Freescale Semiconductor

Data Sheet

Document Number: SCF5249EC Rev. 0, 04/2005

SCF5249 Integrated ColdFire® Microprocessor Data Sheet

1 Introduction

This document provides an overview of the SCF5249 ColdFire® processor and general descriptions of SCF5249 features and its various modules.

The SCF5249 was designed as a system controller/decoder for MP3 music players, especially portable MP3 CD players. The 32-bit ColdFire core with Enhanced Multiply Accumulate (EMAC) unit provides optimum performance and code density for the combination of control code and signal processing required for MP3 decode, file management, and system control.

Low power features include a hardwired CD ROM decoder, advanced 0.18um CMOS process technology, 1.8V core power supply, and on-chip 96KByte SRAM. MP3 decode requires less than 20MHz CPU bandwidth and runs in on-chip SRAM with external access only for data input and output.

The SCF5249 is also an excellent general purpose system controller with over 125 Dhrystone 2.1 MIPS @ 140MHz performance at a very competitive price. The

Table of Contents

1	Introduction	1
2	SCF5249 Block Diagram	3
3	SCF5249 Feature Details	3
4	160 MAPBGA Ball Assignments	6
5	SCF5249 Functional Overview	7
6	General Device Information	12
7	Documentation	12
3	Signal Descriptions	13
9	Electrical Characteristics	28
10	Pin-Out and Package Information	46

Introduction

integrated peripherals and EMAC allow the SCF5249 to replace both the microcontroller and the DSP in certain applications. Most peripheral pins can also be remapped as General Purpose I/O pins.

1.1 Orderable Parts Numbers

1.1.1 Orderable Part Table

Table 1. Orderable Part Numbers

Orderable Part Number	Maximum Clock Frequency	Package Type	Operating Temperature Range	Part Status
SCF5249LPV120	120 MHz	144 pin QFP	-20°C to 70°C	Leaded
SCF5249LAG120	120 MHz	144 pin QFP	-20°C to 70°C	Lead Free
SCF5249VF140	140 MHz	160 ball MAPBGA	-20°C to 70°C	Leaded
SCF5249VM140	140 MHz	160 ball MAPBGA	-20°C to 70°C	Lead Free

1.2 SCF5249 Features

The SCF5249 integrated microprocessor combines a Version 2 ColdFire[®] processor core operating at 140MHz with the following modules.

- DMA controller with 4 DMA channels
- Integrated Enhanced Multiply-accumulate Unit (EMAC)
- 8-KByte Direct Mapped Instruction Cache
- 96-KByte SRAM (A 64K and a 32K bank)
- Operates from external crystal oscillator
- Supports 16-bit wide SDRAM memories
- Serial Audio Interface which supports IIS and EIAJ audio protocols
- Digital audio transmitter and two receivers compliant with IEC958 audio protocol
- CD-ROM and CD-ROM XA block decoding and encoding function
- Two UARTS
- Queued Serial Peripheral Interface (QSPI) (Master Only)
- Two timers
- IDE and SmartMedia interfaces
- Analog/Digital Converter
- Flash Memory Card Interface
- Two I²C modules
- System debug support
- General Purpose I/O pins shared with other functions

3

- 1.8V core, 3.3V I/O
- 160 pin MAPBGA package (qualified at 140 MHz) and 144 pin QFP package (qualified at 120 MHz)
- -20^{0} C to 70^{0} C ambient operating temperature range

2 SCF5249 Block Diagram

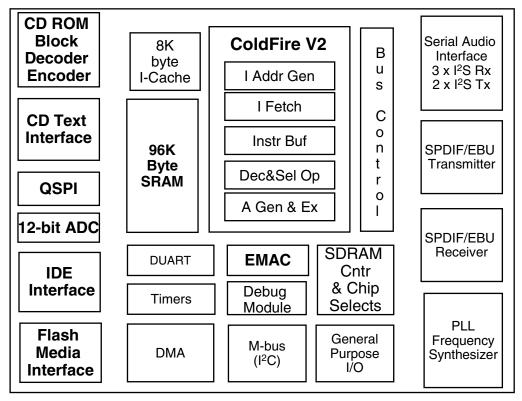


Figure 1. SCF5249 Block Diagram

3 SCF5249 Feature Details

The primary features of the SCF5249 integrated processor include the following:

- ColdFire V2 Processor Core operating at 140MHz
 - Clock-doubled Version 2 microprocessor core
 - 32-bit internal data bus, 16 bit external data bus
 - 16 user-visible, 32-bit general-purpose registers
 - Supervisor/user modes for system protection
 - Vector base register to relocate exception-vector table
 - Optimized for high-level language constructs

SCF5249 Feature Details

- DMA controller
 - Four fully programmable channels: Two dedicated to the audio interface module and two dedicated to the UART module (External requests are not supported.)
 - Supports dual- and single-address transfers with 32-bit data capability
 - Two address pointers that can increment or remain constant
 - 16-/24-bit transfer counter
 - Operand packing and unpacking support
 - Auto-alignment transfers supported for efficient block movement
 - Supports bursting and cycle stealing
 - All channels support memory to memory transfers
 - Interrupt capability
 - Provides two clock cycle internal access
- Enhanced Multiply-accumulator Unit
 - Single-cycle multiply-accumulate operations for 32 x 32 bit and 16 x 16 bit operands
 - Support for signed, unsigned, integer, and fixed-point fractional input operands
 - Four 48-bit accumulators to allow the use of a 40-bit product
 - The addition of 8 extension bits to increase the dynamic number range
 - Fast signed and unsigned integer multiplies
- 8-KByte Direct Mapped instruction cache
 - Clock-doubled to match microprocessor core speed
 - Flush capability
 - Non-blocking cache provides fast access to critical code and data
- 96-KByte SRAM
 - Provides one-cycle access to critical code and data
 - Split into two banks, SRAM0 (32K), and SRAM1 (64K)
 - DMA requests to/from internal SRAM1 supported
- Crystal Trim
 - The XTRIM output can be used to trim an external crystal oscillator circuit which would allow lock with an incoming IEC958 or serial audio signal
- Audio Interfaces
 - IEC958 input and output
 - Four serial Philips IIS/Sony EIAJ interfaces
 - One with input and output, one with output only, two with input only (Three inputs, two outputs)
 - Master and Slave operation

5

- CD Text Interface
 - Allows the interface of CD subcode (transmitter only)
- Dual Universal Synchronous/asynchronous Receiver/Transmitter (Dual UART)
 - Full duplex operation
 - Baud-rate generator
 - Modem control signals: clear-to-send (CTS) and request-to-send (RTS)
 - DMA interrupt capability
 - Processor-interrupt capability
- Queued Serial Peripheral Interface (QSPI)
 - Programmable queue to support up to 16 transfers without user intervention
 - Supports transfer sizes of 8 to 16 bits in 1-bit increments
 - Four peripheral chip-select lines for control of up to 15 devices
 - Baud rates from 273 Kbps to 17.5 Mbps at 140MHz
 - Programmable delays before and after transfers
 - Programmable clock phase and polarity
 - Supports wraparound mode for continuous transfers
 - Master mode only
- Dual 16-bit General-purpose Multimode Timers
 - Clock source selectable from external, CPU clock/2 and CPU clock/32.
 - 8-bit programmable prescaler
 - 2 timer inputs and 2 outputs
 - Processor-interrupt capability
 - 14.3 nS resolution with CPU clock at 140MHz
- IDE/ SmartMedia Interface
 - Allows direct connection to an IDE hard drive or other IDE peripheral
- Analog/Digital Converter
 - 12-Bit Resolution
 - 4 Muxed inputs
- Flash Memory Card Interface
 - Allows connection to Sony MemoryStick compatible devices
 - Support SD cards and other types of flash media
- Dual I²C Interfaces
 - Interchip bus interface for EEPROMs, LCD controllers, A/D converters, keypads

