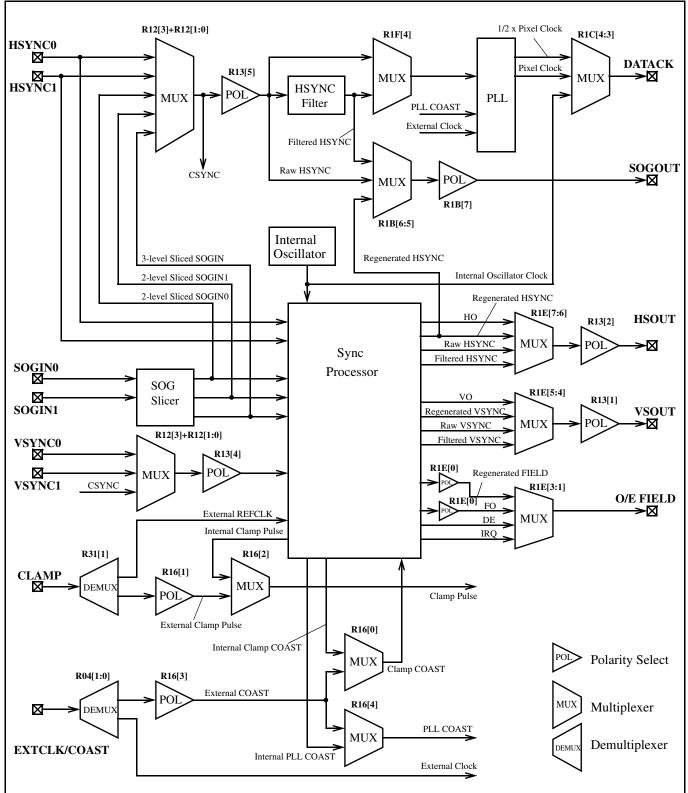
Address	Bit	R/W	Default	Function	Description
R 00	7	R	Value 0		Can be read 21h
R 00				Revision Code	Can be read 21h
	6	R	0		
	5	R	1		
	4	R	0		
	3	R	0		
	2	R	0		
	1	R	0		
	0	R	1		
R 01	7				
	6				
	5	D /M	0		
	4	R/W	0	Chip Power-On	0: Power-Down (Stand-by Mode) 1: Power-On (Normal Operation)
	3	R/W		Auto Output Enable (All outputs become Enable when input signal is active)	0: Disable 1: Enable
	2	R/W		Output Enable (Except SOGOUT & IRQ)	0: Disable 1: Enable
	1	R/W	0	SOGOUT Output Enable	0: Disable 1: Enable
		R/W	0	Reserved	Must be set to 0 (Default Value)
R 02	7	D (M)			
	6	R/W	0	Oversampling	00b: 1x(Normal Operation) 01b: 2x 10b: 4x 11b: 8x
	5	R/W	0	DU Di dan Data	Catality much as of the invested to be independent on the
	4	R/W		PLL Divider Ratio	Set the number of horizontal total pixels per line
	3	R/W	0		
	2	R/W	1		
	1	R/W	1		
		R/W	0		
R 03	7	R/W	1		
		R/W	0		
	5	R/W	0		
	4	R/W	1		
	3	R/W	1		
	2	R/W	0		
	1	R/W	0		
		R/W	0		
R 04	7	R/W	1	Reserved	Must be set to 1 (Default Value)
		R/W	1	VCO Frequency Range	00b: 1/8 01b: 1/4 10b: 1/2 11b: 1/1
	5	R/W	1		
	4	R/W		Charge Pump Current	000b: 50uA 001b: 100uA 010b: 150uA 011b: 250uA
	3	R/W	0		100b: 350uA 101b: 500uA 110b: 750uA 111b: 1000uA
	2	R/W	0		00h tatana liQuadi 01h Daaraa d
	1	R/W	0	Sampling Clock Source	00b: Internal Clock 01b: Reserved
D 05		R/W	0		10b: External Clock (10–20MHz) 11b: External Clock (20–170MHz)
R 05	7				
	6	D/W/	0	Samalian Clask Dhase	Set in 64 store of T/64
		R/W	0	Sampling Clock Phase	Set in 64 steps of T/64
		R/W	0		*Bigger values mean more delay.
	3	R/W	0		
	2	R/W	0		
	1	R/W	0		
D 00		R/W	U		
R 06	7				
	6				
	5				
	3	R/W	1	R-ch Gain	Gain = (Register Value + 1024) / 2048
	2				
	1	R/W R/W	0		2048 steps from x0.5 to x1.5
D 07					*Bigger values mean higher gain.
R 07	7	R/W	0		
	6	R/W	0		
	5	R/W	0		
	4	R/W	0		
	3	R/W	0		
	2	R/W	0		
	1	R/W	0		
		R/W	0		


R 08	7		
	6		
	5		
	4		
	3		
		G−ch Gain	Gain = (Register Value + 1024) / 2048
		d-cri dain	
	1 R/W 0		2048 steps from x0.5 to x1.5
	0 R/W 0		*Bigger values mean higher gain.
R 09	7 R/W 0		
	6 R/W 0		
	5 R/W 0		
	4 R/W 0		
	3 R/W 0		
	2 R/W 0		
	1 R/W 0		
	0 R/W 0		
R 0A	7		
11.071			
1	6		
1	5		
	4		
	3		
			$O_{\text{ris}} = (D_{\text{ris}} + 1004) / (2040)$
		B−ch Gain	Gain = (Register Value + 1024) / 2048
	1 R/W 0		2048 steps from x0.5 to x1.5
	0 R/W 0		*Bigger values mean higher gain.
R 0B	7 R/W 0		
RUD			
	6 R/W 0		
	5 R/W 0		
	4 R/W 0		
	2 R/W 0		
	1 R/W 0		
	0 R/W 0		
R 0C	7		
	6		
	5		
	4		
	3		
	2		
	1		
		R-ch Clamp Level Offset	1 LSB of offset corresponds to 1 LSB of output code.
		R-ch Clamp Level Onset	
R 0D	7 R/W 0		-256 to +255
	6 R/W 0		*Set in two's complement.
	5 R/W 0		
	4 R/W 0		
1	3 R/W 0		
	2 R/W 0		
	1 R/W 0		
1	0 R/W 0	1	
D 05			
R 0E	7		
	6		
	5		
	4		
1			
1	3		
	2		
1	1		
		0. sh 0lann Lauri Offert	11 CD of effect commenced to 11 CD of the time
	0 R/W 0	G-ch Clamp Level Offset	1 LSB of offset corresponds to 1 LSB of output code.
R 0F	7 R/W 0		-256 to +255
	6 R/W 0		*Set in two's complement.
	5 R/W 0	1	,
1		4	
	4 R/W 0		
1	3 R/W 0		
	2 R/W 0	1	
	1 R/W 0	1	1
	0 R/W 0		

R 10	7		
	6		
	5		
	4		
	3		
	2		
	<u> </u>		
R 11	0 R/W 0 7 R/W 0	B-ch Clamp Level Offset	1 LSB of offset corresponds to 1 LSB of output code. -256 to +255
RII			
	6 R/W 0 5 R/W 0	-	*Set in two's complement.
		-	
		-	
	3 R/W 0 2 R/W 0	-	
		-	
	1 R/W 0 0 R/W 0	-	
R 12			M II III
RIZ	7 R/W 0	Reserved	Must be set to 0
	6 R/W 0	Reserved	Must be set to 0
	5 R/W 1	Input Port Automatic Selection Enable	0: Disable 1: Enable
1	4 R/W 0	Reserved	Must be set to 0
1	3 A 0	Input Port	0: Port-0 1: Port-1
	2 R/W 1	Sync Type Automatic Select Enable	0: Disable 1: Enable
	1 A 0	Sync Type Select	00b: Separate Sync 01b: Composite Sync
D 10	0 A 0		10b: Sync on Video (2–lelvel) 11b: Sync on Video (3–lelvel)
R 13	7		
	6 R/W 1	HSYNC Input, VSYNC Input Polarity Automatic Selection Enable	0: Disable 1: Enable
	5 A 0	HSYNC Input Polarity	0: Active-Low 1: Active-High
	4 A 0	VSYNC Input Polarity	0: Active-Low 1: Active-High
	3 R/W 1	HSYNC Output, VSYNC Output Polarity Automatic Selection Enable	0: Disable 1: Enable (Output Polarity is conformed to Input Polarity)
	2 A 0	HSYNC Output (HSOUT) Polarity	0: Active-Low 1: Active-High
	1 A 0	VSYNC Output (VSOUT) Polarity	0: Active-Low 1: Active-High
D 44	0 R/W 1	VSYNC Output (VSOUT) Interlace Mode	0: Disable 1: Enable
R 14	7 R/W 0	HSYNC Output (HO) Start Position	Set in 1 pixel steps with reference to the leading edge of HSYNC input
	6 R/W 0	-	-128 to +127
	5 R/W 0		*Set in two's complement.
	4 R/W 0	-	
	3 R/W 0	_	
	2 R/W 0		
		-	
	1 R/W 0		
B. 45	0 R/W 0		
R 15	0 R/W 0 7 R/W 0	HSYNC Output (HO) Pulse Width	Set in 1 pixel steps
R 15	0 R/W 0 7 R/W 0 6 R/W 0	HSYNC Output (HO) Pulse Width	Set in 1 pixel steps 1 to 255
R 15	0 R/W 0 7 R/W 0 6 R/W 0 5 R/W 1	HSYNC Output (HO) Pulse Width	
R 15	0 R/W 0 7 R/W 0 6 R/W 0 5 R/W 1 4 R/W 0	HSYNC Output (HO) Pulse Width	
R 15	0 R/W 0 7 R/W 0 6 R/W 0 5 R/W 1 4 R/W 0 3 R/W 0	HSYNC Output (HO) Pulse Width	
R 15	0 R/W 0 7 R/W 0 6 R/W 0 5 R/W 1 4 R/W 0 3 R/W 0 2 R/W 0	HSYNC Output (HO) Pulse Width	
R 15	0 R/W 0 7 R/W 0 6 R/W 0 5 R/W 1 4 R/W 0 3 R/W 0 2 R/W 0 1 R/W 0	HSYNC Output (HO) Pulse Width	
	0 R/W 0 7 R/W 0 6 R/W 0 5 R/W 1 4 R/W 0 3 R/W 0 2 R/W 0	HSYNC Output (HO) Pulse Width	
R 15	0 R/W 0 7 R/W 0 6 R/W 0 5 R/W 0 3 R/W 0 2 R/W 0 1 R/W 0 0 R/W 0 7 7	HSYNC Output (HO) Pulse Width	
	0 R/W 0 7 R/W 0 6 R/W 0 5 R/W 1 4 R/W 0 3 R/W 0 2 R/W 0 1 R/W 0 7 R/W 0 6	HSYNC Output (HO) Pulse Width	
	0 R/W 0 7 R/W 0 6 R/W 0 5 R/W 1 4 R/W 0 3 R/W 0 2 R/W 0 1 R/W 0 0 R/W 0 7 - 6 - 5 -		1 to 255
	0 R/W 0 7 R/W 0 6 R/W 0 5 R/W 1 4 R/W 0 2 R/W 0 2 R/W 0 1 R/W 0 0 R/W 0 7 - 6 - 5 - 4 R/W 0	PLL COAST Source	1 to 255
	0 R/W 0 7 R/W 0 6 R/W 0 5 R/W 1 4 R/W 0 3 R/W 0 1 R/W 0 2 R/W 0 1 R/W 0 0 R/W 0 7 0 6 5 5 5 4 R/W 0 3 R/W 1	PLL COAST Source PLL COAST Source PLL/Clamp COAST Input Polarity (If COAST Source is External)	1 to 255
	0 R/W 0 7 R/W 0 6 R/W 0 5 R/W 1 4 R/W 0 3 2 R/W 0 1 2 R/W 0 1 7 - 6 - 6 - 5 - 5 R/W 0 3 R/W 0 3 R/W 0 3 R/W 0 3 4 R/W 0 3 R/W 0 3 R/W 0 3 R/W 0 3 R/W 0 3 R/W 0	PLL COAST Source PLL/Clamp COAST Input Polarity (If COAST Source is External) Clamp Pulse Source	1 to 255 1 to 255 0. Internal PLL COAST 1: External PLL COAST 0. Active-Low 1: Active-High 0. Internal Clamp Pulse 1: External Clamp Pulse
	0 R/W 0 7 R/W 0 6 R/W 0 5 R/W 1 4 R/W 0 2 R/W 0 2 R/W 0 1 R/W 0 0 R/W 0 7 - 6 - 5 - 4 R/W 0 3 R/W 1 2 R/W 0 1 R/W 0 3 R/W 1	PLL COAST Source PLL COAST Source PLL/Clamp COAST Input Polarity (If COAST Source is External) Clamp Pulse Source Clamp Pulse Input Polarity (If COAST Source is External)	1 to 255 0. Internal PLL COAST 1: External PLL COAST 0. Active-Low 1: Active-High 0. Internal Clamp Pulse 0. Active-Low 1: Active-High
R 16	0 R/W 0 7 R/W 0 6 R/W 0 5 R/W 1 4 R/W 0 3 2 R/W 0 1 2 R/W 0 1 7 - 6 - 6 - 5 - 5 R/W 0 3 R/W 0 3 R/W 0 3 R/W 0 3 4 R/W 0 3 R/W 0 3 R/W 0 3 R/W 0 3 R/W 0 3 R/W 0	PLL COAST Source PLL/Clamp COAST Input Polarity (If COAST Source is External) Clamp Pulse Source	1 to 255 1 to 255 0. Internal PLL COAST 1: External PLL COAST 0. Active-Low 1: Active-High 0. Internal Clamp Pulse 1: External Clamp Pulse
	0 R/W 0 7 R/W 0 6 R/W 0 5 R/W 1 4 R/W 0 3 R/W 0 2 R/W 0 1 R/W 0 7 6 5 - 6 - 5 R/W 0 3 R/W 0 3 R/W 0 3 R/W 1 2 R/W 0 1 R/W 0 3 R/W 1 2 R/W 0 1 R/W 1 0 R/W 1 0 R/W 1 7 - 6	PLL COAST Source PLL/Clamp COAST Input Polarity (If COAST Source is External) Clamp Pulse Source Clamp Pulse Input Polarity (If COAST Source is External) Clamp COAST Source	1 to 255 1 to 255 0. Internal PLL COAST 1: External PLL COAST 0. Active-Low 1: Active-High 0. Internal Clamp Pulse 1: External Clamp Pulse 0. Active-Low 1: Active-High 0. Internal Clamp COAST 1: External Clamp COAST
R 16	0 R/W 0 7 R/W 0 6 R/W 0 5 R/W 1 4 R/W 0 3 R/W 0 2 R/W 0 1 R/W 0 0 R/W 0 7 - 6 - 5 - 4 R/W 0 3 R/W 1 2 R/W 0 1 R/W 0 3 R/W 1 2 R/W 0 3 R/W 1 2 R/W 0 1 R/W 1 0 R/W 0 7 - 6 6 R/W 1	PLL COAST Source PLL/Clamp COAST Iput Polarity (If COAST Source is External) Clamp Pulse Source Clamp Pulse Input Polarity (If COAST Source is External) Clamp COAST Source Clamp Pulse Start Reference Edge (Pedestal Clamp, Midscale Clamp)	1 to 255 1 to 255 0. Internal PLL COAST 1: External PLL COAST 0. Active-Low 1: Active-High 0. Internal Clamp Dulse 0. Active-Low 1: Active-High 0. Internal Clamp COAST 1: External Clamp COAST 1. Internal Clamp COAST 1: External Clamp COAST 0. the leading edge of HSYNC Input 1: the trailing edge of HSYNC Input
R 16	0 R/W 0 7 R/W 0 6 R/W 0 5 R/W 1 4 R/W 0 3 R/W 0 2 R/W 0 1 R/W 0 0 R/W 0 7 - 6 - 5 - 4 R/W 0 3 R/W 1 2 R/W 0 7 - - 6 R/W 0 7 - - 6 R/W 1 5 R/W 0	PLL COAST Source PLL/Clamp COAST Input Polarity (If COAST Source is External) Clamp Pulse Source Clamp Pulse Input Polarity (If COAST Source is External) Clamp COAST Source	1 to 255 0: Internal PLL COAST 1: External PLL COAST 0: Active-Low 1: Active-High 0: Internal Clamp Pulse 1: External Clamp Pulse 0: Active-Low 1: Active-High 0: Internal Clamp COAST 1: External Clamp COAST 0: Internal Clamp COAST 1: External Clamp COAST 0: Internal Clamp Of HSYNC Input 1: the trailing edge of HSYNC Input 00th: Pedestal Clamp 01b: Mdscale Clamp
R 16	0 R/W 0 7 R/W 0 6 R/W 0 5 R/W 1 4 R/W 0 3 R/W 0 2 R/W 0 1 R/W 0 7 0 6 5 - - 6 - - 5 R/W 0 1 R/W 0 3 R/W 1 2 R/W 0 1 R/W 0 3 R/W 1 2 R/W 0 1 R/W 0 7 - 6 5 R/W 0 7 - 6 6 - - 7 - 6 7 - 6 7 - 6 7	PLL COAST Source PLL/Clamp COAST Input Polarity (If COAST Source is External) Clamp Pulse Source Clamp Pulse Input Polarity (If COAST Source is External) Clamp COAST Source Clamp Pulse Start Reference Edge (Pedestal Clamp, Midscale Clamp) R~ch Clamp Mode	1 to 255 1 to 255 0: Internal PLL COAST 1: External PLL COAST 0: Active-Low 1: Active-High 0: Internal Clamp Pulse 1: External Clamp Pulse 0: Active-Low 1: Active-High 0: Internal Clamp COAST 1: External Clamp COAST 0: Internal Clamp COAST 1: External Clamp COAST 0: the leading edge of HSYNC Input 1: the trailing edge of HSYNC Input 00b: Pedestal Clamp 01b: Mdscale Clamp 10b: Reserved 11b: 256-level clamp
R 16	0 R/W 0 7 R/W 0 6 R/W 0 5 R/W 1 4 R/W 0 3 R/W 0 2 R/W 0 1 R/W 0 0 R/W 0 7 - 6 - 5 - 4 R/W 0 3 R/W 1 2 R/W 0 1 R/W 0 3 R/W 1 0 R/W 1 0 R/W 1 0 R/W 1 5 R/W 0 4 R/W 0 4 R/W 0 4 R/W 0 3 R/W 0	PLL COAST Source PLL/Clamp COAST Iput Polarity (If COAST Source is External) Clamp Pulse Source Clamp Pulse Input Polarity (If COAST Source is External) Clamp COAST Source Clamp Pulse Start Reference Edge (Pedestal Clamp, Midscale Clamp)	1 to 255 1 to 255 0. Internal PLL COAST 1: External PLL COAST 0. Active-Low 1: Active-High 0. Internal Clamp Dulse 1: External Clamp Pulse 0. Active-Low 1: Active-High 0. Internal Clamp COAST 1: External Clamp COAST 1. External Clamp COAST 1: External Clamp COAST 0. the leading edge of HSYNC Input 1: the trailing edge of HSYNC Input 00th: Pedestal Clamp 01b: Mdscale Clamp 10th: Reserved 11b: 256-level clamp 10th: Reserved 11b: 256-level clamp 10th: Reserved 11b: 256-level clamp
R 16	0 R/W 0 7 R/W 0 6 R/W 0 5 R/W 1 4 R/W 0 3 R/W 0 2 R/W 0 1 R/W 0 0 R/W 0 7 - 6 - 5 - 4 R/W 0 3 R/W 1 2 R/W 0 3 R/W 1 2 R/W 0 7 - - 6 R/W 1 7 - - 6 R/W 0 7 - - 6 R/W 1 5 R/W 0 3 R/W 0 2 R/W 0	PLL COAST Source PLL/Clamp COAST Input Polarity (If COAST Source is External) Clamp Pulse Source Clamp Pulse Input Polarity (If COAST Source is External) Clamp COAST Source Clamp Pulse Start Reference Edge (Pedestal Clamp, Midscale Clamp) R~ch Clamp Mode G~ch Clamp Mode	1 to 255 C. Internal PLL COAST 1: External PLL COAST C. Internal PLL COAST 1: External PLL COAST C. Active-Low 1: Active-High C. Internal Clamp Pulse C. Active-Low 1: Active-High C. Internal Clamp COAST 1: External Clamp Pulse C. Active-Low 1: Active-High C. Internal Clamp COAST 1: External Clamp COAST C. the leading edge of HSYNC Input 1: the trailing edge of HSYNC Input Oth: Pedestal Clamp 01b: Mdscale Clamp 10b: Reserved 11b: 256-level clamp Oth: Pedestal Clamp 01b: Mdscale Clamp 10b: Reserved 11b: 256-level clamp Oth: Reserved 11b: 256-level clamp
R 16	0 R/W 0 7 R/W 0 6 R/W 0 5 R/W 1 4 R/W 0 3 R/W 0 2 R/W 0 1 R/W 0 0 R/W 0 7 - 6 - 5 - 4 R/W 0 3 R/W 1 2 R/W 0 1 R/W 0 3 R/W 1 0 R/W 1 0 R/W 1 0 R/W 1 5 R/W 0 4 R/W 0 4 R/W 0 4 R/W 0 3 R/W 0	PLL COAST Source PLL/Clamp COAST Input Polarity (If COAST Source is External) Clamp Pulse Source Clamp Pulse Input Polarity (If COAST Source is External) Clamp COAST Source Clamp Pulse Start Reference Edge (Pedestal Clamp, Midscale Clamp) R~ch Clamp Mode	1 to 255 1 to 255 0. Internal PLL COAST 1: External PLL COAST 0. Active-Low 1: Active-High 0. Internal Clamp Dulse 1: External Clamp Pulse 0. Active-Low 1: Active-High 0. Internal Clamp COAST 1: External Clamp COAST 1. External Clamp COAST 1: External Clamp COAST 0. the leading edge of HSYNC Input 1: the trailing edge of HSYNC Input 00th: Pedestal Clamp 01b: Mdscale Clamp 10th: Reserved 11b: 256-level clamp 10th: Reserved 11b: 256-level clamp 10th: Reserved 11b: 256-level clamp