SCF5249 Integrated ColdFire® Microprocessor Data Sheet, Rev. 3

- Master and slave modes, support for multiple masters
- Automatic interrupt generation with programmable level

160 MAPBGA Ball Assignments

- System debug support
 - Real-time instruction trace for determining dynamic execution path
 - Background debug mode (BDM) for debug features while halted
 - Debug exception processing capability
 - Real-time debug support
- System Interface
 - Glueless bus interface with four chip selects and DRAMC support for interface to 16-bit for DRAM, SRAM, ROM, FLASH, and I/O devices
 - Two programmable chip-select signals for static memories or peripherals, with programmable wait states and port sizes.
 - Two dedicated chip selects for 16-bit wide DRAM/SDRAM.
 - CS0 is active after reset to provide boot-up from external FLASH/ROM.
 - Programmable interrupt controller
 - Low interrupt latency
 - Eight external interrupt requests
 - Programmable autovector generator
 - 44 programmable general-purpose inputs*
 - 46 programmable general-purpose outputs*
 - * For the 160 MAPBGA package
 - IEEE 1149.1 Test (JTAG) Module
- Clocking

6

- Clock-multiplied PLL, programmable frequency
- 1.8V Core, 3.3V I/O
- 160 pin MAPBGA package (qualified at 140 MHz) and 144 pin QFP package (qualified at 120 MHz)

4 160 MAPBGA Ball Assignments

The following signals are not available on the 144 QFP package.

NOTE

The 144 QFP part is qualified for 120 MHz operation. The 160MAPBGA part is qualified for 140 MHz.

_		
160 MAPBGA Ball Number	Function	GPIO
E3	cmd_sdio2	gpio34
G4	sdata0_sdio1	gpio54
НЗ	RSTO/sdata2_bs2	
К3	A25	gpo8
L4	QSPI_CS1	gpio24
L8	QSPI_CS3	gpio22
N8	SDRAM_CS2	gpio7
P9	EbuOut2	gpo 37
K11	BUFENb2	gpio17
G12	subr	gpio 53
F13	sfsy	gpio 52
F12	rck	gpio 51
E8	SRE	gpio11
B8	Irck3	gpio 45
E7	SWE	gpio12
A7	sclk3	gpio 49

Table 2. 160 MAPBGA Ball Assignments

5 SCF5249 Functional Overview

5.1 ColdFire V2 Core

The ColdFire processor Version 2 core consists of two independent, decoupled pipeline structures to maximize performance while minimizing core size. The instruction fetch pipeline (IFP) is a two-stage pipeline for prefetching instructions. The prefetched instruction stream is then gated into the two-stage operand execution pipeline (OEP), which decodes the instruction, fetches the required operands, and then executes the required function. Because the IFP and OEP pipelines are decoupled by an instruction buffer that serves as a FIFO queue, the IFP can prefetch instructions in advance of their actual use by the OEP, which minimizes time stalled waiting for instructions. The OEP is implemented in a two-stage pipeline featuring a traditional RISC data path with a dual-read-ported register file feeding an arithmetic/logic unit (ALU).

5.2 DMA Controller

The SCF5249 provides four fully programmable DMA channels for quick data transfer. Single and dual address mode is supported with the ability to program bursting and cycle stealing. Data transfer is selectable as 8, 16, 32, or 128-bits. Packing and unpacking is supported.

SCF5249 Functional Overview

Two internal audio channels and the dual UART can be used with the DMA channels. All channels can perform memory to memory transfers. The DMA controller has a user-selectable, 24- or 16-bit counter and a programmable DMA exception handler.

External requests are not supported.

5.3 Enhanced Multiply and Accumulate Module (EMAC)

The integrated EMAC unit provides a common set of DSP operations and enhances the integer multiply instructions in the ColdFire architecture. The EMAC provides functionality in three related areas:

- 1. Faster signed and unsigned integer multiplies
- 2. New multiply-accumulate operations supporting signed and unsigned operands
- 3. New miscellaneous register operations

Multiplies of 16x16 and 32x32 with 48-bit accumulates are supported in addition to a full set of extensions for signed and unsigned integers plus signed, fixed-point fractional input operands. The EMAC has a single-clock issue for 32x32-bit multiplication instructions and implements a four-stage execution pipeline.

5.4 Instruction Cache

The instruction cache improves system performance by providing cached instructions to the execution unit in a single clock. The SCF5249 processor uses a 8K-byte, direct-mapped instruction cache to achieve 125 MIPS at 140 Mhz. The cache is accessed by physical addresses, where each 16-byte line consists of an address tag and a valid bit. The instruction cache also includes a bursting interface for 16-bit and 8-bit port sizes to quickly fill cache lines.

5.5 Internal 96-KByte SRAM

The 96-KByte on-chip SRAM is split over two banks, SRAM0 (32k) and SRAM1 (64K). It provides one clock-cycle access for the ColdFire core. This SRAM can store processor stack and critical code or data segments to maximize performance. Memory in the second bank can be accessed under DMA.

5.6 DRAM Controller

The SCF5249 DRAM controller provides a glueless interface for up to two banks of DRAM, each of which can be up to 32 MBytes. The controller supports a 16-bit data bus. A unique addressing scheme allows for increases in system memory size without rerouting address lines and rewiring boards. The controller operates in page mode, non-page mode, and burst-page mode and supports SDRAMS.

5.7 System Interface

The SCF5249 provides a glueless interface to 16-bit port size SRAM, ROM, and peripheral devices with independent programmable control of the assertion and negation of chip-select and write-enable signals.

The SCF5249 also supports bursting ROMs.

External Bus Interface 5.8

The bus interface controller transfers information between the ColdFire core or DMA and memory, peripherals, or other devices on the external bus. The external bus interface provides 23 bits of address bus space, a 16-bit data bus, Output Enable, and Read/Write signals. This interface implements an extended synchronous protocol that supports bursting operations.

Serial Audio Interfaces 5.9

The SCF5249 digital audio interface provides four serial Philips IIS/Sony EIAJ interfaces. One interface is a 4-pin (1 bit clock, 1 word clock, 1 data in, 1 data out), the other three interfaces are 3-pin (1 bit clock, 1 word clock, 1 data in or out). The serial interfaces have no limit on minimum sampling frequency. Maximum sampling frequency is determined by maximum frequency on bit clock input. This is 1/3 the frequency of the internal system clock.

5.10 IEC958 Digital Audio Interfaces

The SCF5249 has two digital audio input interfaces, and one digital audio output interface. There are four digital audio input pins, two digital audio output pins. An internal multiplexer selects one of the four inputs to the digital audio input interface. There is one digital audio output interface but it has two IEC958 outputs. One output carries the professional "c" channel, and the other carries the consumer "c" channel. The rest carry identical data.

The IEC958 output can take the output from the internal IEC958 generator, or multiplex out one of the four IEC958 inputs.

5.11 Audio Bus

The audio interfaces connect to an internal bus that carries all audio data. Each receiver places its received data on the audio bus and each transmitter takes data from the audio bus for transmission. Each transmitter has a source select register.

In addition to the audio interfaces, there are six CPU accessible registers connected to the audio bus. Three of these registers allow data reads from the audio bus and allow selection of the audio source. The other three register provide a write path to the audio bus and can be selected by transmitters as the audio source. Through these registers, the CPU has access to the audio samples for processing.

Audio can be routed from a receiver to a transmitter without the data being processed by the core so the audio bus can be used as a digital audio data switch. The audio bus can also be used for audio format conversion

5.12 CD-ROM Encoder/Decoder

The SCF5249 is capable of processing CD-ROM sectors in hardware. Processing is compliant with CD-ROM and CD-ROM XA standards

SCF5249 Integrated ColdFire® Microprocessor Data Sheet, Rev. 3 Freescale Semiconductor 9

SCF5249 Functional Overview

The CD-ROM decoder performs following functions in hardware:

- Sector sync recognition
- Descrambling of sectors
- Verification of the CRC checksum for Mode 1, Mode 2 Form 1, and Mode 2 Form 2 sectors
- Third-layer error correction is not performed

The CD-ROM encoder performs following functions in hardware:

- Sector sync recognition
- Scrambling of sectors
- Insertion of the CRC checksum for Mode 1, Mode 2 Form 1, and Mode 2 Form 2 sectors.
- Third-layer error encoding needs to be done in software. This can use approximately 5-10 Mhz of performance for single-speed.

5.13 Dual UART Module

Two full-duplex UARTs with independent receive and transmit buffers are in this module. Data formats can be 5, 6, 7, or 8 bits with even, odd, or no parity, and up to 2 stop bits in 1/16 increments. Four-byte receive buffers and two-byte transmit buffers minimize CPU service calls. The Dual UART module also provides several error-detection and maskable-interrupt capabilities. Modem support includes request-to-send (RTS) and clear-to-send (CTS) lines.

The system clock provides the clocking function from a programmable prescaler. You can select full duplex, auto-echo loopback, local loopback, and remote loopback modes. The programmable Dual UARTs can interrupt the CPU on various normal or error-condition events.

5.14 Queued Serial Peripheral Interface QSPI

The QSPI module provides a serial peripheral interface with queued transfer capability. It supports up to 16 stacked transfers at a time, making CPU intervention between transfers unnecessary. Transfers of up to 37 Mbits/second are possible at a CPU clock of 140 MHz. The QSPI supports master mode operation only.

5.15 Timer Module

The timer module includes two general-purpose timers, each of which contains a free-running 16-bit timer for use in any of three modes:

- 1. Timer Capture. This mode captures the timer value with an external event.
- 2. Output Capture. This mode triggers an external signal or interrupts the CPU when the timer reaches a set value
- 3. Event Counter. This mode counts external events.

The timer unit has an 8-bit prescaler that allows programming of the clock input frequency, which is derived from the system clock. In addition to the $\div 1$ and $\div 16$ clock derived from the bus clock (CPU clock / 2), the programmable timer-output pins either generate an active-low pulse or toggle the outputs.

SCF5249 Integrated ColdFire® Microprocessor Data Sheet, Rev. 3

5.16 IDE and SmartMedia Interfaces

The SCF5249 system bus allows connection of an IDE hard disk drive and SmartMedia flash card with a minimum of external hardware. The external hardware consists of bus buffers for address and data and are intended to reduce the load on the bus and prevent SDRAM and Flash accesses to propagate to the IDE bus. The control signals for the buffers are generated in the SCF5249.

5.17 Analog/Digital Converter (ADC)

The four channel ADC is a based on the Sigma-Delta concept with 12-bit resolution. The digital portion of the ADC is provided internally. The analog voltage comparator must be provided externally as well as an external integrator circuit (resistor/capacitor) which is driven by the ADC output. A software interrupt is provided when the ADC measurement cycle is complete.

5.18 Flash Memory Card Interface

The interface is Sony MemoryStick and SecureDigital compatible. However, there is no hardware support for MagicGate.

5.19 I²C Module

The two-wire I²C bus interface, which is compliant with the Philips I²C bus standard, is a bidirectional serial bus that exchanges data between devices. The I²C bus minimizes the interconnection between devices in the end system and is best suited for applications that need occasional bursts of rapid communication over short distances among several devices. Bus capacitance and the number of unique addresses limit the maximum communication length and the number of devices that can be connected.

5.20 Chip-Selects

Two programmable chip-select outputs provide signals that enable glueless connection to external memory and peripheral circuits. The base address, access permissions and automatic wait-state insertion are programmable with configuration registers. These signals also interface to 16-bit ports.

CS0 is active after reset to provide boot-up from external FLASH/ROM.

5.21 GPIO Interface

A total of 44 General Purpose inputs and 46 General Purpose outputs are available. These are multiplexed with various other signals. Eight of the GPIO inputs have edge sensitive interrupt capability.

5.22 Interrupt Controller

The interrupt controller provides user-programmable control of a total of 57 interrupts. There are 49 internal interrupt sources. In addition, there are 8 GPIOs where interrupts can be generated on the rising or falling edge of the pin. All interrupts are autovectored and interrupt levels are programmable.

SCF5249 Integrated ColdFire® Microprocessor Data Sheet, Rev. 3

General Device Information

5.23 JTAG

To help with system diagnostics and manufacturing testing, the SCF5249 includes dedicated user-accessible test logic that complies with the IEEE 1149.1A standard for boundary scan testability, often referred to as Joint Test Action Group, or JTAG. For more information, refer to the IEEE 1149.1A standard. Freescale provides BSDL files for JTAG testing.

5.24 System Debug Interface

The ColdFire processor core debug interface supports real-time instruction trace and debug, plus background-debug mode. A background-debug mode (BDM) interface provides system debug.

In real-time instruction trace, four status lines provide information on processor activity in real time (PST pins). A four-bit wide debug data bus (DDATA) displays operand data and change-of-flow addresses, which helps track the machine's dynamic execution path.

5.25 Crystal and On-chip PLL

Typically, an external 16.92 Mhz or 33.86 Mhz clock input is used for CD R/W applications, while an 11.2896 MHz clock is more practical for Portable CD player applications. However, the on-chip programmable PLL, which generates the processor clock, allows the use of almost any low frequency external clock (5-35 Mhz).

Two clock outputs (MCLK1 and MCLK2) are provided for use as Audio Master Clock. The output frequencies of both outputs are programmable to Fxtal, Fxtal/2, Fxtal/3, and Fxtal/4. The Fxtal/3 option is only available when the 33.86 Mhz crystal is connected.

The SCF5249 supports VCO operation of the oscillator by means of a 16-bit pulse density modulation output. Using this mode, it is possible to lock the oscillator to the frequency of an incoming IEC958 or IIS signal. The maximum trim depends on the type and design of the oscillator. Typically a trim of \pm 100 ppm can be achieved with a crystal oscillator and over \pm 1000 ppm with an LC oscillator.

6 General Device Information

The SCF5249 is available in a 160-pin MAP BGA package, or a 144-pin QFP package.

7 Documentation

Table 3 lists the documents that provide a complete description of the SCF5249 and are required to design properly with the part. Documentation is available from a local Freescale distributor, a Freescale semiconductor sales office, a Freescale Literature Distribution Center, or through the Freescale DSP home page on the internet; http://www.freescale.com/ (the source for the latest information).

Table 3. SCF5249 Documentation

Document Name	Description	Order Number
CFPRM/D	ColdFire Family Programmer's Reference Manual	CFPRM/D
ColdFire2UM	Version 2/2M ColdFire Core Processor User's Manual	ColdFire2UM/D
ColdFire2UMAD	Version 2/2M ColdFire Core Processor User's Manual Addendum	ColdFire2UMAD/D
SCF5249UM	SCF5249 User's Manual	SCF5249UM/D

8 Signal Descriptions

8.1 Introduction

This section describes the SCF5249 input and output signals. The signal descriptions as shown in Table 4 are grouped according to relevant functionality.