R IB 7 R.W 0 Other Pulse Start Position Stat in 1 pixel steps with the reference edge of HSYNO Input (RI 76)). 0 <th></th> <th></th> <th></th>			
R 10 S R/W 0 4 B 2/W 0 4 B 2/W 0 4 B 2/W 0 7 B 2/W 0 9 R/W 0 1 B 2/W 0 <td< td=""><td>R 18 7 R/W 0</td><td>Clamp Pulse Start Position</td><td>Set in 1 pixel steps with the reference edge of HSYNC Input (R17[6]).</td></td<>	R 18 7 R/W 0	Clamp Pulse Start Position	Set in 1 pixel steps with the reference edge of HSYNC Input (R17[6]).
Image: Provide the state of the st	6 R/W 0		0 to 255
Image: Provide the state of the st	5 R/W 0		
R NB 1 R/W 0 1 R/W 0 0 R/W 0 2 R/W 0 0 0 R/W 0 3 R/W 0 0 R/W 0 0 1 R/W 0 0			
Image: Provide and Provide Weth Provide Provide Weth Set in 1 pixel steps R 10 7 (R/W 0) 0 (R/W 0) 0 (R/W 0) 10 (R/W 0) 1 (R/W 0) 0 (R/W 0) 0 (R/W 0) 10 (R/W 0) 10 (R/W 0) 1 (R/W 0) 1 (R/W 0) 0 (R/W 0) 0 (R/W 0) 10 (R/W 0) 1 (R/W 0) 0 (R/W 0) 0 (R/W 0) 0 (R/W 0) 0 (R/W 0) 1 (R/W 0) 1 (R/W 0) 0 (R/W 0) 0 (R/W 0) 0 (R/W 0) 2 (R/W 0) 1 (R/W 0) 0 (R/W 0) 0 (R/W 0) 0 (R/W 0) 2 (R/W 0) 0 (R/W 0) 0 (R/W 0) 0 (R/W 0) 0 (R/W 0) 2 (R/W 0) 0 (R/W 0) 0 (R/W 0) 0 (R/W 0) 0 (R/W 0) 1 (R/W 0) 0 (R/W 0) 0 (R/W 0) 0 (R/W 0) 0 (R/W 0) 2 (R/W 0) 0 (R/W 0) 0 (R/W 0) 0 (R/W 0) 0 (R/W 0) 2 (R/W 0) 0 (R/W 0) 0 (R/W 0) 0 (R/W 0) 0 (R/W 0) 3 (R/W 0) 0 (R/W 0) 0 (R/W 0) 0 (R/W 0) 0 (R/W 0) 3 (R/W 0) 0 (R/			
R 16 0 R W 0 0 8 15 0 RW 0		-	
O B, W O R 19 7, W 0 B 7, W 0 0 B 7, W 0 0 B 7, W 0 0 B 8, W 0 0 0 B 8, W 0 0 0 0 B 8, W 1 SOC Silser Hysterials Enable 0 0 B 7, W 0 0 0 0 0 B 7, W 0 0 0 0 0 0 B 7, W 0 0 0 0 0 0 0 0 B 7, W 0 0 0 0 0 0 0 0			
R 16 7 P/W 0 Clamp Pulse Welth Set in 1 pixel steps 1 6 P/W 0 1 1 1 1 1 1 1 2 1 2 1 1 1 2 1 1 2 1 1 2 1 <td></td> <td></td> <td></td>			
Is R W 0 IS R/W 1 SOG Sileer Hysterials Enable 0 Dadde 11: Enable IS R/W 0 SOG Sileer Hysterials Enable IS R/W 0 Advectow I Advect	0 R/W 0		
Is R W 0 IS R/W 1 SOG Sileer Hysterials Enable 0 Dadde 11: Enable IS R/W 0 SOG Sileer Hysterials Enable IS R/W 0 Advectow I Advect	R 19 7 R/W 0	Clamp Pulse Width	Set in 1 pixel steps
R R/W 0 3 R/W 0 2 R/W 0 1 R/W 0 2 R/W 0 3 R/W 0 4 R/W 0 5 R/W 0 4 R/W 0 5 R/W 0 7 R 0 8 R/W 0 9 R/W 0 1 R/W 0 <			
Image: Second			1 to 200
R NA 0 2 R.W. 0 1 R.W. 0 2 R.W. 0 3 R.W. 0 2 R.W. 0 3 R.W. 0 4 R.W. 0 5 R.W. 0 6 R.W. 0 7 R.W. 0 8 R.W. 0 8 R.W. 0 8 R.W. 0 9 R.W. 0 10 R.W. 0 1 R.W. 0		-	
Image: Second			
If NM 0 R MA 0 R IA 2 R/W 0 000000000000000000000000000000000000			
R IA JE RWI Image: constraint of the state of th	2 R/W 0		
R 1A 2 R/W IsoC Silcer Hysteriais Enable 0. Deable 1. Enable 6 R, W 1 SOG Silcer Hysteriais Enable 0. Deable 1. Enable 2 R/W 0 SOG Silcer Hysteriais Enable 0. Deable 1. Enable 2 R/W 0 SOG Silcer Hysteriais Enable 0. Deable 1. Enable 2 R/W 0 SOG Silcer Hysteriais Enable 0. Deable 1. Enable 2 R/W 0 SOG Silcer Hysteriais Enable 0. Deable 1. Enable 1 R/W 0 SocoOUT Output Point/y 0. Active-Low 1. Active High 1 R/W 0 SOGOUT Output Point/y 0. Active-Low 1. Active High 2 R/W 1 Preamp Bandwidth (Low Pass Filter) 1. Enable 2 R/W 1 Active High 1. Enable 0. Deable 1: Enable 3 R/W 1 Output Cook (DATACK) 0. Deable 1: Enable 0. Deable 1: Enable 4 R/W 0 Output Cook (DATACK) 0. Deabl	1 R/W 0		
R 1A 2 R/W IsoC Silcer Hysteriais Enable 0. Deable 1. Enable 6 R, W 1 SOG Silcer Hysteriais Enable 0. Deable 1. Enable 2 R/W 0 SOG Silcer Hysteriais Enable 0. Deable 1. Enable 2 R/W 0 SOG Silcer Hysteriais Enable 0. Deable 1. Enable 2 R/W 0 SOG Silcer Hysteriais Enable 0. Deable 1. Enable 2 R/W 0 SOG Silcer Hysteriais Enable 0. Deable 1. Enable 1 R/W 0 SocoOUT Output Point/y 0. Active-Low 1. Active High 1 R/W 0 SOGOUT Output Point/y 0. Active-Low 1. Active High 2 R/W 1 Preamp Bandwidth (Low Pass Filter) 1. Enable 2 R/W 1 Active High 1. Enable 0. Deable 1: Enable 3 R/W 1 Output Cook (DATACK) 0. Deable 1: Enable 0. Deable 1: Enable 4 R/W 0 Output Cook (DATACK) 0. Deabl	0 R/W 0		
6 R/W 1 SOG Sileer Hysterisis Enable 0. Desable 01b: Enable 5 R/W 0 0 0b: Deable 01b: Enable 4 R/W 0			
S R/W 1 SOG Input Filter OD: Duble Datable OIL: Enable 4 R/W 0 SOG Sileer threshold Set in 15mV steps 2 R/W 1 SOG Sileer threshold Set in 15mV steps 1 R/W 0 SOG Sileer threshold Set in 15mV steps 1 R/W 0 SOGOUT Output Polarity 0. Active=High 6 R/W 0 SOGOUT Output Signal ODb: Reserved HSYNC 6 R/W 0 SOGOUT Output Signal ODb: Reserved HSYNC 10b: Filter HSW 10b: Filter HSWC 11b: Reserved 10b: Filter HSYNC 11b: Reserved 3 R/W 0 Output Format ODb: 4: 4: 4 DOR Output 1 R/W 0 Output Cork (DATACK) ODb: 4: 4: 4 DDR Output 3 R/W 0 Output Cork (DATACK) ODb: Filter Enable 1 R/W 0 Output Cork (DATACK) ODb: Filter Enable 1 R/W 0 Output Cork (DATACK) ODb: Filter Enable 1 R/W 0 </td <td></td> <td></td> <td></td>			
4 R/W 0 10b. 11: Reserved 3 R/W 0 SOG Silcer threshold Set in 15mV steps 1 R/W 0 Sof Silcer threshold IsmV to 240mV steps 0 R/W 0 Sof Silcer threshold IsmV to 240mV steps 0 R/W 0 Sof Silcer threshold IsmV to 240mV steps 0 R/W 0 Sof Silcer threshold Oth Fature 1457NC 6 R/W 0 Sof Sof Units Signal Oth Fature 1457NC 1 R/W 1 Preamp Bandwidth (Low Pass Filter) 1 2 R/W 1 Preamp Bandwidth (Low Pass Filter) 1 2 R/W 1 Oth 4 4.4 Output Olib: A 4 4 DDR Output 1 R/W 1 Output Format ODb 4 4.2 Output Olib: A 2 2 Dotto 0 totput 1 R/W 1 Output Clock (DATACK) OD File Cloch Olib: 1/2 x Pise Olock 2 R/W 0 Output Clock (DATACK) OD File Cloch Olib: 1/2 x Pise Olock 1 R/W 0			
3 R/W 0 SOG Slicer threshold Set in TSMV steps 1 R/W 0 R/W 0 0 R/W 0 SOGOUT Output Polarity 0. Active-Low 1: Active-High 6 R/W 0 SOGOUT Output Signal 00b: Raw HSYNC 01b: Regenerated HSYNC 6 R/W 0 SOGOUT Output Signal 00b: Raw HSYNC 01b: Reserved 4 R/W 1 Prearp Bandwidth (Low Pess Filter) 1 3 R/W 1 Prearp Bandwidth (Low Pess Filter) 1 1 R/W 0 Output Format 00b: 4 4: 4 Output 01b: 4: 4 1 DDR Output 6 R/W 0 Output Cook (DATACK) 00b: Parel Cook 01b: 1/2: PreClock 6 R/W 0 Output Cook (DATACK) 00b: Parel Cook 01b: 1/2: PreClock 7 R/W 0 Output Cook (DATACK) 0b: Preclock 01b: 1/2: PreClock 7 R/W 0 Output Cook (DATACK) 0b: Preclock 01b: 1/2: PreclOck 8 R/W 0 Output Cook (DATACK) 0b: Preclock 01b: 1/2: Precl		SUG Input Filter	
2 R/W 1 1 R 1 1 R 1 1 R 1 1 R 0 1 R 0 1 R 0 1 R 0 1 R 0 1 R 0 1 R 1 1 R 1 1 R 0 1 R 0 1 R 0 1 R 0 1 R 0 1 R 0 1 R 0 1 R 0 1 R 0 1 R 0 1 R 0 1 R 0 1 R 0 1 R 0 1 R 0			
2 R/W 1 1 R 1 1 R 1 1 R 1 1 R 0 1 R 0 1 R 0 1 R 0 1 R 0 1 R 0 1 R 1 1 R 1 1 R 0 1 R 0 1 R 0 1 R 0 1 R 0 1 R 0 1 R 0 1 R 0 1 R 0 1 R 0 1 R 0 1 R 0 1 R 0 1 R 0 1 R 0	3 R/W 0	SOG Slicer threshold	Set in 15mV steps
I R/W 0 R 18 7 R/W 0 SOQUIT Output Signal Ob: Raw HSYNC 016: Regenerated HSYNC 6 R/W 0 Ob: Raw HSYNC 016: Regenerated HSYNC Ob: Raw HSYNC 016: Regenerated HSYNC 4 R/W 0 Ob: A 44: 40 DR: Ob: Regenerated HSYNC 016: Regenerated HSYNC 016: Regenerated HSYNC 1 R/W 1 Preamp Bandwidth (Low Pass Filter) 0 3 R/W 1 Ob: A 4: 40 DR: Output Format 006: A 4: 40 DR: Output Format 0 R/W 0 Output Format 006: A 4: 40 DR: Output Format 006: A 4: 40 DR: Output Format 1 R/W 0 Output Format 006: A 4: 40 DR: Output Format 006: A 4: 40 DR: Output Format 2 R/W 1 422 Decloration Filter Enable 0 Distable 1: Enable 0 Distable 1: Enable 0 Distable 1: Enable 0 2 R/W 0 Output Clock (DATA/OCK) Ob/ Enable 1: Enable 0 100: Internal Occilitator (00MHE) 11b: Reserved 10b: Internal Occilitator (00MHE) 11b: Reserved 0 <td></td> <td>1</td> <td></td>		1	
0 P.W.0 0 R B 7. R/W 0 SOGOUT Output, Polarity 0 Activer-Low: 1: Activer-High 6 R/W 0 SOGOUT Output, Signal 00b: Rew HSYNC 01b: Regenerated HSYNC 4 R/W 1 Preamp Bandwidth (Low Pass Filter) 10b: Filtered HSYNC 11b: Reserved 3 R/W 1 Preamp Bandwidth (Low Pass Filter) 10b: 4: 4: 4 Output format 1 R/W 1 Preamp Bandwidth (Low Pass Filter) 10b: 4: 4: 4 Output format 4 R/W 1 22 Decination Fitter Enable 00b: 4: 4: 4 Output format 5 R/W 0 Output Gock Onth 72 Ack 00b: 72 Activer Clock 10b: 12: A: 4: 2 DDR Output 5 R/W 0 Output Gock Onth 72 Ack 00b: 72 Activer Clock 10b: 12: A: 4: 2 DDR Output 6 R/W 0 Output Gock Phase 0 R/W 0 1 R/W 0 Rigger values mean more delay. Matb be set to 1 10b: Strong 11b: Very Strong 1 R/W 0 R/W 0 <td></td> <td>1</td> <td></td>		1	
R 16 7 R/W 0 SOGUT Output Signal 6 R/W 0 SOGUT Output Signal (Dit Rew HSYNC Dit: Regenerated HSYNC) 4 R/W 1 Preamp Bandwidth (Low Pass Filter) (Dit Rew HSYNC) (Dit Rew HSYNC) 3 R/W 1 Preamp Bandwidth (Low Pass Filter) (Dit Rew HSYNC) (Dit Rew HSYNC) 3 R/W 1 Preamp Bandwidth (Low Pass Filter) (Dit Rew HSYNC) (Dit Rew HSYNC) 4 R/W 1 Preamp Bandwidth (Low Pass Filter) (Dit Rew HSYNC) (Dit Rew HSYNC) 5 R/W 0 Output Format (Dit Rew HSYNC) (Dit Rew HSYNC) 6 R/W 0 Output Gook (DATACK) (Dit Rew HSYNC) (Dit Rew HSYNC) 2 R/W 0 Output Gook (DATACK) (Dit Rew HSYNC) (Dit Rew HSYNC) 2 R/W 0 Output Gook (DATACK) (Dit Rew HSYNC) (Dit Rew HSYNC) 2 R/W 0 Reserved Matte set to 1 (Dit Rew HSYNC) 6 R/W 0		-	
6 R/W 0 SOCOUT Output Signal 00b: Raw HSYNC 01b: Regenerated HSYNC 4 R/W 1 Preamp Bandwidth (Low Pass Filter) 10b: Fittered HSYNC 11b: Reserved 2 R/W 0 10b: Fittered HSYNC 11b: Reserved 10b: Fittered HSYNC 11b: Reserved 7 R/W 0 0 R/W 0 1 R/W 0 Output Format 10b: 4: 4: 4 Output 01b: 4: 4: 4 DDR Output 5 R/W 0 Output Format 10b: 4: 2: 2 DDR Output 10b: 4: 2: 2 DDR Output 5 R/W 0 Output Clock (DaTACK) 10b: 4: 2: 2 DDR Output 10b: 4: 2: 2 DDR Output 4 R/W 0 Output Clock (DaTACK) 10b: Internal Occilator (40MHz) 11b: 4: 2: 2 DDR Output 4 R/W 0 Output Clock (DaTACK) 10b: Internal Occilator (40MHz) 11b: Reserved 5 R/W 0 Output Clock (DaTACK) 10b: Internal Occilator (40MHz) 11b: Reserved 6 R/W 0 Reserved Matt be set to 0 10: 7/27 6 R/W 0 Reserved			O. Antina Januari, Antina Jilinta
S. R/W 0 10b: Filtered HSYNC 11b: Reserved 4 R/W 1 Preamp Bandwidth (Low Pass Filter) 10b: Filtered HSYNC 11b: Reserved 2 R/W 0 1 R/W 1 1 R/W 0 0 Output Format 00b: 4: 4: 4 Output 01b: 4: 4: 4 DDR Output 5 R/W 0 Output Format 00b: 4: 4: 4 Output 01b: 4: 2: 2 Output 01b: 4: 2: 2 Output 5 R/W 0 Output Format 00b: 4: 4: 4 Output 01b: 4: 2: 2 Output 01b: 4: 2: 2 Output 5 R/W 0 Output Format 00b: 4: 4: 4 Output 01b: 1: 2: 2 Output 01b: 4: 2: 2 Output 4 R/W 0 Output Format 01b: 4: 4: 2 DDR Output 01b: 4: 4: 2 DDR Output 5 R/W 0 Output Format 01b: A: 4: 2 Output 11b: 4: 2: 2 Output 01b: 4: 4: 2 DDR Output 6 R/W 0 Output Clock (DATACK) 00b: Maid Olib: 1: 7: 7: Prot Olock 01b: 7: 7: 7: 7: 7: 7: 7: 7: 7: 7: 7: 7: 7:			
4 R/W 1 Preamp Bandwidth (Low Pass Filter) 3 R/W 0 1 R/W 0 2 R/W 0 2 R/W 0 2 R/W 0 3 R/W 0 4 R/W 0 7 R/W 0 1 R/W 0 1 R/W 0 1 R/W 0 2 R/W 0 3 R/W 0 4 R/W 0 2 R/		SOGOUT Output Signal	
3 R/W 1 2 R/W 1 1 R/W 0 0 R/W 0 1 R/W 0 5 R/W 0 5 R/W 0 5 R/W 0 6 R/W 0 7 R/W 0 6 R/W 0 7 R/W 0 6 R/W 0 7 R/W 0 7 R/W 0 7 R/W 0 7 R/W 0 8 R/W 0 7 R/W 0 8 R/W 0 7 R/W 0 8 R/W 0 8 R/W 0 8 R/W 0 8 R/W 0 9 R/W 0	5 R/W 0		10b: Filtered HSYNC 11b: Reserved
3 R/W 1 2 R/W 1 1 R/W 0 0 R/W 0 1 R/W 0 5 R/W 0 5 R/W 0 5 R/W 0 6 R/W 0 7 R/W 0 6 R/W 0 7 R/W 0 6 R/W 0 7 R/W 0 7 R/W 0 7 R/W 0 7 R/W 0 8 R/W 0 7 R/W 0 8 R/W 0 7 R/W 0 8 R/W 0 8 R/W 0 8 R/W 0 8 R/W 0 9 R/W 0	4 R/W 1	Preamp Bandwidth (Low Pass Filter)	
1 2 R/W 0 1 R/W 0 R/W 0 0 R/W 0 00b: 4:4:4 Output 01b: 4:4:4 DDR Output 1 R R/W 0 00b: 4:4:4 Output 01b: 4:2:2 DDR Output 5 R/W 0 0utput Clock (DATACK) 00b: Red Clock 01b: 1/2 KPacl Clock 3 R/W 0 0utput Clock (DATACK) 00b: Red Clock 01b: 1/2 KPacl Clock 1 R/W 0 0utput Clock (DATACK) 00b: Red Clock 01b: 1/2 KPacl Clock 1 R/W 0 0utput Clock (DATACK) 00b: Red Clock 01b: 1/2 KPacl Clock 1 R/W 0 0utput Clock (DATACK) 00b: Red Clock 01b: 1/2 KPacl Clock 1 R/W 0 0utput Clock Phase 10b: Interum Clock 01b: 1/2 KPacl Clock 1 R/W 0 Reserved Mast be set to 1 10b: Regenerated Reserved 1 R/W 0 Reserved Mast be set to 1 10b: Weak 01b: Medium 10b: Strong 11b: Very Strong 2 R/W 1 3 R/W 0			
I R/W 0		-	
R R 0 R/W 0 R 10 7 R/W 0 Output Format 00b: 44:4:4 Output 01b: 4:4:2 DDR Output 6 R/W 0 4:22 Decimation Filter Enable 0:0b: 84:2:2 Output. 11b: 4:2:2 DDR Output 5 R/W 1 4:22 Decimation Filter Enable 0:Dis Net Olcok 01b: 1/2: XP: Net Olcok 7 R/W 0 Output Clock (DATACK) 00b: Filter Olcok 01b: 1/2: XP: Net Olcok 7 R/W 0 Output Clock (DATACK) 00b: Filter Olcok 01b: 1/2: XP: Net Olcok 1 R/W 0 Output Clock (DATACK) 00b: Filter Olcok 01b: 1/2: XP: Net Olcok 1 R/W 0 Output Clock Phase Set in 7/8 Steps 1 R/W 0 Reserved Must be set to 1 5 R/W 0 Reserved Must be set to 1 3 R/W 0 Reserved Must be set to 1 4 R/W 1 Spre: (SOGOUT/HSOUT/VSOUT/VSOUT/VSENT Ob: Weak 01b: Medium 10b: Strong 11b: Very Strong 2 R/W 1 <td></td> <td>-</td> <td></td>		-	
R 1C 7 R/W 0 Output Format ODb: 4: 4: 4 Output 01b: 4: 4: 2 DDR Output 5 R/W 1 4:22 Decimation Filter Enable 0: bisable 1: Enable 0: bisable 1: Enable 4 R/W 0 Output Clock (DATACK) 00b: Fixed Clock 01b: 1/2x Pixel Clock 3 R/W 0 Output Clock (DATACK) 10b: Internal Occiliator (400MHz) 11b: Reserved 2 R/W 1 Output Clock (DATACK) 10b: Internal Occiliator (400MHz) 11b: Reserved 3 R/W 0 Output Clock Phase Set in 7/8 steps 1 R/W 0 Reserved Must be set to 0 6 R/W 0 Reserved Must be set to 1 5 R/W 0 Rob DATA Output Drive Strength ODb: Weak 01b: Medium 10b: Strong 11b: Very Strong 2 R/W 0 Sync (SOGOUT/HSOUT/VSOUT/VEFIELD) Output Drive Strength ODb: Weak 01b: Medium 10b: Strong 11b: Very Strong 1 R/W 0 Clock Output Drive Strength ODb: HO 01b: Regenerated HSYNC 10b: Raw HSYNC 11b: Filtered HSYNC 6 R/W 0			
6 R/W 0 10b: 4.2: 2 Output 11b: 4: 2: 2 DDR Output 5 R/W 1 4.22 Decimation Filter Enable 0. Disable 1: Enable 4 R/W 0 Output Glock (DATACK) 00b: Fixed Clock 01b: 1/2x Fixel Clock 3 R/W 0 Output Glock (DATACK) 00b: Fixed Clock 01b: 1/2x Fixel Clock 1 R/W 0 Output Glock (DATACK) 00b: Fixed Clock 01b: 1/2x Fixel Clock 1 R/W 0 Output Glock (DATACK) 00b: Fixed Clock 01b: 1/2x Fixel Clock 1 R/W 0 Output Glock (DatATA Clock Phase 0 to 7/8T 0 R/W 0 Reserved Must be set to 0 0 6 R/W 0 Reserved Must be set to 1 0b: Weak 01b: Medium 10b: Strong 11b: Very Strong 1 R/W 0 Sync (SOGOUT/HSOUT/VSOUT/OEFIELD) Output Drive Strength 0b: Weak 01b: Medium 10b: Strong 11b: Very Strong 2 R/W 1 R/W 0 Clock Output Drive Strength 0 R/W 0 Clock Output Signal 00b: VO 01b: Regenerated HSYNC 10b:			
5 R/W 1 4.22.Decimation Fitter Enable 0. Disable 1: Enable 4 R/W 0 Output Clock (DATACK) 00b: Pixel Clock Olb: 1/2x Pixel Clock 3 R/W 1 Output Clock (DATACK) 10b: Internal Oscillator (40MHz) 11b: Reserved 2 R/W 1 Output Clock (DATACK) 10b: Internal Oscillator (40MHz) 11b: Reserved 2 R/W 1 Output Clock (DATACK) 10b: Internal Oscillator (40MHz) 11b: Reserved 0 R/W 0 Reserved Set in T/8 steps 0 R/W 0 Reserved Must be set to 0 6 R/W 0 Reserved Must be set to 1 5 R/W 0 Reserved Must be set to 1 4 R/W 1 Ob: Weak 01b: Medium 10b: Strong 11b: Very Strong 2 R/W 1 Ob: Weak 01b: Medium 10b: Strong 11b: Very Strong 2 R/W 1 Ob: Weak 01b: Medium 10b: Strong 11b: Very Strong 3 R/W 0 Clock Output Signal Ob: Ho 01b: Regenerated HSYNC 10b: Raw HSYNC	R 1C 7 R/W 0	Output Format	00b: 4: 4: 4 Output 01b: 4: 4: 4 DDR Output
4 R/W 0 Output Clock (DATACK) 00b: Pred Clock 01b: 1/2X Pixel Clock 3 R/W 0 10b: Internal Occillator (40MHz) 11b: Reserved 2 R/W 0 Output Clock Phase Set in 7/8 steps 1 R/W 0 Output Clock Phase Output Clock 11b: 1/2X Pixel Clock 0 R/W 0 Reserved Set in 7/8 steps 1 R/W 0 Reserved Must be set to 0 6 R/W 0 Reserved Must be set to 1 5 R/W 0 Reserved Must be set to 1 6 R/W 1 Reserved Must be set to 1 7 R/W 1 Reserved Must be set to 1 8 R/W 0 Syme (SOGOUT/HSOUT/VSOUT/OEFIELD) Output Drive Strength Ob: Weak 01b: Medium 10b: Strong 11b: Very Strong 1 R/W 0 Clock Output Drive Strength Ob: Wo 01b: Regenerated HSYNC 10b: Raw HSYNC 11b: Filtered HSYNC 6 R/W 0 HSOUT Output Signal Ob: VO 01b: Regenerated HSYNC 10b: Raw VSYNC 11b	6 R/W 0		10b: 4: 2: 2 Output 11b: 4: 2: 2 DDR Output
4 R/W 0 Output Clock (DATACK) 00b: Pred Clock 01b: 1/2X Pixel Clock 3 R/W 0 10b: Internal Occillator (40MHz) 11b: Reserved 2 R/W 0 Output Clock Phase Set in 7/8 steps 1 R/W 0 Output Clock Phase Output Clock 11b: 1/2X Pixel Clock 0 R/W 0 Reserved Set in 7/8 steps 1 R/W 0 Reserved Must be set to 0 6 R/W 0 Reserved Must be set to 1 5 R/W 0 Reserved Must be set to 1 6 R/W 1 Reserved Must be set to 1 7 R/W 1 Reserved Must be set to 1 8 R/W 0 Syme (SOGOUT/HSOUT/VSOUT/OEFIELD) Output Drive Strength Ob: Weak 01b: Medium 10b: Strong 11b: Very Strong 1 R/W 0 Clock Output Drive Strength Ob: Wo 01b: Regenerated HSYNC 10b: Raw HSYNC 11b: Filtered HSYNC 6 R/W 0 HSOUT Output Signal Ob: VO 01b: Regenerated HSYNC 10b: Raw VSYNC 11b	5 R/W 1	4:2:2 Decimation Filter Enable	0: Disable 1: Enable
3 R/W 0 10b: Internal Oscillator (40MHz) 11b: Reserved 2 R/W 1 Output Clock Phase Set in 7/3 steps 1 R/W 0 Barbonic Steps Set in 7/3 steps 0 R/W 0 Barbonic Steps Set in 7/3 steps 0 R/W 0 Reserved Must be set to 0 6 R/W 0 Reserved Must be set to 1 5 R/W 0 Reserved Must be set to 1 3 R/W 0 Reserved Must be set to 1 3 R/W 0 Reserved Must be set to 1 3 R/W 0 Sync (SOGOUT/HSOUT/VSOUT/OEFIELD) Output Drive Strength Ob: Weak 01b: Medium 10b: Strong 11b: Very Strong 2 R/W 0 Clock Output Drive Strength Ob: Weak 01b: Medium 10b: Strong 11b: Very Strong 6 R/W 0 Clock Output Signal Ob: HO 01b: Regenerated HSYNC 10b: Raw HSYNC 11b: Filtered HSYNC 6 R/W 0 VSOUT Output Signal Ob: VO 01b: Regenerated FIELD 010b: DE 011b: IFQ			
2 R/W 1 Output Clock Phase Set in T/8 steps 1 R/W 0 Oto 7/8T Oto 7/8T 0 R W 1 Reserved Must be set to 0 6 R/W 0 Reserved Must be set to 1 5 R/W 0 RGB DATA Output Drive Strength Ob: Weak 01b: Medium 10b: Strong 11b: Very Strong 4 R/W 1 Sync (SOGOUT/HSOUT/VSOUT/OEFIELD) Output Drive Strength Ob: Weak 01b: Medium 10b: Strong 11b: Very Strong 2 R/W 1 Reserved Ob: Weak 01b: Medium 10b: Strong 11b: Very Strong 1 R/W 0 Clock Output Drive Strength Ob: Weak 01b: Medium 10b: Strong 11b: Very Strong 1 R/W 0 Clock Output Drive Strength Ob: Weak 01b: Medium 10b: Strong 11b: Very Strong 4 R/W 0 Clock Output Signal Ob: HO 01b: Regenerated HSYNC 10b: Raw HSYNC 11b: Filtered HSYNC 5 R/W 0 VSOUT Output Signal Ob: HO 01b: Regenerated VSYNC 10b: Raw USYNC 11b: Filtered VSYNC 4 R/W 1 IR/W 0 O/E FIELD Output Signal Obb: Ho 111b: Reserved 1 R/W		oucput ologit (Brinkolt)	
I R/W 0 0 to 7/8T H R 0 R/W 0 Reserved F R 1 Reserved Must be set to 0 6 R/W 0 Reserved Must be set to 1 5 R/W 0 Reserved Must be set to 1 4 R/W 1 00b: Weak 01b: Medium 10b: Strong 11b: Very Strong 2 R/W 0 Sync (SOGOUT/HSOUT/VSOUT/			
0 R/W 0 *Bigger values mean more delay. R 10 7 R/W 1 Reserved Must be set to 0 5 R/W 0 RGB DATA Output Drive Strength Must be set to 1 4 R/W 1 RGB DATA Output Drive Strength Ob: Weak 01b: Medium 10b: Strong 11b: Very Strong 2 R/W 1 R/W 0 Sync (SOGOUT/HSOUT/VSOUT/OEFIELD) Output Drive Strength Ob: Weak 01b: Medium 10b: Strong 11b: Very Strong 2 R/W 1 R/W 0 Clock Output Drive Strength Ob: Weak 01b: Medium 10b: Strong 11b: Very Strong 7 R/W 0 HSOUT Output Signal Ob: HO 01b: Regenerated HSYNC 10b: Raw HSYNC 11b: Filtered HSYNC 6 R/W 0 VSOUT Output Signal Ob: VO 01b: Regenerated VSYNC 10b: Raw VSYNC 11b: Filtered VSYNC 4 R/W 1 Intered VSYNC Intered VSYNC 10b: Raw VSYNC 11b: Filtered VSYNC 7 R/W 0 VSOUT Output Signal Ob: VO 01b: Regenerated FIELD 010b: DE 011b: IRQ 7 R/W 0 IF FIELD Output Polarity 0 Odd Field=Low/Even Field=High 1: Odd Field=High/Even Field=Low 8 R/W <td></td> <td>Output Clock Phase</td> <td></td>		Output Clock Phase	
R 1D 7 R/W 1 Reserved Must be set to 0 6 R/W 0 Reserved Must be set to 1 5 R/W 0 Reserved 00b: Weak 01b: Medium 10b: Strong 11b: Very Strong 4 R/W 1 3 R/W 0 Sync (SOGOUT/HSOUT/VSOUT/VSOUT/OEFIELD) Output Drive Strength 00b: Weak 01b: Medium 10b: Strong 11b: Very Strong 2 R/W 0 Clock Output Drive Strength 00b: Weak 01b: Medium 10b: Strong 11b: Very Strong 0 R/W 1 R/W 0 Clock Output Drive Strength 00b: Weak 01b: Medium 10b: Strong 11b: Very Strong 0 R/W 1 R/W 0 Clock Output Signal 00b: HO 01b: Regenerated HSYNC 10b: Raw HSYNC 11b: Filtered HSYNC 4 R/W 1 3 R/W 0 0/E FIELD Output Signal 00b: HO 01b: Regenerated HSYNC 10b: Raw VSYNC 11b: Filtered VSYNC 4 R/W 1 3 R/W 0 0/E FIELD Output Signal 000b: FO 001b: Regenerated FIELD 010b: DE 011b: IRQ 2 R/W 0 0/E FIELD Output Signal 000b: FO 001b: Regenerated FIELD 010b: DE 011b: IRQ 100b to 111b: Reserved 100b to 111b:			
6 R/W 0 Reserved Must be set to 1 5 R/W 0 RGB DATA Output Drive Strength 00b: Weak 01b: Medium 10b: Strong 11b: Very Strong 4 R/W 0 Sync (SOGOUT/HSOUT/VSOUT/OEFIELD) Output Drive Strength 00b: Weak 01b: Medium 10b: Strong 11b: Very Strong 1 R/W 0 Clock Output Drive Strength 00b: Weak 01b: Medium 10b: Strong 11b: Very Strong 0 R/W 1 00b: Weak 01b: Medium 10b: Strong 11b: Very Strong 0 R/W 1 00b: Weak 01b: Medium 10b: Strong 11b: Very Strong 1 R/W 0 Clock Output Drive Strength 00b: Weak 01b: Medium 10b: Strong 11b: Very Strong 0 R/W 1 00b: Veak 01b: Medium 10b: Strong 11b: Very Strong 00b: Very Strong 1 R/W 0 Clock Output Signal 00b: VO 01b: Regenerated HSYNC 10b: Raw HSYNC 11b: Filtered HSYNC 4 R/W 0 O/E FIELD Output Signal 000b: FO 001b: Regenerated FIELD 010b: DE 011b: IRQ 2 R/W 0 O/E FIELD Output Signal 000b: to 111b: Reserved 1 R/W 0 Reserved Must be set to 0 0 5 R/W	0 R/W 0		*Bigger values mean more delay.
6 R/W 0 Reserved Must be set to 1 5 R/W 0 RGB DATA Output Drive Strength 00b: Weak 01b: Medium 10b: Strong 11b: Very Strong 3 R/W 0 Sync (SOGOUT/HSOUT/VSOUT/OEFIELD) Output Drive Strength 00b: Weak 01b: Medium 10b: Strong 11b: Very Strong 1 R/W 0 Clock Output Drive Strength 00b: Weak 01b: Medium 10b: Strong 11b: Very Strong 0 R/W 1 00b: Weak 01b: Medium 10b: Strong 11b: Very Strong 0 R/W 1 00b: Weak 01b: Medium 10b: Strong 11b: Very Strong 0 R/W 1 00b: Weak 01b: Medium 10b: Strong 11b: Very Strong 0 R/W 1 00b: Weak 01b: Medium 10b: Strong 11b: Very Strong 0 R/W 0 Clock Output Signal 00b: HO 01b: Regenerated HSYNC 10b: Raw HSYNC 11b: Filtered HSYNC 4 R/W 0 O/E FIELD Output Signal 00b: VO 01b: Regenerated FIELD 010b: DE 011b: IRQ 100b to 111b: Reserved 1 1 1 1 2 R/W 0 O/E FIELD Output Polarity 0: Odd Field=Low/Even Field=High 1: Odd Field=High/Even Field=Low 1 R/W 0 Reserved M	R 1D 7 R/W 1	Reserved	Must be set to 0
5 R/W 0 RGB DATA Output Drive Strength 00b: Weak 01b: Medium 10b: Strong 11b: Very Strong 4 R/W 1 3 R/W 0 2 R/W 1 1 R/W 0 2 R/W 0 1 R/W 0 0 R/W 0 1 R/W 0 0 R/W 0 1 R/W 0 2 R/W 0 5 R/W 0 5 R/W 0 6 R/W 0 7 R/W 0 8 R/W 0 9 0 0/E FIELD Output Signal 0 0/E FIELD Output Signal 000b: FO 001b: Regenerated			
4 R/W 1 3 R/W 0 3 R/W 0 2 R/W 1 1 R/W 0 1 R/W 0 0 R/W 1 1 R/W 0 0 R/W 1 0 R/W 1 0 R/W 0 1 R/W 0 2 R/W 0 5 R/W 0 5 R/W 0 5 R/W 0 5 R/W 0 7 R/W 0 7 0 VSOUT Output Signal 3 R/W 0 4 R/W 1 3 R/W 0 2 R/W 0 1 R/W 1			
3 R/W 0 Sync (SOGOUT/HSOUT/VSOUT/OEFIELD) Output Drive Strength 00b: Weak 01b: Medium 10b: Strong 11b: Very Strong 1 R/W 1 0 Clock Output Drive Strength 00b: Weak 01b: Medium 10b: Strong 11b: Very Strong 0 R/W 1 00b: Weak 01b: Medium 10b: Strong 11b: Very Strong 0 R/W 1 00b: Weak 01b: Medium 10b: Strong 11b: Very Strong 6 R/W 0 00b: Weak 01b: Regenerated HSYNC 10b: Raw HSYNC 11b: Filtered HSYNC 6 R/W 0 VSOUT Output Signal 00b: VO 01b: Regenerated VSYNC 10b: Raw VSYNC 11b: Filtered VSYNC 4 R/W 1 0 Strong 11b: Very Strong 00b: VO 01b: Regenerated VSYNC 10b: Raw VSYNC 11b: Filtered VSYNC 4 R/W 0 O/E FIELD Output Signal 000b: FO 001b: Regenerated FIELD 010b: DE 011b: IRQ 2 R/W 0 R/E 0 0/E FIELD Output Polarity 0: Odd Field=Low/Even Field=High 1: Odd Field=High/Even Field=Low 7			out thous and the mount top, ou ong the you'ry ou ong
2 R/W 1 2 1			
1 R/W 0 Clock Output Drive Strength 00b: Weak 01b: Medium 10b: Strong 11b: Very Strong 0 R/W 1 00b: HO 01b: Regenerated HSYNC 10b: Raw HSYNC 11b: Filtered HSYNC 6 R/W 0 0 5 R/W 0 0 5 R/W 0 0 5 R/W 0 0 5 R/W 0 0 4 R/W 1 00b: VO 01b: Regenerated VSYNC 10b: Raw VSYNC 11b: Filtered VSYNC 4 R/W 0 0/E FIELD Output Signal 000b: FO 001b: Regenerated FIELD 010b: DE 011b: IRQ 2 R/W 0 0/E FIELD Output Signal 000b: FO 001b: Regenerated FIELD 010b: DE 011b: IRQ 100b to 111b: Reserved 100b to 111b: Reserved 100b to 111b: Reserved 0 R/W 0 0/E FIELD Output Polarity 0: Odd Field=Low/Even Field=High 1: Odd Field=High/Even Field=Low R F 7		Sync (SUGUUT/HSUUT/VSUUT/UEFIELD) Output Drive Strength	UUD: Weak UTD: Medium TUD: Strong TTD: Very Strong
0 R/W 1 R 1E 7 R/W 0 5 R/W 0 5 R/W 0 4 R/W 1 3 R/W 0 7 R/W 0 8 R/W 0 9 R/W 0 1 R/W 0 2 R/W 0 1 R/W 1 0 R/W 0 1 R/W 1 0 R/W 0 7			
0 R/W 1 R IE 7 R/W 0 5 R/W 0 5 R/W 0 4 R/W 1 3 R/W 0 1 R/W 0 2 R/W 0 1 R/W 0 2 R/W 0 1 R/W 1 2 R/W 0 1 R/W 1 2 R/W 0 1 R/W 1 0 0/E FIELD Output Signal 000b: FO 001b: Regenerated FIELD 010b: DE 011b: IRQ 100b to 111b: Reserved 100b to 111b: Reserved 100b to 111b: Reserved 1 R/W 0 /E FIELD Output Polarity 0: Odd Field=Low/Even Field=High 7 - - - - 6 R/W 0 Reserved Must be set to 0 5 R/W 0 Reserved Must be set to 0 4 R/W 1 PLL HSYNC Filter Enable 0: Disable (Raw HSYNC)		Clock Output Drive Strength	00b: Weak 01b: Medium 10b: Strong 11b: Very Strong
R 1E 7 R/W 0 HSOUT Output Signal 00b: HO 01b: Regenerated HSYNC 10b: Raw HSYNC 11b: Filtered HSYNC 6 R/W 0 VSOUT Output Signal 00b: VO 01b: Regenerated VSYNC 10b: Raw VSYNC 11b: Filtered VSYNC 4 R/W 0 O/E FIELD Output Signal 00b: VO 01b: Regenerated VSYNC 10b: DE 011b: IRQ 3 R/W 0 O/E FIELD Output Signal 000b: FO 001b: Regenerated FIELD 010b: DE 011b: IRQ 1 R/W 0 O/E FIELD Output Signal 000b: FO 001b: Regenerated FIELD 010b: DE 011b: IRQ 10 R/W 0 O/E FIELD Output Polarity 0: Odd Field=Low/Even Field=High 1: Odd Field=High/Even Field=Low 7	0 R/W 1		
6 R/W 0 1 5 R/W 0 VSOUT Output Signal 4 R/W 1 3 R/W 0 2 R/W 0 1 R/W 1 0 0/E FIELD Output Signal 000b: FO 001b: Regenerated VSYNC 10b: Raw VSYNC 11b: Filtered VSYNC 1 R/W 0 0/E FIELD Output Signal 000b: FO 001b: Regenerated FIELD 010b: DE 011b: IRQ 1 R/W 1 100b to 111b: Reserved 100b to 111b: Reserved 0 R/W 0 0/E FIELD Output Polarity 0: Odd Field=Low/Even Field=High 1: Odd Field=High/Even Field=Low 7 7 7 7 7 6 R/W 0 Reserved Must be set to 0 5 R/W 0 Reserved Must be set to 0 4 R/W 1 PLL HSYNC Filter Enable 0: Disable (Raw HSYNC) 1: Enable (Filtered HSYNC) 3 R/W 0 HSYNC Filter Window Width Set in +/~100ns steps 2 R/W 0 HSYNC Filter Window Width Set in +/~100ns to +/~1600ns 1 R/W 1 R/W 1 #Bigger values mean wider window.		HSOUT Output Signal	00b; HO 01b; Regenerated HSYNC 10b; Raw HSYNC 11b; Filtered HSYNC
5 R/W 0 VSOUT Output Signal 00b: VO 01b: Regenerated VSYNC 10b: Raw VSYNC 11b: Filtered VSYNC 4 R/W 1 00b: VO 01b: Regenerated VSYNC 10b: Raw VSYNC 11b: Filtered VSYNC 3 R/W 0 0/E FIELD Output Signal 000b: FO 001b: Regenerated FIELD 010b: DE 011b: IRQ 2 R/W 0 1 R/W 1 0 R/W 0 0/E FIELD Output Polarity 0: Odd Field=Low/Even Field=High 0 R/W 0 C/E FIELD Output Polarity 0: Odd Field=Low/Even Field=High 7			
4 R/W 1 3 R/W 0 2 R/W 0 2 R/W 0 1 R/W 0 0 R/W 0 1 R/W 0 1 R/W 0 1 R/W 0 2 R/W 0 4 R/W 1 1 R/W 0 1 R/W 0 1 R/W 0 1 R/W 0 1 R/W 1 1 R/W 1 <td< td=""><td></td><td>VCOLITE Outer at Simul</td><td></td></td<>		VCOLITE Outer at Simul	
3 R/W 0 0/E FIELD Output Signal 000b: F0 001b: Regenerated FIELD 010b: DE 011b: IRQ 2 R/W 0 1 R/W 1 0 R/W 0 0/E FIELD Output Polarity 0: Odd Field=Low/Even Field=High 1: Odd Field=High/Even Field=Low 0 R/W 0 0/E FIELD Output Polarity 0: Odd Field=Low/Even Field=High 1: Odd Field=High/Even Field=Low 7 7 7 7 7 6 R/W 0 Reserved Must be set to 0 5 R/W 0 Reserved Must be set to 0 4 R/W 1 PLL HSYNC Filter Enable 0: Disable (Raw HSYNC) 1: Enable (Filtered HSYNC) 3 R/W 0 HSYNC Filter Window Width Set in +/~100ns steps +/~100ns steps 2 R/W 0 1 R/W 1 #Bigger values mean wider window.		voooi output agnai	UD. VOUID: Regenerated VSTNU IUD: Raw VSTNU I ID: Filtered VSYNC
2 R/W 0 1 R/W 1 0 R/W 1 0 R/W 0 7 0 6 R/W 0 7 0 8 R/W 0 8 R/W 0 9 R/W 1 100 to 111b: Reserved 0 100 Reserved Must be set to 0 4 R/W 0 Reserved 3 R/W 0 HSYNC Filter Enable 0 3 R/W 0 HSYNC Filter Window Width Set in +/~100ns steps 2 R/W 0 +/~100ms +/~100ms 1 R/W 1 *Bigger values mean wider window.			
1 R/W 1 0 R/W 0 0 R/W 0 0 R/W 0 7		O/E FIELD Output Signal	
0 R/W 0 O/E FIELD Output Polarity 0: Odd Field=Low/Even Field=High 1: Odd Field=High/Even Field=Low R 1F 7			100b to 111b: Reserved
0 R/W 0 O/E FIELD Output Polarity 0: Odd Field=Low/Even Field=High 1: Odd Field=High/Even Field=Low R 1F 7	1 R/W 1		
R 1F 7 Must be set to 0 6 R/W 0 Reserved Must be set to 0 5 R/W 0 Reserved Must be set to 0 4 R/W 1 PLL HSYNC Filter Enable 0: Disable (Raw HSYNC) 1: Enable (Filtered HSYNC) 3 R/W 0 HSYNC Filter Window Width Set in +/-100ns steps 2 R/W 0 HSYNC Filter Window Width Set in +/-100ns to +/-1600ns 1 R/W 1 #Bigger values mean wider window.		O/F FIFLD Output Polarity	0: Odd Field=1 ow/Even Field=High_1: Odd Field=High/Even Field=1 ow
6 R/W 0 Reserved Must be set to 0 5 R/W 0 Reserved Must be set to 0 4 R/W 1 PLL HSYNC Filter Enable 0: Disable (Raw HSYNC) 1: Enable (Filtered HSYNC) 3 R/W 0 HSYNC Filter Window Width Set in +/-100ns steps 2 R/W 0 +/-100ns to +/-1600ns +/-100ns to +/-1600ns			
5 R/W 0 Reserved Must be set to 0 4 R/W 1 PLL HSYNC Filter Enable 0: Disable (Raw HSYNC) 1: Enable (Filtered HSYNC) 3 R/W 0 HSYNC Filter Window Width Set in +/-100ns steps 2 R/W 0 HSYNC Filter Window Width Set in +/-100ns steps 1 R/W 1 *Bigger values mean wider window.		Perantind	Must he act to 0
4 R/W 1 PLL HSYNC Filter Enable 0: Disable (Raw HSYNC) 1: Enable (Filtered HSYNC) 3 R/W 0 HSYNC Filter Window Width Set in +/-100ns steps 2 R/W 0 HSYNC Filter Window Width Set in +/-100ns steps 1 R/W 1 *#Bigger values mean wider window.			
3 R/W 0 HSYNC Filter Window Width Set in +/-100ns steps 2 R/W 0 +/-100ns to +/-1600ns +/-100ns to +/-1600ns 1 R/W 1 **Bigger values mean wider window.			
2 R/W 0 +/-100ns to +/-1600ns 1 R/W 1 *Bigger values mean wider window.			
2 R/W 0 +/-100ns to +/-1600ns 1 R/W 1 *Bigger values mean wider window.		HSYNC Filter Window Width	Set in +/-100ns steps
1 R/W 1 *Bigger values mean wider window.			
		1	
		-	