Table 4. SCF5249 Signal Index

Signal Name	Mnemonic	Function	Input/ Output	Reset State
Address	A[23:1] A[25]/GPO8	23 address lines, address line 25 multiplexed with gpo8.	Out	Х
Read-write control	RW_b	Bus write enable - indicates if read or write cycle in progress	Out	Н
Output enable	OE	Output enable for asynchronous memories connected to chip selects	Out	negated
Data	D[31:16]	Data bus used to transfer word data	In/Out	Hi-Z
Synchronous row address strobe	SDRAS	Row address strobe for external SDRAM.	Out	negated
Synchronous column address strobe	SDCAS	Column address strobe for external SDRAM	Out	negated
SDRAM write enable	SDWE	Write enable for external SDRAM	Out	negated
SDRAM upper byte enable	SDUDQM	Indicates during write cycle if high byte is written	Out	
SDRAM lower byte enable	SDLDQM	Indicates during write cycle if low byte is written	Out	
SDRAM chip selects	SDRAMCS1	SDRAM chip select	Outt	negated
SDRAM chip selects	SDRAMCS2/GPIO7	SDRAM chip select	In/Out	negated
SDRAM clock enable	BCLKE	SDRAM clock enable	Out	
System clock	SCLK/GPIO10	SDRAM clock output	In/Out	

Signal Descriptions

Table 4. SCF5249 Signal Index (continued)

Signal Name	Mnemonic	Function	Input/ Output	Reset State
ISA bus read strobes	CS2/IDE-DIOR/GPIO13 CS3/SRE/GPIO11	There are 2 ISA bus read strobes and 2 ISA bus write strobes. They allow connection of two independent ISA	In/Out	
ISA bus write strobes	IDE-DIOW/GPIO14 SWE/GPIO12	bus peripherals, e.g. an IDE slave device and a SmartMedia card.	In/Out	
ISA bus wait signal	IDE-IORDY/GPIO16	ISA bus wait line - available for both busses	In/Out	
Chip Selects[1:0]	CS0 CS1/GPIO58	Enables peripherals at programmed addresses. CS[1:0]. CS[0]provides boot ROM selection	Out In/Out	negated
Buffer enable 1	BUFENB1/GPIO57	Two programmable buffer enables	In/Out	
Buffer enable 2	BUFENB2/GPIO7	allow seamless steering of external buffers to split data and address bus in sections.	In/Out	
Transfer acknowledge	TA/GPIO20	Transfer Acknowledge signal	In/Out	
Serial Clock Line	SCL0/QSPI_CLK	Clock signal for first I ² C module operation Signal is also QSPI clock	In/Out	
Serial Data Line	SDA0/QSPI_DIN	Serial data port first I ² C module operation Signal is also QSPI data in	In/Out	
Serial Clock Line	SCL1_GPIO_3	Clock signal for second l2C module operation	In/Out	
Serial Data Line	SDA1_GPIO55	Serial data port for second I2C module operation	In/Out	
Receive Data	RXD1/GPI28/ADIN2 RXD0/GPI27	Signal is receive serial data input for DUART	In	
Transmit Data	TXD1/GPO28 TXD0/GPO27	Signal is transmit serial data output for DUART	Out	asserted
Request-To-Send	RTS1/GPO31 RTS2/GPO30	DUART signals a ready to receive data query	Out	negated
Clear-To-Send	CTS1/ADIN3/GPI31 CTS0/GPI30	Signals to DUART that data can be transmitted to peripheral CTS2 is multiplexed with an A/D input	ln	
Timer Input	TIN0/GPI33 TIN1/GPIO23	Provides clock input to timer or provides trigger to timer value capture logic	In In/Out	
Timer Output	TOUT0/GPO33 TOUT1/ADOUT/GPO35	Capable of output waveform or pulse generation	Out	

Table 4. SCF5249 Signal Index (continued)

Signal Name	Mnemonic	Function	Input/ Output	Reset State
IEC958 inputs	EBUIN1/GPI36 EBUIN2/GPI37 EBUIN3/ADIN0/GPI38 EBUIN4/ADIN1/GPI39	Audio interfaces IEC958 inputs multiplexed with some A/D inputs	In	
IEC958 outputs	EBUOUT1/GPO36 EBUOUT2/GPO37	Audio interfaces IEC958 outputs	Out	
Serial data in	SDATAI1 SDATAI3/GPI41 SDATA14/GPI42	Audio interfaces serial data inputs	In	
Serial data out	SDATAO1/GPIO25 SDATAO2/GPO41	Audio interfaces serial data outputs	In/Out Out	
Word clock	LRCK1 LRCK2/GPIO44 LRCK3/GPIO45 LRCK4/GPIO46	Audio interfaces serial word clocks	In/Out	
Bit clock	SCLK1 SCLK2/GPIO48 SCLK3/GPIO49 SCLK4/GPIO50	Audio interfaces serial bit clocks	In/Out	
Serial input	EF/GPIO19	Error flag serial in	In/Out	
Serial input	CFLG/GPIO18	C-flag serial in	In/Out	
Subcode clock	RCK/GPIO51	Audio interfaces subcode clock	In/Out	
Subcode sync	SFSY/GPIO52	Aaudio interfaces subcode sync	In/Out	
Subcode data	SUBR/GPIO53	Audio interfaces subcode data	In/Out	
Clock frequency trim	XTRIM/GPO38	Clock trim control	Out	
Audio clocks out	MCLK1/GPIO39 MCLK2/GPIO42	DAC output clocks	Out	
MemoryStick/SecureDigit al interface	CMDSDIO2/GPIO34	Secure Digital command lane MemoryStick interface 2 data i/o	In/Out	
	SCLKOUT/GPIO15	Clock out for both MemoryStick interfaces and for Secure Digital	In/Out	
	SDATA0_SDIO1/GPIO54	SecureDigital serial data bit 0 MemoryStick interface 1 data i/o	In/Out	
	SDATA1_BS1/GPIO9	SecureDigital serial data bit 1 MemoryStick interface 1 strobe	In/Out	
	RSTO/SDATA2_BS2	SecureDigital serial data bit 2 MemoryStick interface 2 strobe Reset output signal	In/Out	
	SDATA3/GPIO56	SecureDigital serial data bit 3	In/Out	

Signal Descriptions

Table 4. SCF5249 Signal Index (continued)

Signal Name	Mnemonic	Function	Input/ Output	Reset State
ADC	EBUIN3/ADIN0/GPI38 EBUIN4/ADIN1/GPI39 RXD2/ADIN2/GPI28 CTS2/ADIN3/GPI31	Analog to Digital converter input signals	In/Out	
ADC	TOUT1/ADOUT/GPO35	Analog to digital convertor output signal.	In/Out	
QSPI clock	SCL/QSPI_CLK	QSPI clock signal	In/Out	
QSPI data in	SDA/QSPI_DIN	QSPI data input	In/Out	
QSPI data out	QSPIDOUT/GPIO26	QSPI data out	In/Out	
QSPI chip selects	QSPICS0/GPIO29 QSPICS1/GPIO24 QSPICS2/GPIO21 QSPICS3/GPIO22	QSPI chip selects	In/Out	
Crystal in	CRIN	Crystal input	In	
Reset In	RSTI	Processor Reset Input	In	
Freescale Test Mode	TEST[3:0]	Should always be low.	In	
High Impedance	HIZ	Assertion three-states all output signal pins.	ln	
Debug Data	DDATA3/GPIO4 DDATA2/GPIO2 DDATA1/GPIO1 DDATA0/GPIO0	Displays captured processor data and break-point status.	In/Out	Hi-Z
Processor Status	PST3/GPIO62 PST2/GPIO61 PST1/GPIO60 PST0/GPIO59	Indicates internal processor status.	In/Out	Hi-Z
Processor clock	PSTCLK/GPO63	Processor clock output	Out	
Test Clock	тск	Clock signal for IEEE 1149.1A JTAG.	In	
Test Reset/Development Serial Clock	TRST/DSCLK	Multiplexed signal that is asynchronous reset for JTAG controller. Clock input for debug module.	ln	
Test Mode Select/ Break Point	TMS/BKPT	Multiplexed signal that is test mode select in JTAG mode and a hardware break-point in debug mode.	In	
Test Data Input / Development Serial Input	TDI/DSI	Multiplexed serial input for the JTAG or background debug module.	In	
Test Data Output/Development Serial Output	TDO/DSO	Multiplexed serial output for the JTAG or background debug module.	Out	

Note: The CMD_SDIO2, SDATA0_SDIO1, RSTO/SDATA2_BS2, A25, QSPI_CS1, QSPI_CS3, SDRAM_CS2, EBUOUT2, BUFENB2, SUBR, SFSY, RCK, SRE, LRCK3, SWE, and the SCLK3 signals are only used in the 160 MAPBGA package.

8.2 **GPIO**

Many pins have a GPIO as first or second function. If GPIO is second function, following rules apply:

- General purpose input is always active, regardless of state of pin.
- General purpose output or primary output is determined by value written to GPIO function select register.
- Power-on reset function is not GPIO.

8.3 SCF5249 Bus Signals

These signals provide the external bus interface to the SCF5249.

8.3.1 Address Bus

- The address bus provides the address of the byte or most significant byte of the word or longword being transferred. The address lines also serve as the DRAM address pins, providing multiplexed row and column address signals.
- Bits 23 down to 1 and 25 of the address are available. A25 is intended to be used with 256 Mbit DRAM's. Signals are named:
- A[23:1]
- A[25]/GPO8

8.3.2 Read-Write Control

This signal indicates during any bus cycle whether a read or write is in progress. A low is write cycle and a high is a read cycle.

8.3.3 Output Enable

The \overline{OE} signal is intended to be connected to the output enable of asynchronous memories connected to chip selects. During bus read cycles, the ColdFire processor will drive \overline{OE} low.

8.3.4 Data Bus

The data bus (D[31:16]) is bi-directional and non-multiplexed. Data is registered by the SCF5249 on the rising clock edge. The port width for each chip-select and DRAM bank are programmable. The data bus uses a default configuration if none of the chip-selects or DRAM bank match the address decode. All 16 bits of the data bus are driven during writes, regardless of port width or operand size.

8.3.5 Transfer Acknowledge

The TA/GPIO20 pin is the transfer acknowledge signal.

8.4 SDRAM Controller Signals

The following SDRAM signals provide a seamless interface to external SDRAM. An SDRAM width of 16 bits is supported and can access as much as 64 Mybtes of memory. ADRAMs are not supported.

Table 5. SDRAM Controller Signals

SDRAM Signal	Description
Synchronous DRAM row address strobe	The SDRAS active low pin provides a seamless interface to the RAS input on synchronous DRAM
Synchronous DRAM Column Address Strobe	The SDCAS active low pin provides a seamless interface to CAS input on synchronous DRAM.
Synchronous DRAM Write	The SDWE active-low pin is asserted to signify that a SDRAM write cycle is underway. This pin outputs logic '1' during read bus cycles.
Synchronous DRAM Chip Enable	The SD_CS1 and The SDRAM_CS2/GPIO7 active-low output signal is used during synchronous mode to route directly to the chip select of up to two SDRAM devices. The SDRAM_CS2/gpio7 can be programmed to be gpio using the GPIO-FUNCTION register.
Synchronous DRAM UDQM and LQDM signals	The DRAM byte enables UDMQ and LDQM are driven by the SDUDQM and SDLDQM byte enable outputs.
Synchronous DRAM clock	The DRAM clock is driven by the SCLK signal
Synchronous DRAM Clock Enable	The BCLKE active high output signal is used during synchronous mode to route directly to the SCKE signal of external SDRAMs. This signal provides the clock enable to the SDRAM.

NOTE

The SDRAM CS2 signal is only used on the 160 MAPBGA package.

8.5 Chip Selects

There are two chip select outputs on the SCF5249 device. $\overline{CS0}$ and $\overline{CS1}/GPIO58$. The second signal is multiplexed with a GPIO signal. The active low chip selects can be used to access asynchronous memories. The interface is glueless.

8.6 ISA Bus

The SCF5249 supports an ISA bus. (No ISA DMA channel). Using the ISA bus protocol, reads and writes to up to two ISA bus peripherals are possible. For the first peripheral, CS2/IDE-DIOR/GPIO13 and IDE-DIOW/GPIO14 are the read and write strobe. For the second peripheral, CS3/SRE/GPIO11 and SWE/GPIO12 are the read and write strobe. Either peripheral can insert wait states by pulling IDE-IORDY/GPIO16

SCF5249 Integrated ColdFire® Microprocessor Data Sheet, Rev. 3

8.7 Bus Buffer Signals

As the SCF5249 has a quite complicated slave bus, with the possibility to put DRAM on the bus, put asynchronous memories on the bus, and to put ISA bus peripherals on the bus, it may become necessary to introduce a bus buffer on the bus. The SCF5249 has a glueless interface to steer these bus buffers with 2 bus buffer output signals BUFENB1/GPIO57 and BUFENB2/GPIO7.

NOTE

The BUFENB2 signal is only used in the 160 MAPBGA package.

8.8 I²C Module Signals

There are two I²C interfaces on this device.

The I²C module acts as a quick two-wire, bidirectional serial interface between the SCF5249 processor and peripherals with an I²C interface (e.g., LED controller, A-to-D converter, D-to-A converter). When devices connected to the I²C bus drive the bus, they will either drive logic-0 or high-impedance. This can be accomplished with an open-drain output.

I ² c Module Signal	Description
I ² C Serial Clock	The SCL/QPSICLK and SCL2/GPIO3 bidirectional signals are the clock signal for first and second I ² C module operation. The I ² C module controls this signal when the bus is in master mode; all I ² C devices drive this signal to synchronize I ² C timing. Signals are multiplexed Function select is done via PLLCR register.
I ² C Serial Data	The SDA/QSPI_DIN and SDA2/GPIO55 bidirectional signals are the data input/output for the first and second serial I ² C interface. Signals are multiplexed Function select is done via PLLCR register.

Table 6. I²C Module Signals

8.9 Serial Module Signals

The following signals transfer serial data between the two UART modules and external peripherals.

All serial module signals can be used as gpi or gpo. The GPIO-FUNCTION and GPIO1-FUNCTION registers must be programmed to determine pin functions of the inputs and outputs. If used as gpo or gpi, UART functionality is lost.

Table 7. Serial Module Signals

Serial Module Signal	Description
Receive Data	The RXD1_GPI27 and RXD2/ADIN2/GPI28 are the inputs on which serial data is received by the DUART. Data is sampled on RxD[1:0] on the rising edge of the serial clock source, with the least significant bit received first.
Transmit Data	The DUART transmits serial data on the TXD1/GPO27 and TXD2/GPO28 output signals. Data is transmitted on the falling edge of the serial clock source, with the least significant bit transmitted (LSB) first. When no data is being transmitted or the transmitter is disabled, these two signals are held high. TxD[1:0] are also held high in local loopback mode.
Request To Send	The RTS1/GPO30 and RTS2/GPO31 request-to-send outputs indicate to the peripheral device that the DUART is ready to send data and requires a clear-to-send signal to initiate transfer.
Clear To Send	Peripherals drive the CTS1/GPI30 and CTS2/ADIN3/GPI31 inputs to indicate to the SCF5249 serial module that it can begin data transmission.

8.10 Timer Module Signals

The following signals are external interface to the two general-purpose SCF5249 timers. These 16-bit timers can capture timer values, trigger external events, or internal interrupts, or count external events. These pins can be reused as GPO or GPI. Registers GPIO-FUNCTION and GPIO1-FUNCTION must be programmed for this.

Table 8. Timer Module Signals

Serial Module Signal	Description
Timer Input	Users can program the TIN0/GPI33 and TIN1/GPIO23 inputs as clocks that cause events in the counter and prescalars. They can also cause capture on the rising edge, falling edge, or both edges.
Timer Output	The TOUT0/GPO33 and TOUT1/ADOUT/GPO35 programmable outputs pulse or toggle on various timer events.