R 20	7 R/W	1 VSYNC Output Timing Automatic Setting Enable (Except Raw VSYNC)	0: Disable 1: Enable
	6 A	0 VSYNC Output (VO, Regenerated VSYNC) Start Position	Set in 1 line steps
	5 A	0	-64 to +63
	4 A	0 0	*Set in two's complement.
	3 A 2 A		*VSYNC Output Start Position with reference to the leading edge of VSYNC Input.
	1 A 0 A	0	
R 21	7 A	0	
1\ 21	6		
	5 A	0 VSYNC Output (VO, Regenerated VSYNC) Pulse Width	Set in 1 line steps
	4 A		1 to 63
	3 A	0	
	2 A	0	
	1 A	0	
	0 A	0	
R 22	7 R/W	1 PLL COAST Timing Automatic Setting Enable	0: Disable 1: Enable
	6 A	0 PLL Pre-Coast (PLL COAST Start Position)	Set in 1 line steps
	5 A	0 *PLL free-runs during PLL COAST	0 to 127
	4 A	0	*PLL COAST Start Position prior to the leading edge of VSYNC Input.
	3 A	0	
	2 A	0	
	1 A	0	
	0 A	0	
R 23	7		
	6 A	0 PLL Post-Coast (PLL COAST End Position)	Set in 1 line steps
	5 A	0 *PLL free-runs during PLL COAST	0 to 127
	4 A	0	*PLL COAST End Position after the leading edge of VSYNC Input.
	3 A	0	
	2 A	0	
	1 A 0 A	0	
R 24	0 A	1	
R 24			
		0 Clamp Bro-Coast (Clamp COAST Stort Desition)	Set in 1 line stone
	6 R/W	0 Clamp Pre-Coast (Clamp COAST Start Position)	Set in 1 line steps
	5 R/W	0 *Clamp stops during Clamp COAST	0 to 127
	5 R/W 4 R/W	0 *Clamp stops during Clamp COAST 0	
	5 R/W 4 R/W 3 R/W	0 *Clamp stops during Clamp COAST 0 0	0 to 127
	5 R/W 4 R/W 3 R/W 2 R/W	0 *Clamp stops during Clamp COAST 0 1	0 to 127
	5 R/W 4 R/W 3 R/W 2 R/W 1 R/W	0 *Clamp stops during Clamp COAST 0 0 1 1 1	0 to 127
R 25	5 R/W 4 R/W 3 R/W 2 R/W	0 *Clamp stops during Clamp COAST 0 1	0 to 127
R 25	5 R/W 4 R/W 3 R/W 2 R/W 1 R/W 0 R/W	0 *Clamp stops during Clamp COAST 0 0 1 1 1	0 to 127
R 25	5 R/W 4 R/W 3 R/W 2 R/W 1 R/W 0 R/W 7	0 *Clamp stops during Clamp COAST 0 1 1 1 0 Clamp Post-Coast (Clamp COAST End Position)	0 to 127 *Clamp COAST Start Position prior to the leading edge of VSYNC Input.
R 25	5 R/W 4 R/W 3 R/W 2 R/W 1 R/W 0 R/W 7	0 *Clamp stops during Clamp COAST 0 1 1 1 0 Clamp Post-Coast (Clamp COAST End Position)	0 to 127 *Clamp COAST Start Position prior to the leading edge of VSYNC Input.
R 25	5 R/W 4 R/W 3 R/W 2 R/W 1 R/W 0 R/W 7 6 6 R/W 5 R/W 4 R/W 3 R/W	0 *Clamp stops during Clamp COAST 1 1 1 1 0 Clamp Post-Coast (Clamp COAST End Position) 0 *Clamp stops during Clamp COAST	0 to 127 *Clamp COAST Start Position prior to the leading edge of VSYNC Input.
R 25	5 R/W 4 R/W 3 R/W 2 R/W 1 R/W 0 R/W 7 6 6 R/W 5 R/W 4 R/W	0 *Clamp stops during Clamp COAST 0 0 1 0 0 0 0 Clamp Post-Coast (Clamp COAST End Position) 0 *Clamp stops during Clamp COAST 1 1	0 to 127 *Clamp COAST Start Position prior to the leading edge of VSYNC Input.
R 25	5 R/W 4 R/W 3 R/W 2 R/W 1 R/W 0 R/W 7 - 6 R/W 5 R/W 4 R/W 3 R/W 1 R/W 1 R/W 2 R/W	0 *Clamp stops during Clamp COAST 0 0 1 0 0 Clamp Post-Coast (Clamp COAST End Position) 0 *Clamp stops during Clamp COAST 1 0 1 0 1 0 0 *Clamp stops during Clamp COAST 1 0 0 0	0 to 127 *Clamp COAST Start Position prior to the leading edge of VSYNC Input.
	5 R/W 4 R/W 3 R/W 2 R/W 1 R/W 0 R/W 5 R/W 5 R/W 4 R/W 3 R/W 1 R/W 0 R/W 1 R/W 2 R/W 3 R/W 1 R/W 0 R/W	0 *Clamp stops during Clamp COAST 1 1 1 1 0 Clamp Post-Coast (Clamp COAST End Position) 0 *Clamp stops during Clamp COAST 1 1 1 1 1 1 1 1 1 1 1 1 1 1	0 to 127 *Clamp COAST Start Position prior to the leading edge of VSYNC Input.
R 25	5 R/W 4 R/W 3 R/W 2 R/W 1 R/W 0 R/W 7 0 6 R/W 5 R/W 4 R/W 3 R/W 2 R/W 1 R/W 0 R/W 7 0 7 0 7 0	0 *Clamp stops during Clamp COAST 0 0 1 0 0 Clamp Post-Coast (Clamp COAST End Position) 0 *Clamp stops during Clamp COAST 1 0 1 0 1 0 0 *Clamp stops during Clamp COAST 1 0 0 0	0 to 127 *Clamp COAST Start Position prior to the leading edge of VSYNC Input.
	5 R/W 4 R/W 3 R/W 2 R/W 1 R/W 0 R/W 7 6 5 R/W 4 R/W 3 R/W 4 R/W 3 R/W 4 R/W 5 R/W 4 R/W 3 R/W 6 6	0 *Clamp stops during Clamp COAST 0 0 1 0 0 Clamp Post-Coast (Clamp COAST End Position) 0 *Clamp stops during Clamp COAST 1 0 1 0 1 0 0 *Clamp stops during Clamp COAST 1 0 0 0	0 to 127 *Clamp COAST Start Position prior to the leading edge of VSYNC Input.
	5 R/W 4 R/W 3 R/W 2 R/W 1 R/W 0 R/W 7 6 6 R/W 5 R/W 1 R/W 2 R/W 3 R/W 4 R/W 3 R/W 2 R/W 3 R/W 0 R/W 7 6 5 5	0 *Clamp stops during Clamp COAST 0 0 1 0 0 Clamp Post-Coast (Clamp COAST End Position) 0 *Clamp stops during Clamp COAST 1 0 1 0 1 0 0 *Clamp stops during Clamp COAST 1 0 0 0	0 to 127 *Clamp COAST Start Position prior to the leading edge of VSYNC Input.
	5 R/W 4 R/W 3 R/W 2 R/W 1 R/W 0 R/W 7 - 6 R/W 5 R/W 4 R/W 3 R/W 2 R/W 1 R/W 3 R/W 4 H	0 *Clamp stops during Clamp COAST 0 1 1 1 1 0 0 Clamp Post-Coast (Clamp COAST End Position) 0 *Clamp stops during Clamp COAST 1 0 0 *Clamp stops during Clamp COAST 1 0 0 1 0 0 0 0 0 0	0 to 127 *Clamp COAST Start Position prior to the leading edge of VSYNC Input. Set in 1 line steps 0 to 127 *Clamp COAST End Position after the leading edge of VSYNC Input.
	5 R/W 4 R/W 3 R/W 2 R/W 1 R/W 0 R/W 7 6 5 R/W 4 R/W 3 R/W 4 R/W 5 R/W 4 R/W 6 6 5 4 3 R/W	0 *Clamp stops during Clamp COAST 1 0 1 0 0 Clamp Post-Coast (Clamp COAST End Position) 0 *Clamp stops during Clamp COAST 1 0 1 0 1 0 0 *Clamp stops during Clamp COAST 1 0 0 0 0 0 0 0 0 DE Start Position	0 to 127 *Clamp COAST Start Position prior to the leading edge of VSYNC Input. Set in 1 line steps 0 to 127 *Clamp COAST End Position after the leading edge of VSYNC Input. Set in 1 pixel steps Set in 1 pixel steps
	5 R/W 4 R/W 3 R/W 2 R/W 1 R/W 0 R/W 5 R/W 4 R/W 3 R/W 2 R/W 6 R/W 6 5 4 R/W 2 R/W	0 *Clamp stops during Clamp COAST 1 0 1 0 1 0 0 Clamp Post-Coast (Clamp COAST End Position) 0 *Clamp stops during Clamp COAST 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 to 127 *Clamp COAST Start Position prior to the leading edge of VSYNC Input. Set in 1 line steps 0 to 127 *Clamp COAST End Position after the leading edge of VSYNC Input.
	5 R/W 4 R/W 3 R/W 2 R/W 1 R/W 0 R/W 7 6 6 R/W 3 R/W 3 R/W 4 R/W 3 R/W 2 R/W 1 R/W 5 5 4 R/W 3 R/W 2 R/W 1 R/W	0 *Clamp stops during Clamp COAST 1 0 1 0 1 0 0 Clamp Post-Coast (Clamp COAST End Position) 0 *Clamp stops during Clamp COAST 0 *Clamp stops during Clamp COAST 1 0 0 *Clamp stops during Clamp COAST 1 0 0 0 1 0 0 0 0 0 0 0 0 0	0 to 127 *Clamp COAST Start Position prior to the leading edge of VSYNC Input. Set in 1 line steps 0 to 127 *Clamp COAST End Position after the leading edge of VSYNC Input. Set in 1 pixel steps Set in 1 pixel steps
R 26	5 R/W 4 R/W 3 R/W 2 R/W 1 R/W 2 R/W 1 R/W 0 R/W 7 R/W 5 R/W 4 R/W 3 R/W 2 R/W 1 R/W 6 6 5 8 4 3 3 R/W 1 R/W 1 R/W 0 R/W 1 R/W 0 R/W	0 *Clamp stops during Clamp COAST 1 0 1 0 0 Clamp Post-Coast (Clamp COAST End Position) 0 *Clamp stops during Clamp COAST 1 0 0 *Clamp stops during Clamp COAST 1 0 0 *Clamp stops during Clamp COAST 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1 0	0 to 127 *Clamp COAST Start Position prior to the leading edge of VSYNC Input. Set in 1 line steps 0 to 127 *Clamp COAST End Position after the leading edge of VSYNC Input. Set in 1 pixel steps Set in 1 pixel steps
	5 R/W 4 R/W 3 R/W 2 R/W 1 R/W 0 R/W 5 R/W 4 R/W 3 R/W 2 R/W 1 R/W 3 R/W 2 R/W 1 R/W 0 R/W 1 R/W 0 R/W	0 *Clamp stops during Clamp COAST 1 0 1 0 1 0 0 Clamp Post-Coast (Clamp COAST End Position) 0 *Clamp stops during Clamp COAST 0 *Clamp stops during Clamp COAST 0 *Clamp stops during Clamp COAST 0 0 1 0 0 0	0 to 127 *Clamp COAST Start Position prior to the leading edge of VSYNC Input. Set in 1 line steps 0 to 127 *Clamp COAST End Position after the leading edge of VSYNC Input. Set in 1 pixel steps Set in 1 pixel steps
R 26	5 R/W 4 R/W 3 R/W 2 R/W 1 R/W 0 R/W 5 R/W 3 R/W 2 R/W 3 R/W 4 R/W 3 R/W 2 R/W 0 R/W 0 R/W 1 R/W 0 R/W 1 R/W 2 R/W 1 R/W 0 R/W 1 R/W 0 R/W 1 R/W 0 R/W 1 R/W 0 R/W 0 R/W	0 *Clamp stops during Clamp COAST 1	0 to 127 *Clamp COAST Start Position prior to the leading edge of VSYNC Input. Set in 1 line steps 0 to 127 *Clamp COAST End Position after the leading edge of VSYNC Input. Set in 1 pixel steps Set in 1 pixel steps
R 26	5 R/W 4 R/W 3 R/W 2 R/W 1 R/W 2 R/W 1 R/W 0 R/W 7 R/W 5 R/W 4 R/W 3 R/W 2 R/W 1 R/W 0 R/W 7 6 5 8 4 3 3 R/W 1 R/W 3 R/W 2 R/W 6 6 5 R/W 1 R/W 0 R/W 1 R/W 0 R/W 6 R/W 6 R/W 6 R/W 5 R/W	0 *Clamp stops during Clamp COAST 1 0 1 0 0 Clamp Post-Coast (Clamp COAST End Position) 0 *Clamp stops during Clamp COAST 1 0 0 *Clamp stops during Clamp COAST 1 0 0 *Clamp stops during Clamp COAST 1 0 0 0 0 0 0 0 0 0 1 0 0 0 1 0 1 0 1 0 1 0 1 0 1 1	0 to 127 *Clamp COAST Start Position prior to the leading edge of VSYNC Input. Set in 1 line steps 0 to 127 *Clamp COAST End Position after the leading edge of VSYNC Input. Set in 1 pixel steps Set in 1 pixel steps
R 26	5 R/W 4 R/W 3 R/W 2 R/W 1 R/W 0 R/W 5 R/W 4 R/W 3 R/W 2 R/W 1 R/W 3 R/W 2 R/W 1 R/W 0 R/W 1 R/W 1 R/W 1 R/W 1 R/W 1 R/W 1 R/W 2 R/W 3 <t< td=""><td>0 *Clamp stops during Clamp COAST 1 0 1 0 1 0 0 Clamp Post-Coast (Clamp COAST End Position) 0 *Clamp stops during Clamp COAST 0 *Clamp stops during Clamp COAST 0 *Clamp stops during Clamp COAST 0 0 1 0 0 0 0 0 0 0 0 0 1 0 1 1 1 1 1 1</td><td>0 to 127 *Clamp COAST Start Position prior to the leading edge of VSYNC Input. Set in 1 line steps 0 to 127 *Clamp COAST End Position after the leading edge of VSYNC Input. Set in 1 pixel steps Set in 1 pixel steps</td></t<>	0 *Clamp stops during Clamp COAST 1 0 1 0 1 0 0 Clamp Post-Coast (Clamp COAST End Position) 0 *Clamp stops during Clamp COAST 0 *Clamp stops during Clamp COAST 0 *Clamp stops during Clamp COAST 0 0 1 0 0 0 0 0 0 0 0 0 1 0 1 1 1 1 1 1	0 to 127 *Clamp COAST Start Position prior to the leading edge of VSYNC Input. Set in 1 line steps 0 to 127 *Clamp COAST End Position after the leading edge of VSYNC Input. Set in 1 pixel steps Set in 1 pixel steps
R 26	5 R/W 4 R/W 3 R/W 2 R/W 1 R/W 0 R/W 5 R/W 5 R/W 3 R/W 2 R/W 1 R/W 3 R/W 2 R/W 1 R/W 0 R/W 1 R/W 0 R/W 5 4 3 R/W 2 R/W 1 R/W 6 6 5 4 3 R/W 2 R/W 1 R/W 0 R/W 1 R/W 4 R/W 5 R/W 5 R/W 4 R/W 3 R/W	0 *Clamp stops during Clamp COAST 1	0 to 127 *Clamp COAST Start Position prior to the leading edge of VSYNC Input. Set in 1 line steps 0 to 127 *Clamp COAST End Position after the leading edge of VSYNC Input. Set in 1 pixel steps Set in 1 pixel steps
R 26	5 R/W 4 R/W 3 R/W 2 R/W 1 R/W 2 R/W 1 R/W 5 R/W 4 R/W 3 R/W 2 R/W 4 R/W 3 R/W 2 R/W 1 R/W 6 6 5 R/W 1 R/W 0 R/W 7 7 6 6 5 R/W 1 R/W 0 R/W 1 R/W 0 R/W 5 R/W 4 R/W 3 R/W 2 R/W	0 *Clamp stops during Clamp COAST 1 0 1 0 0 (Clamp Post-Coast (Clamp COAST End Position)) 0 *Clamp stops during Clamp COAST 1 *Clamp Stops during Clamp COAST 0 *Clamp Stops during Clamp COAST 1 *Clamp Stops during Clamp Stops during Clamp CoAST 1 *Clamp Stops during Clamp Stops during Clamp Stops during Sto	0 to 127 *Clamp COAST Start Position prior to the leading edge of VSYNC Input. Set in 1 line steps 0 to 127 *Clamp COAST End Position after the leading edge of VSYNC Input. Set in 1 pixel steps Set in 1 pixel steps
R 26	5 R/W 4 R/W 3 R/W 2 R/W 1 R/W 0 R/W 5 R/W 5 R/W 3 R/W 2 R/W 1 R/W 3 R/W 2 R/W 1 R/W 0 R/W 1 R/W 0 R/W 5 4 3 R/W 2 R/W 1 R/W 6 6 5 4 3 R/W 2 R/W 1 R/W 0 R/W 1 R/W 4 R/W 5 R/W 5 R/W 4 R/W 3 R/W	0 *Clamp stops during Clamp COAST 1	0 to 127 *Clamp COAST Start Position prior to the leading edge of VSYNC Input. Set in 1 line steps 0 to 127 *Clamp COAST End Position after the leading edge of VSYNC Input. Set in 1 pixel steps Set in 1 pixel steps


R 28	7		
	6		
	5		
	4		
	3 R/W 0	DE Width	Set in 1 pixel steps
	2 R/W 1		
	1 R/W 0		
	0 R/W 1		
R 29	7 R/W 0		
11 25	6 R/W 0		
	5 R/W 0		
	4 R/W 0		
	3 R/W 0		
	2 R/W 0		
	1 R/W 0		
	0 R/W 0		
R 2A	7		
	6 R/W 0	V-Blank Front Porch (DE Low Start Position)	Set in 1 line steps
	5 R/W 0	4	0 to 127
	4 R/W 0	4	*V-Blank Start Position prior to the leading edge of VSYNC Output.
1	3 R/W 0		
1	2 R/W 0		
	1 R/W 0		
	0 R/W 1		
R 2B	7		
	6 R/W 0	V-Blank Back Porch (DE Low Start Position)	Set in 1 line steps
	5 R/W 1		0 to 127
	4 R/W 0		*V-Blank End Position after the trailing edge of VSYNC Output.
	3 R/W 0		
	2 R/W 1	•	
	1 R/W 1		
	0 R/W 0	•	
R 2C	7 R 1	Reserved	
R 20		Reserved	
	6 R 1		
	5 R 1	Reserved	
	4 R 1		
	3 R 1	Port-1 Input Sync Type Detection	00b: Separate Sync 01b: Composite Sync
	2 R 1		10b: Sync on Video 11b: No Signal
		Port-0 Input Sync Type Detection	00b: Separate Sync 01b: Composite Sync
	0 R 1		10b: Sync on Video 11b: No Signal
R 2D	7		
	6		
	5		
	4		
	3		
	2 R 0	VSYNC Input Polarity Detection	0: Active-Low 1: Active-High
1		HSYNC Input Polarity Detection	0: Active-Low 1: Active-High
1	0 R 0	Sync on Video 2–level/3–level Detection	0: 2-level 1: 3-level
R 2E		Interlace Detection	0: Progressive 1: Interlace
	6 R 0	Vertical Total Line Measurement	Reports the number of vertical total lines
1	5 R 0		on the active input counted in 1/4 line unit.
	4 R 0	1	
	3 R 0	1	
1	2 R 0	1	
1	1 R 0	1	
	0 R 0	4	
R 2F	7 R 0	4	
R ZF		4	
		4	
	5 R 0	4	
	4 R 0	4	
1	3 R 0	4	
	2 R 0	4	
1	1 R 0		
	0 R 0		