8.11 Serial Audio Interface Signals

All serial audio interface signals can be programmed to serve as general purpose I/Os or as serial audio interface signals. The function is programmed using GPIO-FUNCTION and GPIO1-FUNCTION registers.

NOTE

The LRCK3 and SCLK3 signals are only used in the 160 MAPBGA package..

SCF5249 Integrated ColdFire® Microprocessor Data Sheet, Rev. 3

Table 9. Serial Audio Interface Signals

Serial Module Signal	Description
Serial Audio Bit Clock	The SCLK1, SCLK2/GPIO48 and SCLK3/GPIO49, and SCLK4/GPIO50 multiplexed pins can serve as general purpose I/Os or serial audio bit clocks. As bit clocks, these bidirectional pins can be programmed as outputs to drive their associated serial audio (IIS) bit clocks. Alternately, these pins can be programmed as inputs when the serial audio bit clocks are driven internally. The functionality is programmed within the Audio module. During reset, these pins are configured as input serial audio bit clocks.
Serial Audio Word Clock	The LRCK1, LRCK2/GPIO44, LRCK3/GPIO45, and LRCK/GPIO46 multiplexed pins can serve as general purpose I/Os or serial audio word clocks. As word clocks, the bidirectional pins can be programmed as inputs to drive their associated serial audio word clock. Alternately, these pins can be programmed as outputs when the serial audio word clocks are derived internally. The functionality is programmed within the Audio module. During reset, these pins are configured as input serial audio word clocks.
Serial Audio Data In	The SDATAI1, SDATAI3/GPIO41, and SDATAI4/GPI42 multiplexed pins can serve as general purpose I/Os or serial audio inputs. As serial audio inputs the data is sent to interfaces 1 and 3 respectively. The functionality of these pins is programmed with the GPIO-FUNCTION and GPIO1-FUNCTION registers. During reset, the pins are configured as serial data inputs.
Serial Audio Data Out	The SDATAO1/GPIO25 AND SDATAO2/GPI41 multiplexed pins can serve as general purpose I/Os or serial audio outputs. The functionality of these pins is programmed with registers GPIO-FUNCTION and GPIO1-FUNCTION. During reset, the pins are configured as serial data outputs
Serial audio error flag	The EF/GPIO19 multiplexed pin can serve as general purpose I/Os or error flag input. As error flag input, this pin will input the error flag delivered by the CD-DSP. EF/GPIO19 is only relevant for serial interface interface 1.
Serial audio CFLG	The CFLG/GPIO18 multiplexed pin can serve as general purpose I/O or CFLG input. As CFLG input, the pin will input the CFLG flag delivered by the CD-DSP. CFLG/GPIO18 is only relevant for serial interface 1.

8.12 Digital Audio Interface Signals

Table 10. Digital Audio Interface Signals

Serial Module Signal	Description
Digital Audio In	The EBUIN1/GPI36, EBUIN2/GPI37, EBUIN3/ADIN0/GPI38, and EBUIN4/ADIN1/GPI39 multiplexed signals can serve as general purpose input or can be driven by various digital audio (IEC958) input sources. Both functionalities are always active. Input chosen for IEC958 receiver is programmed within the audio module. Input value on the 4 pins can always be read from the appropriate gpio register
Digital Audio Out	The EBUOUT1_GPO36 and EBUOUT2_GPO37 multiplexed pins can serve as general purpose I/O or as digital audio (IEC958) output. EBUOUT1 is digital audio out for consumer mode, EBUOUT2 is digital audio out for professional mode. The functionality of the pins is programmed with the GPIO-FUNCTION and GPIO1-FUNCTION register. During reset, the pin is configured as a digital audio output.

NOTE

The EBUOUT2 signal is only used on the 160 MAPBGA package.

8.13 Subcode Interface

There is a 3-line subcode interface on the SCF5249. This 3-line subcode interface allows the device to format and transmit subcode in EIAJ format to a CD channel encoder device. The three signals are described in Table 11.

Table 11. Subcode Interface Signal

Signal name	Description
RCK/GPIO51	Subcode clock input. When pin is used as subcode clock, this pin is driven by the CD channel encoder.
SFSY/GPIO52	Subcode sync output This signal is driven high if a subcode sync needs to be inserted in the EFM stream.
SUBR/GPI053	Subcode data output This signal is a subcode data out pin.

NOTE

The SUBR, SFSY, and the RCK signals are only used in the 160 MAPBGA package.

8.14 Analog to Digital Converter (ADC)

The single output on the TOUT1/ADOUT/GPO35 pin provides the reference voltage in PDM format therefore this output requires an external integrator circuit (resistor/capacitor) to convert it to a DC level to

be used by the external comparator circuit. Four external comparators compare the DC level obtained after filtering TOUT1/ADOUT/GPO35 with the relevant input signals. The outputs of the comparators are fed to the 4 ADIN inputs on the SCF5249: EBUIN3/ADIN0/GPI38, EBUIN4/ADIN1/GPI39, RXD2/ADIN2/GPI38 and CTS2/ADIN3/GPI31. Selection of function for pin TOUT1/ADOUT/GPO35 is done by writing GPIO function select register (determines if function is GPIO or not), and differentiation between timer and adout functions is done in the ADCONFIG Register.

8.15 Secure Digital/ MemoryStick Card Interface

The device has a versatile flash card interface that supports both SecureDigital and MemoryStick cards. The interface can either support one SecureDigital or two MemoryStick cards. No mixing of card types is possible. Table 12 gives the pin descriptions.

Flash Memory Signal	Description
SCLKOUT/GPIO15	Clock out for both MemoryStick interfaces and for SecureDigital
CMD_SDIO2/GPIO34	Secure Digital command line MemoryStick interface 2 data i/o
SDATA0_SDIO1/GPIO54	SecureDigital serial data bit 0 MemoryStick interface 1 data i/o
SDATA1_BS1/GPIO9	SecureDigital serial data bit 1 MemoryStick interface 1 strobe
RSTO/SDATA2_BS2	SecureDigital serial data bit 2 MemoryStick interface 2 strobe Reset output signal Selection between Reset function and SDATA2_BS2 is done by programming PLLCR register.
SDATA3/GPIO57	SecureDigital serial data bit 3

Table 12. Flash Memory Card Signals

NOTE

The SDATA0_SDIO1 and RSTO/SDATA2_BS2 signals are only used in the 160 MAPBGA package.

8.16 Queued Serial Peripheral Interface (QSPI)

Table 13. Queued Serial Peripheral Interface (QSPI) Signals

Serial Module Signal	Description
SCL_QSPICLK	Multiplexed signal IIC interface clock or QSPI clock output Function select is done via PLLCR register.
SDA_QSPIDIN	Multiplexed signal IIC interface data or QSPI data input. Function select is done via PLLCR register.
QSPIDOUT_GPIO26	QSPI data output
QSPICS0_GPIO29	4 different QSPI chip selects
QSPICS1_GPIO24	
QSPICS2_GPIO21	
QSPICS3_GPIO22	

NOTE

The QSPI interface is a high-speed serial interface allowing transmit and receive of serial data.

8.17 Crystal Trim

The XTRIM_GPIO38 output produces a pulse-density modulated phase/frequency difference signal to be used after low-pass filtering to control varicap-voltage to control crystal oscillation frequency. This will lock the crystal to the incoming digital audio signal.

8.18 Clock Out

The MCLK1/GPO39 and /MCLK2/GPO42 can serve as general purpose I/Os or as DAC clock outputs. When programmed as DAC clock outputs, these signals are directly derived from the crystal.

8.19 Debug and Test Signals

These signals interface with external I/O to provide processor status signals.