R 30	7 R	0 VSYNC Input Pulse Width Measurement	Reports the number of VSYNC Pulse Width
	6 R	D	on the active input counted in 1/4 line unit.
	5 R	D	
	4 R	D	
	3 R	D	
	2 R	D	
	1 R	D	
	0 R	D	
R 31	7		
	6		
	5		
	4		
	3		
	2 R/W	0 Reserved	Must be set to 0
	1 R/W	0 Reference Clock Enable from Clamp-pin for HSYNC Period Measurement	0: Disable 1: Enable
	0 R/W	1 HSYNC Period Measurement Run (Must be stop before reading the result)	0: Stop 1: Run
R 32	7		
	6		
	5		
	4		
	3 R	0 HSYNC Period Measurement Result	
	2 R	D	
	1 R	D	
	0 R	D	
R 33	7 R	<u>0</u>	
	6 R	D	
	5 R	D	
	4 R	D	
	3 R	D	
	2 R	D	
	1 R	D	
	0 R	D	
R 34	7 R	0	
	6 R	D	
	5 R	D	
	4 R	D	
	3 R	D	
	2 R	D	
	1 R	D	
	0 R	D	
R 35	7 EVRC	0 Sync Signal Valid Flag	0: Detect 1: Not Detect
	6 EVRC	0 Reserved	
	5 EVRC	0 Reserved	
	4 EVRC	0 Port-1 Input Sync Type Change Detection	0: Detect 1: Not Detect
	3 EVRC	0 Port-0 Input Sync Type Change Detection	0: Detect 1: Not Detect
1	2 EVRC	0 Input Signal Format Change Detection	0: Detect 1: Not Detect
	1 EVRC	0 Input HSYNC Missing Edge Detection	0: Detect 1: Not Detect
	0 EVRC	0 Input HSYNC Extraneous Edge Detection	0: Detect 1: Not Detect
R 36	7 R/W	0 Sync Processor IRQ Output Enable by Event Recorder (R34[7])	0: Disable 1: Enable
	6 R/W	0 Reserved	
	5 R/W	0 Reserved	
	4 R/W	0 Sync Processor IRQ Output Enable by Event Recorder (R34[4])	0: Disable 1: Enable
	2 R/W	0 Sync Processor IRQ Output Enable by Event Recorder (R34[3])	0: Disable 1: Enable
	2 R/W	0 Sync Processor IRQ Output Enable by Event Recorder (R34[2])	0: Disable 1: Enable
	1 R/W	0 Sync Processor IRQ Output Enable by Event Recorder (R34[1])	0: Disable 1: Enable
	0 R/W	0 Sync Processor IRQ Output Enable by Event Recorder (R34[0])	0: Disable 1: Enable
R 37	7 R/W	0 Input Signal Format Change Detection	000b: 0.5lines 001b: 1line 010b: 2lines 011b: 4lines
1	6 R/W	 Threshold of Vertical Total Line Change 	100b: 8lines 101b: 16lines 110b: 32lines 111b: Do not watching
	5 R/W	D	
	4 R/W	0 Input Signal Format Change Detection	00b: 0.5lines 01b: 1line 10b: 4lines 11b: Do not watching
	2 R/W	0 - Threshold of VSYNC Input Pulse Width	
	2 R/W	0 Input Signal Format Change Detection	000b: 8 001b: 16 010b: 32 011b: 64
	1 R/W	D - Threshold of HSYNC Period	100b: 128 101b: 256 110b: 512 111b: Do not watching
	0 R/W	D	
-			

Sync Signal Flow

< Sync Processing Block Diagram >

Register Function

R00 Revision Code 21h can be read

R01[4] Chip Power-On

1: all the circuits power-on for normal operation.

0: the chip is set to stand-by mode. In stand-by mode, several circuits are active for sync monitoring. Stan-by mode can be triggered by RST-pin.

R01[4]	RST-pin	Status	ADC/PLL	Serial Interface	SOG Slicer	Sync Processor
1	Low	Normal Operation	Power-On	Power-On	Power-On	Power-On
1	High	Stand-by	Power-Down	Power-On	Power-On	Power-On
0	Low	Stand-by	Power-Down	Power-On	Power-On	Power-On
0	High	Stand-by	Power-Down	Power-On	Power-On	Power-On

< Power Control >

* During the stand-by mode, all the output pins except SOGOUT and SDA are disable (Hi-Z).

R01[3] Auto Output Enable

1: all the output pins are automatically enabled regardless of "Output Enable except SOGOUT (R01[2])" or "SOGOUT Output Enable (R01[1])" while input sync is detected. Input sync detection is processed in Sync Processor.

* Output Pins are RED<9:0>, GREEN<9:0>, BLUE<9:0>, DATACK, SOGOUT, HSOUT, VSOUT, and O/E FIELD

R01[2] Output Enable (Except SOGOUT)

1: Output pins except SOGOUT-pin are enabled.

R01[1] SOGOUT Output Enable

1: SOGOUT-pin is enabled.

	< Output Control >										
R01[3]	R01[2]	R01[1]	Input Signal	Output Signal except SOGOUT	SOGOUT						
0	0	0	Inactive	Disable	Disable						
0	0	0	Active	Disable	Disable						
0	0	1	Inactive	Disable	Enable						
0	0	1	Active	Disable	Enable						
0	1	0	Inactive	Enable	Disable						
0	1	0	Active	Enable	Disable						
0	1	1	Inactive	Enable	Enable						
0	1	1	Active	Enable	Enable						
1	0	0	Inactive	Disable	Disable						
1	0	0	Active	Enable	Enable						
1	0	1	Inactive	Disable	Enable						
1	0	1	Active	Enable	Enable						
1	1	0	Inactive	Enable	Disable						
1	1	0	Active	Enable	Enable						
1	1	1	Inactive	Enable	Enable						
1	1	1	Active	Enable	Enable						

< Output Control >

* When disabled, output pins are Hi-Z.

* SDA-pin is always enabled.

R01[0] Reserved * Must be set to 0 (Default Value: 0)

R02[6:5] Oversampling

Oversampling is the function that enables sampling analog signals with higher rate than the pixel clock and downsampling to the pixel clock rate with the decimation filter.

When setting it as oversampling, setting of the PLL Divider Ratio (R02 [4:0] /R03 [7:0]) and the Charge Pump Current (R04 [4:2]) is unnecessary, but it's necessary to change the VCO frequency range (R04 [6:5]).

Every time the oversampling setting is increased one step, VCO frequency range also must be increased one step.

00b: Normal operation 01b: 2x Oversampling 10b: 4x Oversampling 11b: 8x Oversampling

(ex) In case of 480i (HSYNC Frequency: 15.75kHz / Pixel Clock: 13.51MHz)

Oversampling(R02[6:5])	VCO Range(R04[6:5])	Charge Pump(R04[4:2])
1x(00b)	1/8(00b)	250uA(011b)
2x(01b)	1/4(01b)	250uA(011b)
4x(10b)	1/2(10b)	250uA(011b)
8x(11b)	1/1(11b)	250uA(011b)

* Under the output of 4:4:4 DDR (R1C[7:6]=01b) or 4:2:2 DDR (R1C[7:6]=11b), the oversampling function can't be used.

* "Internal PLL Divider Ratio" can't be over 8191.

"Internal PLL Divider Ratio" = PLL Divider Ratio setting * Oversampling setting

* Sampling frequency can't be over 170MHz

Sampling frequency = Input HSYNC frequency * PLL Divider Ratio * Oversampling setting

* Even if oversampling setting is changed, the output clock frequency and the output data rate don't change.

* The latency of the data output changes according to the oversampling setting.

R02[4:0]/R03[7:0] PLL Divider Ratio

The internal PLL generates sampling clock from HSYNC. Set the number of horizontal total pixels per line according to the input signal. *When the external clock input which is supplied through EXTCLK/COAST-pin is used as sampling clock (R04[1:0]=10b or 11b), PLL Divider Ratio setting is unnecessary.

R04[7] Reserved *Must be set to 1 (Default value: 1)

R04[6:5] VCO Frequency Range *Set according to "Recommended PLL Settings"

R04[4:2] Charge Pump Current *Set according to "Recommended PLL Settings"

R04[1:0] Sampling Clock Source

Set to 00b, when the internal PLL generates sampling clock (pixel clock) from the HSYNC input.

When an external clock input supplied through EXTCLK/COAST-pin is used and the clock frequency is from 10 to 20MHz, set to 10b.

When an external clock input supplied through EXTCLK/COAST-pin is used and the clock frequency is from 20 to 170MHz, set to 11b.

* Even though the external clock is used as sampling clock(R04[1:0]=10b or 11b), setting like a Recommended PLL Settings are necessary.

* When the external clock is used as sampling clock(R04[1:0]=10b or 11b), PLL COAST and Clamp COAST can not be input (R16[4]=1, R16[0]=1).