8.19.1 Test Mode

The TEST[3:0] inputs are used for various manufacturing and debug tests. For normal mode these inputs should be always be tied low. Use TEST0 to switch between background debug mode and JTAG mode. Drive TEST0 high for debug mode.

8.19.2 High Impedance

The assertion of $\overline{\text{HI}}_{Z}$ will force all output drivers to a high-impedance state. The timing on $\overline{\text{HI}}_{Z}$ is independent of the clock.

SCF5249 Integrated ColdFire® Microprocessor Data Sheet, Rev. 3

NOTE

JTAG operation will override the $\overline{\text{HI}}$ pin.

8.19.3 Processor Clock Output

The internal PLL generates this PSTCLK/GPO63 and output signal, and is the processor clock output that is used as the timing reference for the Debug bus timing (DDATA[3:0] and PST[3:0]). The PSTCLK/GPO63 is at the same frequency as the core processor and cache memory. The frequency will be twice the bus clock (SCLK) frequency.

8.19.4 Debug Data

The debug data pins, DDATA0_GPIO0, DDATA1_GPIO1, DDATA2_GPIO2, and DDATA3_GPIO4, are four bits wide. This nibble-wide bus displays captured processor data and break-point status.

8.19.5 Processor Status

The processor status pins, PST0_GPIO59, PST1_GPIO60, PST2_GPIO61, and PST3_GPIO62, indicate the SCF5249 processor status. During debug mode, the timing is synchronous with the processor clock (PSTCLK) and the status is not related to the current bus transfer.

PST[3:0] **Definition** (BINARY) (HEX) \$0 0000 Continue execution 0001 Begin execution of an instruction \$1 Reserved 0010 \$2 0011 Entry into user-mode \$3 \$4 0100 Begin execution of PULSE and WDDATA instructions Begin execution of taken branch or Synch_PC1 0101 \$5 \$6 0110 Reserved \$7 0111 Begin execution of RTE instruction 1000 Begin 1-byte data transfer on DDATA \$8 1001 \$9 Begin 2-byte data transfer on DDATA Begin 3-byte data transfer on DDATA \$A 1010 1011 Begin 4-byte data transfer on DDATA \$B Exception processing² \$C 1100 Emulator mode entry exception processing² \$D 1101 Processor is stopped, waiting for interrupt² \$E 1110 Processor is halted² \$F 1111

Table 14. Processor Status Signal Encodings

Notes:

- 4. Rev. B enhancement.
- These encodings are asserted for multiple cycles.

8.20 BDM/JTAG Signals

The SCF5249 complies with the IEEE 1149.1A JTAG testing standard. The JTAG test pins are multiplexed with background debug pins.

8.20.1 Test Clock

TCK is the dedicated JTAG test logic clock that is independent of the SCF5249 processor clock. Various JTAG operations occur on the rising or falling edge of TCK. The internal JTAG controller logic is designed such that holding TCK high or low for an indefinite period of time will not cause the JTAG test logic to lose state information. If TCK will not be used, it should be tied to ground.

SCF5249 Integrated ColdFire® Microprocessor Data Sheet, Rev. 3

8.20.2 Test Reset/Development Serial Clock

The TEST[3:0] signals determine the function of the TRST/DSCLK dual-purpose pin. If TEST[3:0]=0001, the DSCLK function is selected. If TEST[3:0]= 0000, the TRST function is selected. TEST[3:0] should not be changed while $\overline{RSTI} = 1$. When used as \overline{TRST} , this pin will asynchronously reset the internal JTAG controller to the test logic reset state, causing the JTAG instruction register to choose the ibypassî command. When this occurs, all the JTAG logic is benign and will not interfere with the normal functionality of the SCF5249 processor. Although this signal is asynchronous, Freescale recommends that \overline{TRST} make only a 0 to 1 (asserted to negated) transition while TMS is held at a logic 1 value. TRST has an internal pullup so that if it is not driven low its value will default to a logic level of 1. However, if TRST will not be used, it can either be tied to ground or, if TCK is clocked, it can be tied to VDD. If it is tied to ground, it will place the JTAG controller in the test logic reset state immediately. If it is tied to VDD, it will cause the JTAG controller (if TMS is a logic 1) to eventually end up in the test logic reset state after 5 clocks of TCK. This pin is also used as the development serial clock (DSCLK) for the serial interface to the Debug Module. The maximum frequency for the DSCLK signal is 1/5 the BCLKO frequency.

8.20.3 Test Mode Select/Break Point

The TEST[3:0] signals determine the TMS/ \overline{BKPT} pin function. If TEST[3:0] =0001, the \overline{BKPT} function is selected. If TEST[3:0] = 0000, then the TMS function is selected. TEST[3:0] should not change while RSTI = 1. When used as TMS, this input signal provides the JTAG controller with information to determine which test operation mode should be performed. The value of TMS and current state of the internal 16-state JTAG controller state machine at the rising edge of TCK determine whether the JTAG controller holds its current state or advances to the next state. This directly controls whether JTAG data or instruction operations occur. TMS has an internal pullup so that if it is not driven low, its value will default to a logic level of 1. However, if TMS will not be used, it should be tied to VDD. This pin also signals a hardware breakpoint to the processor when in the debug mode.

8.20.4 Test Data Input/Development Serial Input

The TDI/DS is a dual-function pin. If TEST[3:0] = 0001, then DSI is selected. If TEST[3:0] = 0000, then TDI is selected. When used as TDI, this input signal provides the serial data port for loading the various JTAG shift registers composed of the boundary scan register, the bypass register, and the instruction register. Shifting in of data depends on the state of the JTAG controller state machine and the instruction currently in the instruction register. This data shift occurs on the rising edge of TCK. TDI also has an internal pullup so that if it is not driven low its value will default to a logic level of 1. However, if TDI will not be used, it should be tied to VDD. This pin also provides the single-bit communication for the debug module commands.

8.20.5 Test Data Output/Development Serial Output

The TDO/DSO is a dual-function pin. When TEST[3:0] = 0001, then DSO is selected. When TEST[3:0] = 0000, TDO is selected. When used as TDO, this output signal provides the serial data port for outputting

SCF5249 Integrated ColdFire® Microprocessor Data Sheet, Rev. 3 Freescale Semiconductor 27

Electrical Characteristics

data from the JTAG logic. Shifting out of data depends on the state of the JTAG controller state machine and the instruction currently in the instruction register. This data shift occurs on the falling edge of TCK. When TDO is not outputting test data, it is three-stated. TDO can also be placed in three-state mode to allow bussed or parallel connections to other devices having JTAG. This signal also provides single-bit communication for the debug module responses.

8.21 Clock and Reset Signals

These signals configure the SCF5249 and provide interface signals to the external system.

8.21.1 Reset In

Asserting \overline{RSTI} causes the SCF5249 to enter reset exception processing. When \overline{RSTI} is recognized, the data bus is tri-stated.

8.21.2 System Bus Input

The CRIN signal is the system clock input. The device has no on-chip clock oscillator, and needs an external oscillator.