	Hsync	Pixel	PLL		Sampling Cl	ock: Internal	Sampling Clock: External							
	[kHz]	Rate	Divider	R04[6:5]	R04[4:2]	R04[1:0]	R04	R04[6:5]	R04[4:2]	R04[1:0]	R04			
480i	15.750	13.51	858	00	011	00	8C	00	000	10	82			
480p	31.469	27.00	858	01	011	00	AC	01	000	11	A3			
720p	45.000	74.25	1650	10	101	00	D4	10	000	11	C3			
1080i	33.750	74.25	2200	10	100	00	D0	10	000	11	C3			
1080p	67.500	148.50	2200	11	101	00	F4	11	000	11	E3			
VGA-60	31.479	25.18	800	01	011	00	AC	01	000	11	A3			
VGA-72	37.861	31.50	832	01	100	00	B0	01	000	11	A3			
VGA-75	37.500	31.50	840	01	100	00	B0	01	000	11	A3			
VGA-85	43.269	36.00	832	01	101	00	B4	01	000	11	A3			
SVGA-56	35.156	36.00	1024	01	100	00	B0	01	000	11	A3			
SVGA-60	37.879	40.00	1056	01	101	00	B4	01	000	11	A3			
SVGA-72	48.077	50.00	1040	10	100	00	D0	10	000	11	C3			
SVGA-75	46.875	49.50	1056	10	100	00	D0	10	000	11	C3			
SVGA-85	53.674	56.25	1048	10	100	00	D0	10	000	11	C3			
XGA-60	48.363	65.00	1344	10	100	00	D0	10	000	11	C3			
XGA-70	56.476	75.00	1328	10	101	00	D4	10	000	11	C3			
XGA-75	60.023	78.75	1312	10	101	00	D4	10	000	11	C3			
XGA-80	64.000	85.50	1336	11	011	00	EC	11	000	11	E3			
XGA-85	68.677	94.50	1376	11	100	00	F0	11	000	11	E3			
SXGA-60	63.981	108.00	1688	11	100	00	F0	11	000	11	E3			
SXGA-75	79.976	135.00	1688	11	101	00	F4	11	000	11	E3			
SXGA-85	91.146	157.50	1728	11	101	00	F4	11	000	11	E3			
UXGA-60	75.000	162.00	2160	11	101	00	F4	11	000	11	E3			

< Recommended PLL Settings >

* Other than the settings above, please refer to the other document, "THC7984 PLL Setting Sheet".

R05[5:0] Sampling Clock Phase

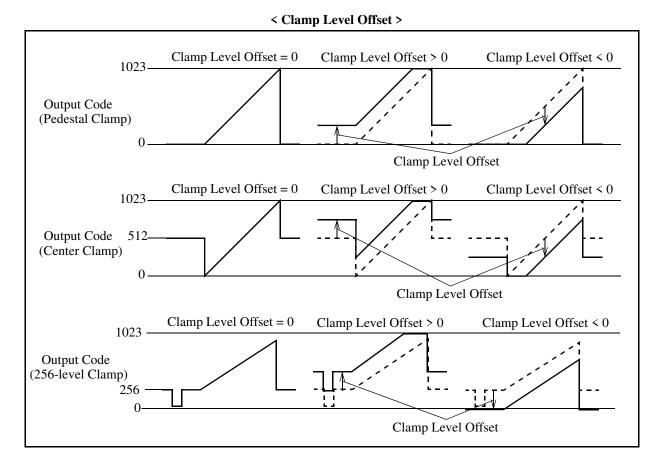
The sampling clock phase can be shifted in 64 steps of T/64. Bigger values mean more delay.

* Even the external clock is used as sampling clock(R04[1:0]=10b or 11b), the clock phase can be shifted.

R06[2:0]/R07[7:0] R-ch (Pr-ch) Gain R08[2:0]/R09[7:0] G-ch (Y-ch) Gain R0A[2:0]/R0B[7:0] B-ch (Pb-ch) Gain

The gain can be adjusted from 0.5 to 1.5 in 2048 steps. Bigger value means higher gain. Gain = (Register Value + 1024) / 2048

Because the full scale of ADC input is 0.7 Vpp (Typical Value), the gain is set to [0.7 / Video Signal Level*]. * Signal Level without Sync on Video (Vpp) Example. Video Signal Level: 0.5 Vpp Gain = 0.7/0.5 = 1.4 Register value=1843 Video Signal Level: 0.7 Vpp Gain = 0.7/0.7 = 1.0 Register value=1024 Video Signal Level: 1.0 Vpp Gain = 0.7/1.0 = 0.7 Register value=410


* The setting method above is not always necessary for the purpose of contrast adjustment. Bigger gain means higher contrast.

R0C[0]/R0D[7:0] R-ch (Pr-ch) Clamp Level Offset R0E[0]/R0F[7:0] G-ch (Y-ch) Clamp Level Offset R10[0]/R11[7:0] B-ch (Pb-ch) Clamp Level Offset

Clamping restores DC level of the video signals. Three clamp modes can be selected; Pedestal clamp, Center clamp (Midscale clamp), and Sync tip clamp (R17[5:4]/R17[3:2]/R17[1:0]).

It's possible to give an offset to the clamp level by the 1LSB unit by a clamp level offset. The register value is configured by two's complement from -256 to +255.

R12[7:6] Reserved *Must be set to 00b (Default value: 00b)

R12[5] Input Port Automatic Selection Enable

1: Selection input port (R12[3]) is done automatically.

Under Automatic setting, with the judgement result of the input SYNC type by Sync Processor, An activated port is selected with the following rules.

-When the selected port is activated, even if the other port becomes activated, selection of port doesn't change.

-Both ports are activate and one port which is selected became inactivate, selection of port changes to the other port.

R12[4] Reserved * Must be set to 0 (Default Value: 0)

R12[3] Input Port Select

0: Port-0 is selected. Port-0: HSYNC0, VSYNC0, RAIN0, GAIN0, SOGIN0, BAIN0 1: Port-1 is selected. Port-1: HSYNC1, VSYNC1, RAIN1, GAIN1, SOGIN1, BAIN1

R12[2] Input Sync Type Automatic Select Enable

1: Input Sync Type Select (R12[1:0]) is automatically set. When Automatic Select is enabled, Input Sync Type Select is determined by sync processor based on the result of Input Sync Type Detection(R2C[6:5]/R2C[4:3]/R2C[0]).

R12[1:0] Input Sync Type Select

Select the input sync type.

The combination of Input Port Select (R12[3]) and Input Sync Type Select (R12[1:0]) determines the input pin for HSYNC and VSYNC.

< input Fort / Sync Type >											
R12[3]	Input Port	R12[1:0]	Sync Type	HSYNC Input Pin	VSYNC Input Pin						
0	Port-0	00b	Separate Sync	HSYNC0	VSYNC0						
0	Port-0	01b	Composite Sync	HSYNC0	HSYNC0						
0	Port-0	10b	Sync on Video (2-level)	SOGINO	SOGINO						
0	Port-0	11b	Sync on Video (3-level)	SOGIN0*	SOGIN0*						
1	Port-1	00b	Separate Sync	HSYNC1	VSYNC1						
1	Port-1	01b	Composite Sync	HSYNC1	HSYNC1						
1	Port-1	10b	Sync on Video (2-level)	SOGIN1	SOGIN1						
1	Port-1	11b	Sync on Video (3-level)	SOGIN1*	SOGIN1*						

< Input Port / Sync Type >

*3-level sliced (pedestal slice).

R13[6] HSYNC Input, VSYNC Input Polarity Automatic Select Enable

1: HSYNC Input Polarity (R13[5]) and VSYNC Input Polarity (R13[4]) are automatically set. When Automatic Select is enabled, the sync input polarity is determined by sync processor based on the result of HSYNC Input Polarity Detection (R2C[1]) and VSYNC Input Polarity Detection (R2C[2]).

R13[5] HSYNC Input Polarity

HSYNC Input Polarity must be correctly set for normal operation. Set to 0 when the input polarity is Active-Low. Set to 1 when the input polarity is Active-High. * Set to 0 when Input Sync Type Select is set to "Sync on Video (3-level)" (R12[1:0]=11b).

R13[4] VSYNC Input Polarity

VSYNC Input Polarity must be correctly set for normal operation. Set to 0 when the input polarity is Active-Low. Set to 1 when the input polarity is Active-High.

R13[3] HSYNC Output, VSYNC Output Polarity Automatic Select Enable

1: HSYNC Output Polarity (R13[2]) and VSYNC Output Polarity (R13[1]) are automatically set to the same polarity as the input.

When Automatic Select is enabled, the sync output polarity is determined by sync processor based on the result of HSYNC Input Polarity Detection (R2D[1]) and VSYNC Input Polarity Detection (R2D[2]).

R13[2] HSYNC Output (HSOUT) Polarity

Select the HSYNC output polarity of HSOUT-pin.

- 0: Output polarity is Active-Low.
- 1: Output polarity is Active-High.

* The polarity of HSYNC available from HSOUT-pin (HO, Regenerated HSYNC) is selected.

R13[1] VSYNC Output (VSOUT) Polarity

Select the VSYNC output polarity of VSOUT-pin.

0: Output polarity is Active-Low.

1: Output polarity is Active-High.

* The polarity of VSYNC available from VSOUT-pin (VO, Regenerated VSYNC, Raw VSYNC) is selected.

R13[0] VSYNC Output (VSOUT) Interlace Mode

Select the output mode of VSYNC available from VSOUT-pin (VO, Regenerated VSYNC) for interlaced video input. 1: VSYNC Output (VO, Regenerated VSYNC) is produced at the center of horizontal period when video field of interlaced video changes from ODD field to EVEN field.

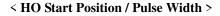
0: VSYNC Output is produced only at the start position of horizontal period. Consequently, the vertical total line number of interlaced video changes by 1 depending on video field.

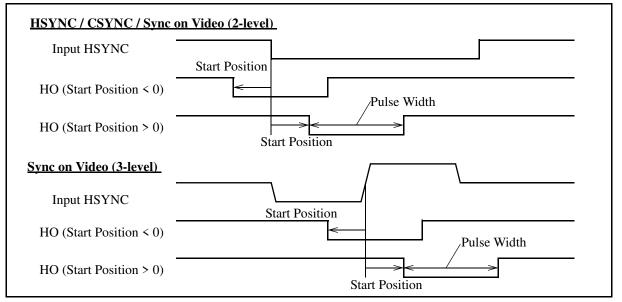
* The output mode of VSYNC available from VSOUT-pin (VO, Regenerated VSYNC) is selected. Raw VSYNC is not affected by this mode.

* The edge of VSYNC Output always occurs at the start position of horizontal period for non-interlaced video (Detection result: R2E[7]=0). Therefore, R13[0]=0 and R13[0]=1 produce the same result for non-interlaced video.

EVEN Field -> ODD Field	Horizont	al Cycle		l			1	
Input Sync					_ſ_	իսո	<u>↓</u>	
VSOUT (R13[0]=1)						-		
VSOUT (R13[0]=0)								
ODD Field -> EVEN Field	Horizonta	al Cycle			1			
Input Sync					_[
VSOUT (R13[0]=1)								
VSOUT (R13[0]=0)								

< VSOUT Interlace Mode >


R14[7:0] HSYNC Output (HO) Start Position


Set the start position of HO available from HSOUT-pin in steps of 1 pixel with reference to the leading edge of the HSYNC (It is the leading edge of the positive pulse when it is 3-level sync). The register value is configured by two's complement from -128 to +127.

* When the external clock input is used (R04[1:0]=10b or 11b), minus number is prohibited.

R15[7:0] HSYNC Output (HO) Pulse Width

Set the pulse width of HO available from HSOUT-pin in steps of 1 pixel.

R16[4] PLL COAST Source

PLL should stop synchronization with the HSYNC input during the vertical blank time including the pulses disturbing PLL lock and the sampling clock generation such as equalization pulses and copy protection signal. PLL COAST signal causes PLL to stop synchronization with the HSYNC input and free-run.

0: PLL COAST signal is internally generated in the device.

1: PLL COAST signal can be externally input from COAST-pin.

* When PLL COAST signal is internally generated, automatic setting mode (R22[7]) is available.

R16[3] PLL COAST Input Polarity

Select the input polarity of PLL COAST signal when externally input (R16[4]=1). Set to 0 when the input polarity is Active-Low (PLL free-runs at COAST-pin=Low). Set to 1 when the input polarity is Active-High (PLL free-runs at COAST-pin=High).

R16[2] Clamp Pulse Source

Select the generation source of clamp pulse which is a timing signal of a clamp

- 0: The clamp pulse is generated internally.
- 1: Clamp pulse must be inputted through Clamp-pin.

R16[1] Clamp Pulse Input Polarity

Select input polarity when the external clamp pulse is used (R16[2]=1).

- 0: Input polarity becomes Active-Low.
- 1: Input polarity becomes Active-High.

R16[0] Clamp COAST Source

It's sometimes necessary to make the clamp suspend while the period which is including the signals that disturb the clamp such as a copy protection signal. The clamp COAST signal is the signal which makes the clamp stop. 0: Internal Clamp COAST

1: External Clamp COAST

R17[6] Clamp Pulse Start Reference Edge

The timing of Clamp pulse is set based on the edge of the HSYNC input. Selecting the edge of the HSYNC input 0: the leading edge of the HSYNC input is referred.

- 1: the trailing edge of the HSYNC input is referred.
- * In case of 3-level sync, the leading edge or trailing edge of the positive pulse is referred.

R17[5:4] R-ch (Pr-ch) Clamp Mode

R17[3:2] G-ch (Y-ch) Clamp Mode

R17[1:0] B-ch (Pb-ch) Clamp Mode

As a clamp method, pedestal clamp, midscale clamp, and 256-level clamp can be selected.

00b: Pedestal clamp for RGB and Y (luminance) clamps black level to 0 with automatic offset cancel (if clamp level offset is set to 0). The Automatic offset cancel circuitry eliminates any offset errors.

01b: Midscale clamp for PbPr clamps to 512 with automatic offset cancel (if clamp level offset is set to 0). The Automatic offset cancel circuitry eliminates any offset errors.

10b: Reserved

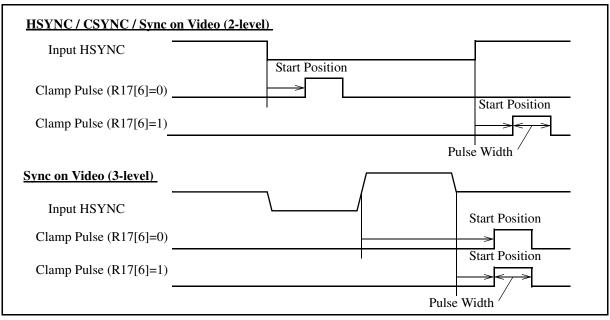
11b: 256-level clamp clamps to 256 with automatic offset cancel (if clamp level offset is set to 0). The Automatic offset cancel circuitry eliminates any offset errors.

* It's possible to set a clamp pulse on sync part and realize sync tip clamp by a pedestal clamp (R17 [5:4], R17 [3:2] and R17 [1:0] =00b).

R18[7:0] Clamp Pulse Start Position

Set the clamp pulse start position in steps of 1 pixel with reference to clamp pulse start reference edge (selected by R17[6]).

R19[7:0] Clamp Pulse Width

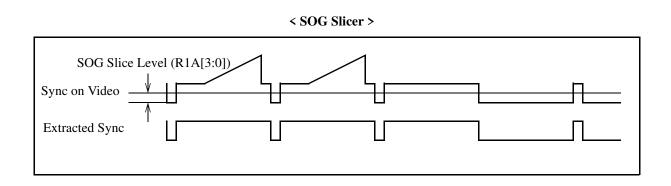

Set the clamp pulse width in steps of 1 pixel.

* When the register is set to 0, clamp pulse is not generated.

* Set the end position of clamp pulse (R18[7:0] + R19[7:0]) more than 16 pixels front of active video period because Clamp Offset Cancel is completed after 16 pixels from the clamp pulse.

R1A[6] SOG Slicer Hysterisis Enable

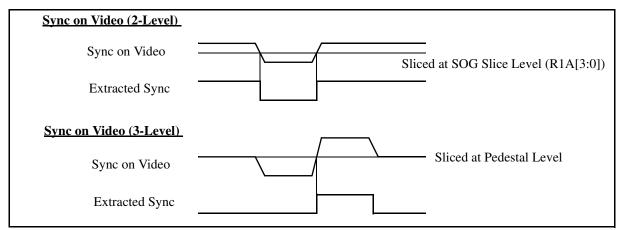
1: SOG Slicer works with about 30mV hysteresis.


R1A[5:4] SOG Input Filter

SOG Input Filter (low pass filter) can reduce the noise and the ringing, etc. of SOG input. 00b: OFF (Through) 01b: ON 10b,11b: Reserved

*The default value is 10b(Reserved) , so please change the setting to 00b (OFF) or 01b (ON) .

R1A[3:0] SOG Slicer threshold


When Input Sync Type Select is set to "Sync on Video (2-level)" (R12[1:0]=10b), input signal from SOGIN0 or SOGIN1 is sliced at the selected level by R1A[3:0] relative to the lowest level (sync tip) to extract the sync signal. SOG slicer threshold can be adjusted from15 mV to 240 mV in steps of 15 mV. *Set the value of SOG Slicer threshold to 3 and over.

*

<2-Level Slice / 3-Level Slice>

*When setting the input sync signal as Sync on Video (2-level) at the time of 3-level sync signal input, (R12 [1:0], =10b), it is sliced by the SOG slicer threshold.

R1B[7] SOGOUT Output Polarity

Select the output polarity of SOGOUT-pin.

- 0: Output polarity is Active-Low.
- 1: Output polarity is Active-High.

* The polarity of signals available from SOGOUT-pin (Raw HSYNC, Regenerated HSYNC, and Filtered HSYNC) is selected.

R1B[6:5] SOGOUT Output Signal

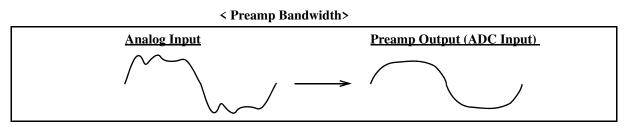
Select the output signal from SOGOUT-pin. The source signal of the output is HSYNC selected by the combination of Input Port Select (R12[3]) and Input Sync Type Select (R12[1:0]).

00b: Raw HSYNC --- Buffered signal of the HSYNC input.

01b: Regenerated HSYNC --- This HSYNC is generated by using the internal oscillator (about 40 MHz) from Raw HSYNC. It has jitter of several internal oscillator clock cycles.

10b: Filtered HSYNC --- By the HSYNC Filter, the pulses which are not related to Horizontal period is eliminated. 11b: Reserved

Horizo	ontal Period		1	1		
Input HSYNC	μ	<u>↓</u>				
Raw HSYNC	J					
Regenerated HSYNC	LI	L		U	11	11
Filtered HSYNC	1	1	1			


< Output Signal from SOGOUT>

R1B[4:0] Pre-Amp Bandwidth (Low Pass Filter)

The THC7984 has the internal 5th-order Low Pass Filters as anti-aliasing filter for component video input (YPbPr), and it's possible to control cut-off frequency in 24 steps between 6 to 92MHz by setting the register.

The THC7984 also has the internal 2nd-order Low Pass Filters to filter the noise and glitch of PC input (RGB), and it's possible to control cut-off frequency in 4 steps (40 MHz/90 MHz/170 MHz/310 MHz) by setting the register.

	R1E	3[4	:0]			fc	Note	I	R1E	3[4	:0]			fc	Note		
Dec		В	ina	ry		IC	Note	Dec		В	ina	ry		IC	Note		
0	0	0	0	0	0	6MHz		16	1	0	0	0	0	39MHz			
1	0	0	0	0	1	7MHz		17	1	0	0	0	1	42MHz			
2	0	0	0	1	0	8MHz		18	1	0	0	1	0	46MHz			
3	0	0	0	1	1	9MHz		19	1	0	0	1	1	52MHz	5th-order LPF		
4	0	0	1	0	0	10MHz		20	1	0	1	0	0	58MHz	for Component Video		
5	0	0	1	0	1	11MHz		21	1	0	1	0	1	66MHz			
6	0	0	1	1	0	12MHz		22	1	0	1	1	0	78MHz			
7	0	0	1	1	1	13.5MHz	5th-order LPF	23	1	0	1	1	1	92MHz			
8	0	1	0	0	0	15MHz	for Component Video	24	1	1	0	0	0	40MHz			
9	0	1	0	0	1	18MHz		25	1	1	0	0	1	90MHz	2nd-order LPF		
10	0	1	0	1	0	21MHz		26	1	1	0	1	0	170MHz	for PC		
11	0	1	0	1	1	24MHz		27	1	1	0	1	1	310MHz			
12	0	1	1	0	0	27MHz		28	1	1	1	0	0		Reserved		
13	0	1	1	0	1	30MHz		29	1	1	1	0	1		Reserved		
14	0	1	1	1	0	33MHz		30	1	1	1	1	0		Reserved		
15	0	1	1	1	1	36MHz	31	1	1	1	1	1		Reserved			

< Cutoff Frequency >

*Setting example

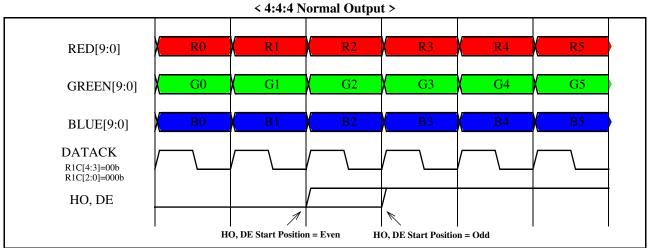
Component video input: About 0.5 times of the sampling frequency is used as cut-off frequency.

PC input: About 1.5 times of the sampling frequency is used as cutoff frequency.

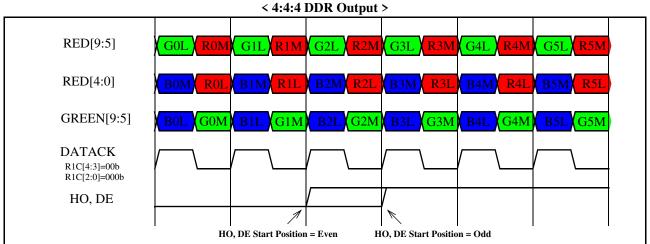
*When R54[4] is set to 1, it's possible to control the cut-off frequency of a 5th-order lowpass filter

in steps of 1MHz between 25MHzto 39MHz by using register R54 [3:0]. In this case, R1B [4:0] is ignored.

	< Cutoff Frequency >											
R	54[3:0]		fc	Note						
Dec		Bin	iary	/	10	Note						
0	0	0	0	0	25MHz							
1	0	0	0	1	26MHz							
2	0	0	1	0	27MHz							
3	0	0	1	1	28MHz							
4	0	1	0	0	29MHz							
5	0	1	0	1	30MHz							
6	0	1	1	0	31MHz							
7	0	1	1	1	32MHz	5th-order LPF						
8	1	0	0	0	33MHz	for Component Video						
9	1	0	0	1	34MHz							
10	1	0	1	0	34MHz							
11	1	0	1	1	35MHz							
12	1	1	0	0	36MHz							
13	1	1	0	1	37MHz							
14	1	1	1	0	38MHz							
15	1	1	1	1	39MHz							

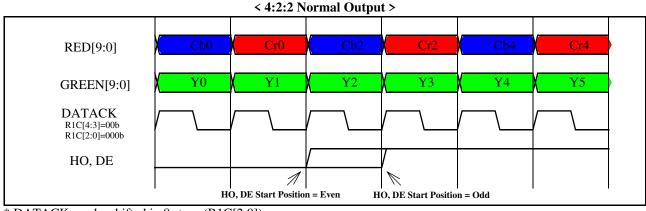

R1C[7:6] Output Format

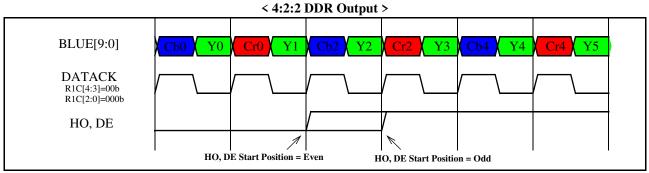
4 output formats can be selected. 00b: 4:4:4 Output 01b: 4:4:4 DDR Output 10b: 4:2:2 Output 11b: 4:2:2 DDR Output * 4:4:4 DDR Output


* 4:4:4 DDR Output and 4:2:2 DDR Output are supported up to 85 MHz of sampling clock.

	<output format=""></output>																					
RED GREEN BLUE																						
Output	Format	Edge	987	6 5	4	3 2	1 0	9	8	76	5	4	3	2 1	0	9	8 7	6	5	4	32	1 0
	Normal			R[9:0]							G[9:0]					8 7 6 5 4 3 2 1 0 B[9:0]					
4:4:4	DDR	1	G[4:				В	9:0														
	DDR	\downarrow		R[9):0]				G[9:5]												
	Normal			Cb/Cr Y																		
4:2:2	DDR	1													Cb/Cr							
	אשש	Ļ																	Y			

* The pins not assigned to output data are disabled (Hi-Z) .


* DATACK can be shifted in 8 steps (R1C[2:0]).


* "M" indicates upper 5 bits in MSB side. "L" indicates lower 5 bits in LSB side.

* DATACK can be shifted in 8 steps (R1C[2:0]).

* DATACK can be shifted in 8 steps (R1C[2:0]).

* DATACK can be shifted in 8 steps (R1C[2:0]).

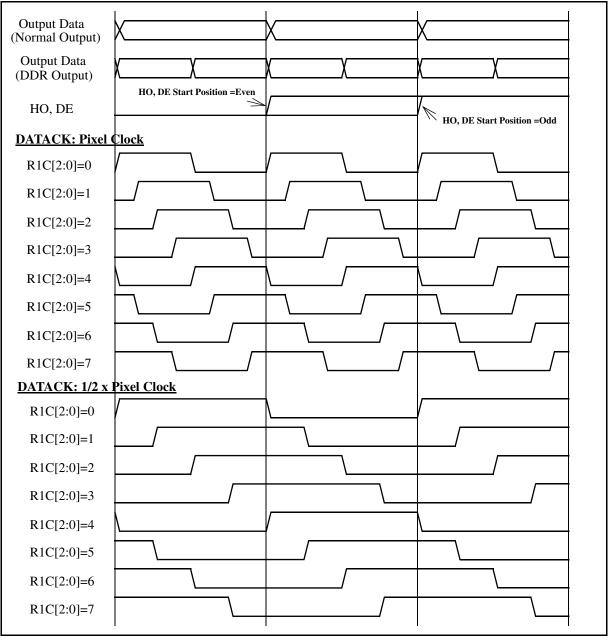
R1C[5] 4:2:2 Decimation Filter Enable

Set the way of downsampling (process of changing from 4:4:4 to 4:2:2) of CbCr in 4:2:2 output and 4:2:2 DDR output 0: CbCr is sampled every two pixel by pixel skipping.

1: CbCr is decimated by digital filter.

R1C[4:3] Output Clock Select

Select a output signal from DATACK-pin. 00b: Pixel Clock: the same frequency as the sampling clock 01b: 1/2 x Pixel Clock: half the frequency of the sampling clock 10b: Internal Oscillator (approximately 40 MHz) 11b: Reserved


R1C[2:0] Output Clock Phase

Since the output clock phase can be shifted in 8 steps, the setup and hold time of output data can be adjusted.

* If DATACLK is Pixel Clock(R1C[4:3]=00b), Phase setteing 0-2 is not recommended to use (except for DDR output) because rising edge of output clock will be around the transition period of output data.

* The phase of internal oscillator clock (R1C[4:3]=10b) can not be controlled.

* When oversampling setting is 8 times, the output clock palse is possible to set in only 4 steps. (the value of 0 and 1, 2 and 3, 4 and 5, 6 and 7 will be the same phase setting.)

< DATACK Phase Shift>

R1D[7:6] Reserved *Must be set to 01b for proper operation (Default value: 10b)

R1D[5:4] RGB DATA Output Drive Strength

Output pins: RED<9:0>, GREEN<9:0>, BLUE<9:0>

R1D[3:2] Sync Output Drive Strength

Output pins: SOGOUT, HSOUT, VSOUT, O/E FIELD

R1D[1:0] Clock Output Drive Strength

Output pins: DATACK

Bigger values mean stronger output drive strength.

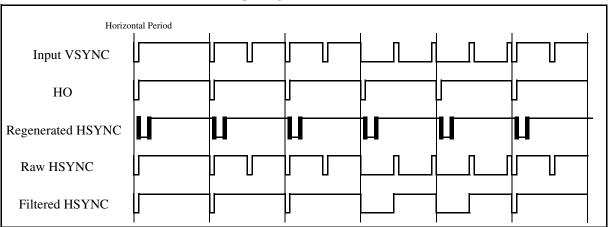
* Output drive strength should be adjusted according to the load capacitance, the trance length on PCB, and the power supply voltage of output buffer (VDD).

* Clock output drive strength is stronger than others.

R1E[7:6] HSOUT Output Signal Select

Select a output signal from HSOUT-pin.

00: HO --- HSYNC generated from the HSYNC input, and synchronous with the PLL clock.


Output polarity (R13[2]), Start Position (R14[7:0]), and Pulse Width (R15[7:0]) can be selected by the register setting. PLL parameter settings (R02 to R04) are necessary for normal output.

HO can be used as a reference of the image (RGB data) alignment.

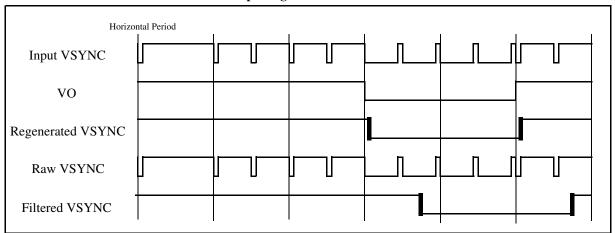
01: Regenerated HSYNC --- HSYNC generated from the HSYNC input, and synchronous with the internal oscillator clock (approximately 40 MHz). The start position is delayed some internal oscillator clock cycles after the leading edge of the HSYNC input, and the pulse width is approximately 1/16 of horizontal period. The polarity is selected by register (R13[2]). PLL parameter settings (R02 to R04) are unnecessary for normal output. It has jitter of several internal oscillator clock cycles.

10b: Raw HSYNC --- Buffered signal of the HSYNC input.

11b: Filtered HSYNC --- The Raw Hsync's pulse which is not relate to horizontal period is removed by the HSYNC Filter (R1F[3:0].

< Output Signal from HSOUT>

R1E[5:4] VSOUT Output Signal Select


Select a output signal from VSOUT-pin.

00b: VO --- VSYNC generated from the HSYNC and VSYNC input, and synchronous with the PLL clock. Output polarity (R13[1]), Start Position (R20[6:0]), and Pulse Width (R21[5:0]) can be select by the register setting (auto setting modes are available). PLL parameter settings (R02 to R04) are necessary for normal output. It is synchronous with HO.

01b: Regenerated VSYNC --- VSYNC generated from the HSYNC and VSYNC input, and synchronous with the internal oscillator clock (approximately 40 MHz). Output polarity (R13[1]), Start Position (R20[6:0]), and Pulse Width (R21[5:0]) can be selected by the register setting (auto setting modes are available). PLL parameter settings (R02 to R04) are unnecessary for normal output. It has jitter of several internal oscillator clock cycles. It is synchronous with Regenerated HSYNC.

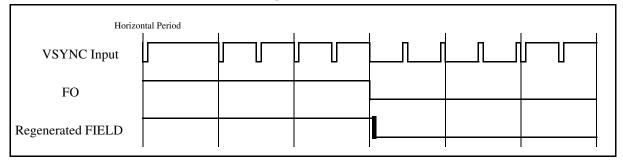
10b: Raw VSYNC ---- Buffered signal of the VSYNC input

11b: Filtered VSYNC --- VSYNC generated from the HSYNC and VSYNC input, and digitally filtered with the internal oscillator clock (approximately 40 MHz). It's possible to set polarity (R13 [1]) by register. (An automatic setting mode is available.) It's generated regardless of PLL setting (R02-R04). It has jitter of several internal oscillator clock cycles. The output phase is delayed about 3/4 H to input VSYNC.

< Output Signal from VSOUT>

R1E[3:1] O/E FIELD Output Signal Select

Select a output signal from O/E FIELD-pin.


000b: FO --- Odd / Even FIELD generated from the HSYNC and VSYNC input, and synchronous with the PLL clock. Output polarity (R1E[0]) can be select by the register setting. PLL parameter settings (R02 to R04) are necessary for normal output. It is synchronous with VO.

001b: Regenerated FIELD --- Odd / Even FIELD generated from the HSYNC and VSYNC input, and synchronous with the internal oscillator clock (approximately 40 MHz). Output polarity (R1E[0]) can be selected by the register setting. PLL parameter settings (R02 to R04) are unnecessary for normal output. It has jitter of several internal oscillator clock cycles. It is synchronous with Regenerated VSYNC.

010b: DE --- Data Enable signal generated from the HSYNC and VSYNC input, and synchronous with the PLL clock. The polarity is Active-High. Start Position (R26[3:0]/R27[7:0]), Pulse Width(R28[3:0]/R29[7:0]), Vertical Blank Front Porch (R2A[6:0]) and Back Porch (R2B[6:0]) are programmable by registers (auto setting modes are not available). 011b: IRQ --- Interrupt Request Signal from Sync Processor.

100b - 111b: Reserved

< FO / Regenerated FIELD>

R1E[0] O/E FIELD Output Polarity

Select the polarity of FO and Regenerated FIELD available from O/E FIELD-pin

0: O/E FIELD=Low in Odd FIELD, O/E FIELD=High in Even FIELD.

1: O/E FIELD=High in Odd FIELD, O/E FIELD=Low in Even FIELD.

< FO / Regenerated FIELD>

R1F[6:5] Reserved *Must be set to 00b for proper operation (Default value: 00b)

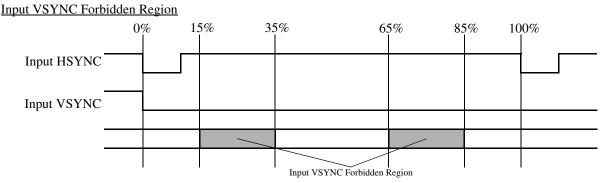
R1F[4] PLL HSYNC Filter Enable

By using Filtered HSYNC generated by HSYNC Filter that eliminates the extraneous pulses such as equalization pulses and copy protection signal from the HSYNC input (Raw HSYNC), the PLL COAST period (PLL free-run period) can be set shorter. However, the HSYNC input with high jitter makes HSYNC Filter Window unstable and possibly causes PLL unlock.

0: Raw HSYNC is used as the reference signal of PLL.

1: Filtered HSYNC is used as the reference signal of PLL.

R1F[3:0] HSYNC Filter Window Width


Set HSYNC Filter Window Width of HSYNC Filter. The setting range is from about +/-100ns (internal oscillator clock +/-4 cycles) to about +/-1600ns (internal oscillator clock +/-64 cycles) around the leading edge of the HSYNC input (the leading edge of the positive pulse for 3-level sync). The setting step is +/-100ns (internal oscillator clock +/-4 cycles) and bigger value results in wider width.

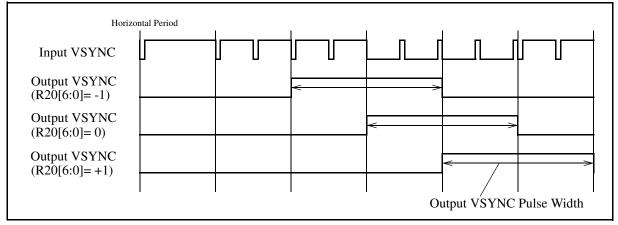
*About timing of input VSYNC

When the transition of VSYNC is in "Input VSYNC Forbidden Region", it is possible that following vertical timing fluctuates about one line.

VSYNC output (VO, Regenerated VSYNC) ---Setting Register: R20[6:0]/R21[5:0] PLL COAST Timing ---Setting Register: R22[6:0]/R23[6:0] Clamp COAST Timing ---Setting Register: R24[6:0]/R25[6:0] DE Restraint period ---Setting Register: R2A[6:0]/R2B[6:0]

The edge of Input VSYNC must be outside "Input VSYNC Forbidden Region" to prevent fluctuation of these vertical timing.

R20[7] VSYNC Output (VO, Regenerated VSYNC) Timing Automatic Setting Enable


When set to 1, VSYNC Output Start Position (R20[6:0]) and VSYNC Output Pulse Width (R21[5:0]) are automatically set to match the VSYNC input timing. The VSYNC Output Start Position is set to 0 and the VSYNC Output Pulse Width is determined by sync processor based on the result of VSYNC Input Pulse Width Measurement (R2F[7:0]).

R20[6:0] VSYNC Output (VO, Regenerated VSYNC) Start Position

The starting position of VO and Regenerated VSYNC, which are the possible output from VSOUT-pin, is set in steps of 1 line based on leading edge of Input VSYNC. The set value is expressed by complement of 2 and the set range is from - 64 to +63.

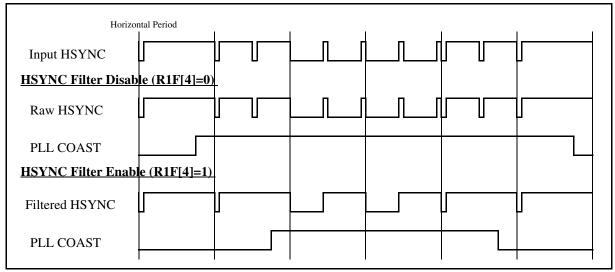
R21[5:0] VSYNC Output (VO, Regenerated VSYNC) Pulse Width

The pulse width of VO and Regenerated VSYNC, which are the possible output from VSOUT-pin, is set in steps of 1 line.

< Output VSYNC Start Position / Pulse Width >

R22[7] PLL COAST Timing Automatic Setting Enable

PLL should stop synchronization with the HSYNC input during the vertical blank time including the pulses disturbing PLL lock and the sampling clock generation such as equalization pulses and copy protection signal. PLL COAST signal causes PLL to stop synchronization with the HSYNC input and free-run.


1: PLL Pre-COAST (R22[6:0]) and PLL Post-COAST (R23[6:0]) are automatically set

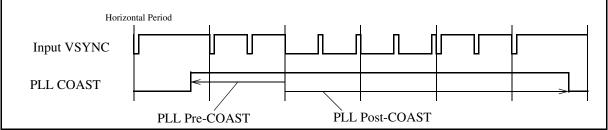
PLL COAST Period generated by automatic setting is depend on the setting of PLL HSYNC Filter Enable (R1F[4]) .

* When HSYNC Filter is disabled (R1F[4]=0), the PLL COAST period covers the period including extraneous and missing pulses in vertical blank time.

* Even in the case Input Sync Type is set to "Separate Sync" (R12[1:0]=00b), the PLL COAST signal covers the VSYNC pulse period.

* When HSYNC Filter is enabled (R1F[4]=1), the PLL COAST period covers the VSYNC pulse period because extraneous pulses are eliminated by HSYNC Filter.

< PLL COAST Auto Mode>


R22[6:0] PLL Pre-COAST

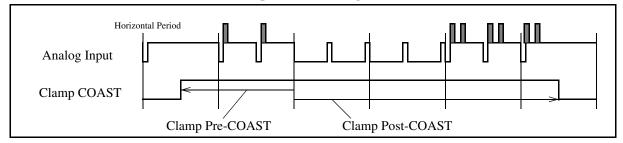
Set the start position of PLL COAST in steps of 1 line with reference to the leading edge of the VSYNC input.

R23[6:0] PLL Post-COAST

Set the end position of PLL COAST in steps of 1 line with reference to the leading edge of the VSYNC input.

< PLL COAST Timing>

R24[6:0] Clamp Pre-COAST


Clamp should be suspended during the vertical blank time including the pulses disturbing clamp such as copy protection signal. Clamp COAST signal causes clamp to be suspend.

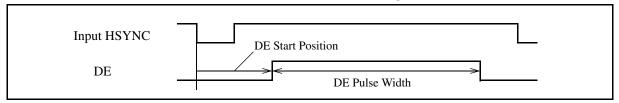
Set the start position of Clamp COAST in steps of 1 line with reference to the leading edge of the VSYNC input.

R25[6:0] Clamp Post-COAST

Set the end position of Clamp COAST in steps of 1 line with reference to the leading edge of the VSYNC input.

< Clamp COAST Timing>

* Clamp COAST timing is related to a 3-level slicer. In case that Sync type select is "Sync on Video (3-level) " (R12[1:0]=11b), Clamp COAST timing should cover VSYNC pulse (and the period which includes equalization pulses in interlace signal), and end at least 12 lines prior to the active line start. (Setting example: Clamp Pre-COAST=2 / Clamp Post-COAST=8).

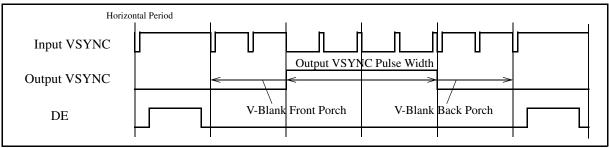

R26[3:0] / R27[7:0] DE Start Position

set the start position of DE (Data Enable) available from O/E FIELD-pin in steps of 1 pixel with reference to the leading edge of the HSYNC input (the leading edge of the positive pulse for 3-level sync).

R28[3:0] / R29[7:0] DE Pulse Width

set the pulse width of DE (Data Enable) available from O/E FIELD-pin in steps of 1 pixel. The output polarity of DE is Active-High.

< DE Horizontal Timing>



R2A[6:0] V-Blank Front Porch (DE End Line Position)

Set the end line of DE (Data Enable) available from O/E FIELD-pin in steps of 1 line with reference to the VSYNC Output Start Position (R20[6:0]).

R2B[6:0] V-Blank Back Porch (DE Start Line Position)

Set the start line of DE (Data Enable) available from O/E FIELD-pin in steps of 1 line with reference to the VSYNC Output End Position (R20[6:0]+R21[5:0]).

< V-Blank Front Porch / V-Blank Back Porch >

R2C[3:2] Port-1 Input Sync Type Detection R2C[1:0] Port-0 Input Sync Type Detection

The result of Input Sync Type Detection can be read.

HSYNC	VSYNC	SOGIN	Input Sync Type	R2C[3:2] R2C[1:0]
Not Active	Not Active	Not Active	No Signal	11b
Not Active	Not Active	Active	Sync on Video	10b
Not Active	Active	Not Active	No Signal	11b
Not Active	Active	Active	Sync on Video	10b
Active	Not Active	Not Active	Composite Sync	01b
Active	Not Active	Active	Composite Sync	01b
Active	Active	Not Active	Separate Sync	00b
Active	Active	Active	Separate Sync	00b

< Input Sync Type Detection >

R2D[2] VSYNC Input Polarity Detection

The result of VSYNC Input Polarity Detection can be read.

- 0: Input polarity is Active-Low.
- 1: Input polarity is Active-High.

R2D[1] HSYNC Input Polarity Detection

The result of HSYNC Input Polarity Detection can be read. 0: Input polarity is Active-Low. 1: Input polarity is Active-High.

R2D[0] Sync on Video 2-level / 3-level Detection

When the result of Input Sync Type Detection of the selected input port (R12[3]) is Sync on Video (R2C[6:5], R2C[4:3]=10b), the result of Sync on Video 2-level / 3-level Detection can be read.

0: Sync on Video is 2-level.

1: Sync on Video is 3-level.

* When Input Sync Type is not Sync on Video, 0 can be read.

R2E[7] Interlace Detection

The result of Interlace Detection detected by the HSYNC and VSYNC input can be read.

0: Input signal is non-interlace (progressive).

1: Input signal is interlace.

R2E[6:0] / R2F[7:0] Vertical Total Line Measurement

The result of Vertical Total Line Measurement measured by the HSYNC and VSYNC input can be read in 1/4 line unit.

R30[7:0] VSYNC Input Pulse Width Measurement

The result of VSYNC Input Pulse Width Measurement measured by the HSYNC and VSYNC input can be read in 1/4 line unit.

R31[2] Reserved * Must be set to 0 (Default Value: 0)

R31[1] External REFCLK Input Enable

1: It is possible to measure the horizontal period (R32[3:0] / R33[7:0] / R34[7:0]) by inputting clock which is 7 - 40 MHz to CLAMP-pin. The frequency precision of the input clock influences a result of measurement directly, so please input the clock with the high frequency precision.

* If the external REFCLK input is enable (R31[1]=1), the function of external clamp pulse (R16[2]) can not be used.

R31[0] HSYNC Period Measurement Run

0: Stop the Measurement of HSYNC Period.

- 1: Start Measurement of HSYNC Period. (A result of measurement is renewed every 100 lines.).
- *When reading the result of measurement (R32[3:0] / R33[7:0] / R34[7:0]) , please suspend measurement.

R32[3:0]/R33[7:0]/R34[7:0] HSYNC Period Measurement Result

The period of 100 lines of horizontal period is counted by External REFCLK and the result can be read. The horizontal period and frequency are calculated by the following formula.

Horizontal period [us] = Measurement result / (100 * fREFCLK)

Horizontal Frequency $[kHz] = fREFCLK * 10^5 / Measurement result$

* fREFCLK is REFCLK frequency (unit :MHz)

*Input a reference clock (7-40MHz) to CLAMP-pin to measure period of Horizontal, and the setting of External REF-CLK input should be enabled(R31[1]=1).

*Stop the measurement after more than 20ms(or more than 300 lines) from the start of measurement of horizontal period (R31[0]=1), and read the result(R32[3:0] / R33[7:0] / R34[7:0]).

R35[7] Sync Signal Valid Flag (Event Recorder)

1 is set when HSYNC and VSYNC are detected in input sync. At this point, all the measurement and detection are completed.

R35[4] Port-1 Input Sync Type Change Detection (Event Recorder)

R35[3] Port-0 Input Sync Type Change Detection (Event Recorder)

1 is set when Port-1 Input Sync Type Detection (R2C[6:5]), Port-0 Input Sync Type Detection (R2C[4:3]) changes.

R35[2] Input Signal Format Change Detection

When following even one detection and result of measurement changed, 1 is set

HSYNC Input polarity Detection

VSYNC Input polarity Detection

Vertical Total Line Measurement (Change detection threshold(R37[7:5]) default setting is +/-1 line) VSYNC Input Pulse Width Measurement (Change detection threshold (R37 [4:3]) default setting:+/- 1 line.) HSYNC Period Measurement (Change detection threshold (R37 [2:0]) default setting:+/- 64)

*It's possible to detect the switching of seamless input format change of which the input SYNC type doesn't change.

R35[1] Input HSYNC Missing Edge Detection (Event Recorder)

1 is set when HSYNC edges are not detected inside the prospective period. The PLL COAST period (R22[6:0]/R23[6:0]) is not the subject of detection.

* In case input sync signal includes no pulses during the vertical sync time such as OR-type CSYNC, these missing pulses should be covered by PLL COAST signal.

R35[0] Input HSYNC Extraneous Edge Detection (Event Recorder)

'1' is read when HSYNC edges are detected outside the prospective period. The PLL COAST period (R22[6:0]/ R23[6:0]) is not the subject of detection.

* In case input sync signal includes extraneous pulses such as equalization pulses and copy protection signal during the vertical blank time, these pulses should be covered by PLL COAST signal or eliminated by HSYNC Filter (R1F[4]).

* Event recorders must be cleared by writing 1 to them to start the measurement and detection by them.

R36[7]/R36[4:0] Sync Processor IRQ Output Enable by Event Recorder

1: When corresponding bit of event recorders R34[5:0] is set to 1, interrupt request is triggered. Interrupt request signal is available from O/E FIELD-pin (R1E[3:1]=011b).

(Syne Processor Into Endore)										
Event Recorder	Event	IRQ Enable								
R35[7]	Sync Signal Valid Flag	R36[7]								
R35[6]	Reserved	R36[6]								
R35[5]	Reserved	R36[5]								
R35[4]	Port-1 Input Sync Type Change Detection	R36[4]								
R35[3]	Port-0 Input Sync Type Change Detection	R36[3]								
R35[2]	Input Signal Format Change	R36[2]								
R35[1]	Input HSYNC Missing Edge Detection	R36[1]								
R35[0]	Input HSYNC Extraneous Edge Detection	R36[0]								

< Sync Processor IRQ Enable >

R37[7:5] Input Signal Format Change Detection---Threshold of Vertical Total Line Change

Set the change detection threshold of vertical total line for Input Signal Format Change Detection (R35[2]). When the result of vertical total line measurement (R2E[6:0] / R2F[7:0]) change more than this value, R35[2] will be 1. 000b: 0.5 lines

001b: 1 line

010b: 2 lines

011b: 4 lines

100b: 8 lines

101b: 16 lines

110b: 32 lines

111b: Do not observe the change

R37[4:3] Input Signal Format Change Detection---Threshold of VSYNC Input Pulse Width

Set the change detection threshold of VSYNC Input Pulse Width for Input Signal Format Change Detection (R35[2]). When the result of VSYNC Input Pulse Width measurement (R30[7:0]) change more than this value, R35[2] will be 1. 00b: 0.5 lines

01b: 1 line

10b: 4 lines

11b: Do not observe the change

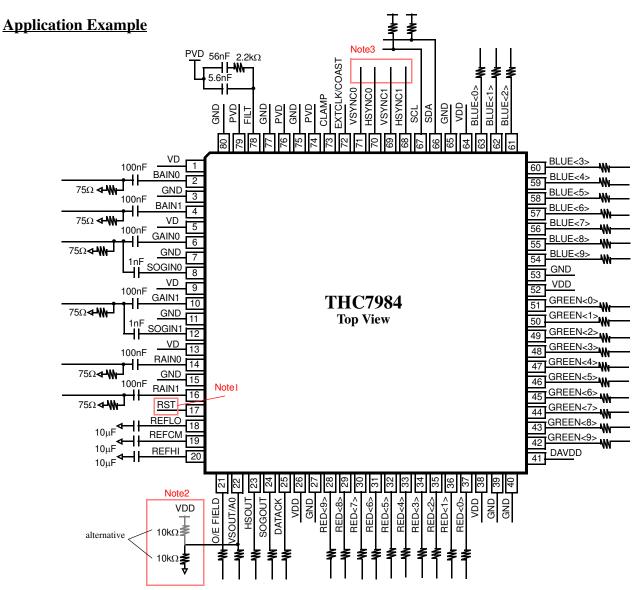
R37[2:0] Input Signal Format Change Detection----Threshold of HSYNC Period

Set the change detection threshold of VSYNC Input Pulse Width for Input Signal Format Change Detection (R35[2]). When the result of VSYNC Input Pulse Width measurement (R32[3:0]/R33[7:0]/R34[7:0]) change more than this value, R35[2] will be 1.

000b: 8 001b: 16 010b: 32 011b: 64 100b: 128 101b: 256 110b: 512 111b: Do not observe the change

R39[7:2] Reserved *Must be set to 111111b for proper operation (Default value: 11111b) R39[1] SOG Slicer Port 1 (SOGIN1) Power-on P30[1] SOG Slicer Port 1 (SOGIN1) Power-on

R39[0] SOG Slicer Port 0 (SOGIN0) Power-on


When the SOG slicer is not used, it's possible to be powered down.

When making only SOG slicer Port 1 to be powered down, set R39=FDh When making only SOG slicer Port 0 to be powered down, set R39=FEh

When making both of SOG Slicer Port to be powered down, set R39=FCh.

*R38 and the registers after R39 are for test purpose. Don't write values to these registers.

Note1. Power-down / Reset

- When it is not used, set this pin to low. (e.g., pull-down to GND by a resistor (10kohm)).

- RST-pin is not made pull-up or pull-down inside of device.

Note2. Device address setting

Pull-down VSOUT/A0-pin to GND by a resistor (10kohm) : Device address will be 1001100.

Pull-up VSOUT/A0-pin to VDD by a resistor (10kohm) : Device address will be 1001101.

- In case of pull-up, connect a resistor to VDD.

- Don't connect VSOUT/A0-pin to the input pin with bus hold circuit of the subsequent device (Device address can't be acquired properly).

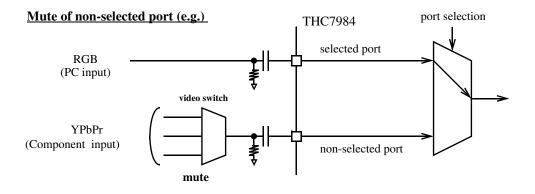
- VSOUT-pin is not made pull-up or pull-down inside the device, so please be sure to connect the resistor to this pin.

Note3. SYNC Signal Input

- The outside circuit should be designed not to apply higher voltage above absolute maximum rating (PVD+3.6v) to the digital input pins when power is not supplied,

- Fix the input level when there is no sync signal on the sync input pins (e.g., pull-down to GND by resistor (10kohm)).

Notice about the crosstalk when using 2 ports (Port 0/ Port 1).


Crosstalk of video signal

Although the input signal to the non-selected port will give weak noise to the signal on the selected port by crosstalk, it has little influence as long as the signal level is normal.

If the input signal to non-selected port is abnormally higher amplitude than normal signals (nominally 1.15V peak to peak from the bottom of the sync to the peak level of copy protection signal) and supply voltage VD is lower (1.7V) than the typical value, the crosstalk may increase and has influence to the selected port.

The component video signal on the non-selected port should be muted (output disable) by the video switch or video buffer prior to the device to prevent the crosstalk.

* The amplitude of component video signal (YPbPr) with sync and copy protection signal is relatively high.

Crosstalk of SOG slicer

The SOG slicer extracts a sync signal from Sync-On-Video signal (SOG, SOY). In case that the Input Sync Type of the selected port is Sync-On-Video(2-level) (R12[1:0]=10b) and a signal is inputted to the non-selected port, there is a possibility to have an influence on the clock Jitter by crosstalk.

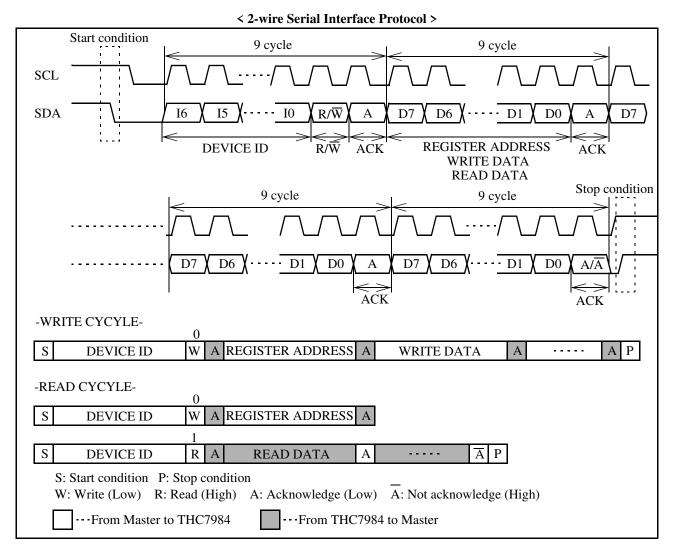
* When the SOG slicer is not used (including YPbPr with separated sync input), SOG crosstalk doesn't influence on the clock jitter.

To prevent crosstalk of the SOG slicer, take one of following countermeasures.

1. SOG slicer of non-selected port should be Power-down

When Port 0 is selected (R12[3]=0) : SOG slicer of port 1 should be powered down (R39=FDh) When Port 1 is selected (R12[3]=1) : SOG slicer of port 0 should be powered down (R39=FEh)

* The SOG slicer of the port which doesn't support SOG (e.g., PC input) can be powered down and the capacitor (1nF) of the SOG input can be eliminated.

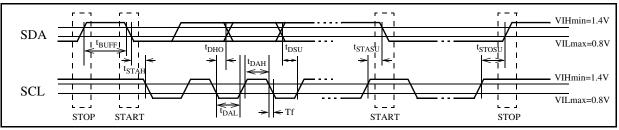

2. The video signal on the non-selected port should be muted (output disable) by the video switch or video buffer prior to the device to prevent the crosstalk.

By above countermeasures, the SOG activity detection of the non-selected port can't work and the following function can not be used.

SYNC Type Detection of non-selected port (R2C[3:2]/R2C[1:0]) Input port Automatic Selection (R12[5])

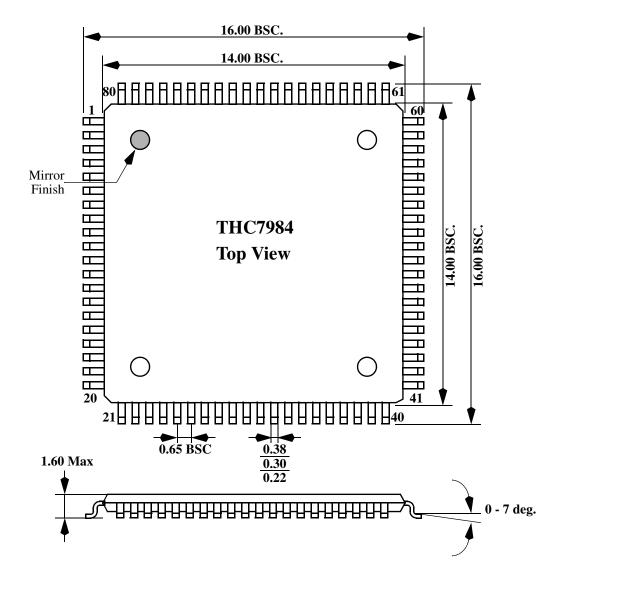
2-wire Serial Interface

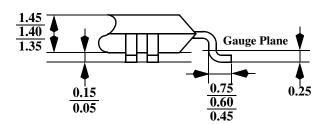
* The THC7984 operates as a slave device.


* While SCL is High, SDA must be stable. SDA can change when SCL is Low. (except for start/end conditions)

* A SDA High to Low transition when SCL is High defines "Start condition". A SDA Low to High transition when SCL is High defines "Stop condition".

* In write or read cycle, whenever data is written or read, the register address (address pointer) is incremented. The address pointer is hold when the write cycle ends. However, The address pointer is undefined when the read cycle ends. * To read the register data, specify a register address by the write cycle, and read the data by read cycle.


* Embedded watch dog timer monitors SCL transitions. When SCL stays High more than 39ms (min.) or stays Low more than 19ms (min.), 2-wire serial interface is reset to initial state (this is different from chip reset).


< 2-wire Serial Interface Timing >

Package Dimension (Unit: mm)

Other Precautions and Requirements

1. The specification in this data sheet are subject to change without prior notice.

2. Circuit diagrams shown in this data sheet are examples of application. Therefore, please pay more particular attention to circuit designing. Even if there are improper expressions in the documents, we are not responsible for any problem due to them. Please note that improper expressions may not be corrected immediately even if found.

3. Our copyright and know-how are included in this data sheet. Duplication of the data sheet and disclosure to the third party are strictly prohibited without our permission.

4. We are not responsible for any problem on industrial proprietorship occurring due to the use of the THC7984, except for those directly related to the product structure, manufacturing methods and functions.

5. The THC7984 is designed on the premise that it should be used for ordinary electronic devices.

Therefore, it shall not be used for applications that require extremely high-reliability (space equipment, nuclear control equipment, medical equipment that affects the human life, etc.) . In addition, when the THC7984 is used for traffic signals, safety devices and control/safety units in transportation equipment, etc., appropriate measures should be taken.

6. We are making every effort to improve the quality and reliability of our products. However, a very low probability of failure will occur in semiconductor devices. To avoid damage to social or official organizations, much care should be taken to provide sufficient redundancy and fail-safe design.

7. Radiation-resistant design is not incorporated in the THC7984.

8. It is due to user's judgement whether or not the THC7984 pertains to one of the strategic products prescribed by the Foreign Exchange and Foreign Trade Control Law.

THine Electronics, Inc. sales@thine.co.jp