9 Electrical Characteristics

Table 15. Maximum Ratings

Rating	Symbol	Value	Units
Supply Core Voltage	V _{cc}	-0.5 to +2.5	V
Maximum Core Operating Voltage	V _{cc}	+1.98	V
Minimum Core Operating Voltage	V _{cc}	+1.62	V
Supply I/O Voltage	V _{cc}	-0.5 to +4.6	V
Maximum I/O Operating Voltage	ge V _{cc} +3.6		V
Minimum I/O Operating Voltage	V _{cc}	+3.0	V
Input Voltage	V _{in}	-0.5 to +6.0	V
Storage Temperature Range	T _{stg}	-65 to150	°C

Table 16. Operating Temperature

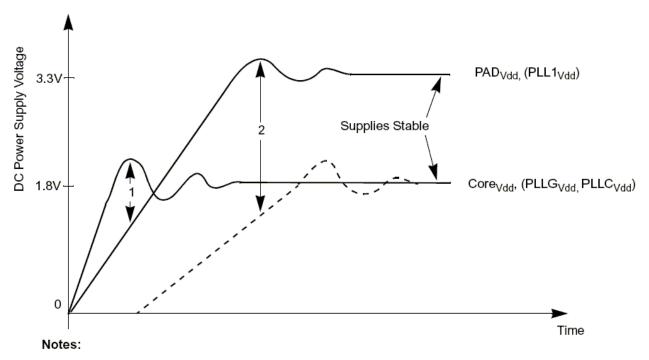
Characteristic	Symbol	Value	Units
Maximum Operating Ambient Temperature	T _{Amax}	85 ¹	°C
Minimum Operating Ambient Temperature	T _{Amin}	0	°C

Note: This published maximum operating ambient temperature should be used only as a system design guideline. All device operating parameters are guaranteed only when the junction temperature does not exceed 105°C.

Table 17. DC Electrical Specifications (Vcc = $3.3 \text{ Vdc} \pm 0.3 \text{ Vdc}$)

Characteristic	Symbol	Min	Max	Units
Operation Voltage Range for I/O	V _{cc}	3.0	3.6	٧
Input High Voltage	V _{IH}	2	5.5	V
Input Low Voltage	V _{IL}	-0.3	0.8	V
Input Leakage Current @ 0.0 V /3.3 V During Normal Operation	I _{in}	-	±1	μμΑ
Hi-Impedance (Three-State) Leakage Current @ 0.0 V/3.3 V During Normal Operation	I _{TSI}	-	±1	μμΑ
Output High Voltage I _{OH} = 8mA ¹ , 4mA ² , 2mA ³	V _{OH}	2.4	-	V
Output Low Voltage I _{OL} = 8mA ¹ , 4mA ² , 2mA ³	V _{OL}	-	0.4	V
Schmitt Trigger Low to High Threshold Point ⁶	V _{T+}	1.47	-	V
Schmitt Trigger High to Low Threshold Point ⁶	V _{T-}	-	.95	V
Load Capacitance (DATA[31:16], DCL0, DCL1, SCLK[4:1], SCLKOUT, EBUOUT[2:1], LRCK[4:1], SDATAO[2:1], CFLG, EF, DBCDDATA[3:0], DBCPST[3:0], CNPSTCLK, IDEDIOR, IDEDIOW, IORDY, SRE, SWE)	CL	-	50	pF
Load Capacitance (ADDR[25, 23:9], SCLK)	C _L	-	40	pF
Load Capacitance (BCLKE, SDCAS, SDRAS, SDLDQM, SDRAMCS[2:1],, SDUDQM, SDWE, BUFENB[2:1])	C _L	-	30	pF
Load Capacitance (SDA, SDA2, SCL, SCL2, CMDSDIO2, SDATA2BS2, SDATA1BS1, SDATA0SDIO1, CS[1:0], OE, R/W, TA, TXD[2:0], XTRIM, TDO/DSO, RCK, SFSY, SUBR, SDATA3, TOUT[1:0], QSPIDOUT, QSPICS[3:0], GP[6:5])	C _L	-	20	pF
Capacitance ⁵ , V _{in} = 0 V, f = 1 MHz	C _{IN}	-	6	pF

^{1.} DATA[31:16], ADDR[25, 23:9], PSTCLK, SCLK


^{2.} SCL, SDA, PST[3:0], DDATA[3:0], TDSO, SDRAS, SDCAS, SDWE, SDRAMCS[2:1], SDLDQM, SDUDQM,

 $[\]frac{3.\ \mathsf{TOUT}[1:0],\ \mathsf{RTS}[2:0],\ \mathsf{TXD}[2:1],\ \mathsf{SCLK}[4:1]}{4.\ \mathsf{BKPT/TMS},\ \mathsf{DSI/TDI},\ \mathsf{DSCLK/\overline{TRST}}}$

^{5.} Capacitance $C_{\mbox{IN}}$ is periodically sampled rather than 100% tested. 6. SCLK[4:1], SCL, SCL2, SDA, SDA2, CRIN, RSTI

Supply Voltage Sequencing and Separation Cautions 9.1

Figure 2 shows two situations to avoid in sequencing the CoreVdd and PADVdd (I/O) and PLLL supplies.

- ICore_{Vdd}, PLLG_{Vdd}, PLLC_{Vdd}V_{cc}, PV_{cc} rising before PAD_{Vdd}, PLL1_{Vdd}
- PAD_{Vdd.} PLL1_{Vdd} rising much faster than Core_{Vdd}, PLLG_{Vdd}. PLLC_{Vdd}

Figure 2. Supply Voltage Sequencing and Separation Cautions

CoreVdd supply should not be allowed to rise early (1). This is usually avoided by running the regulator for the CoreVdd supply (1.8 V) from the voltage generated by the 3.3V supply (PADVdd). This keeps the CoreVdd supply from rising faster than PADVdd supply.

Also CoreVdd, PLLGVdd, PLLCVdd supply should not rise so late that a large voltage difference is allowed between the two supplies (2). Typically this situation is avoided by using external discrete diodes in series between supplies. The series diodes forward bias when the difference between PADVdd and CoreVdd reaches approximately 2.1V, causing CoreVdd to rise as PADVdd ramps up. When the CoreVdd regulator begins proper operation, the difference between supplies should not exceed 1.5 V and conduction through the diode chain reduces to essentially leakage current.

During supply sequencing, the following general relationship should be adhered to: PADVdd, >= CoreVdd, PLLGVdd, $\geq = (PADVdd - 2.1 V)$.

The PLL core supplies (PLLGVdd and PLLCVdd) should comply with these constraints just as the CoreVdd does. In practice, PLLGVdd and PLLCVdd are typically connected directly to the CoreVdd with some filtering. Further, the PLL PAD supply (PLL1VDD) would be connected directly to the PAD supply via some filtering.

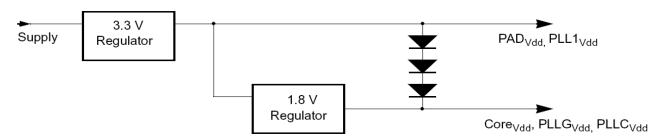


Figure 3. Example Circuit to Control Supply Sequencing

When a DC-DC convertor is used in the system to generate the 1.8V supply, additional care is required. If possible, the 1.8V DC-DC convertor should be supplied by the 3.3V supply. If this is impossible or considered inefficient, the designer needs to ensure that the rise time of the 1.8V supply still complies with the recommendations stated above. Adding the 3 diodes will help resolve issues associated with a slow rise time of the 1.8V supply. Further, a Schotty diode could be added between the supplies, which would have the effect of holding the 1.8V supply to match the 3.3V supply should the 1.8V supply come-up first. This diode also has the function of ensuring that there is not a large voltage differential between the Core supply and the PAD supply during power-down.

Refer to the M5249C3 Reference Board Useris Manual for the recommended diode types.

A further note is the recommendation for hard resetting of the device. Freescale recommends using a dynamic reset circuit. This allows for control of the voltage at which the reset will be released and ensure that the correct voltage level at the RESET pin is achieved in all cases. Passive (RC) reset networks do not always achieve the desired results.

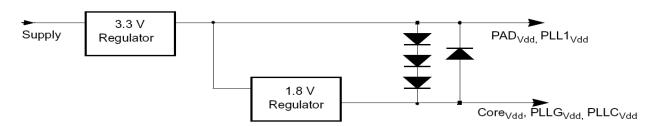


Figure 4. SCF5249 Power Supply

NOTE

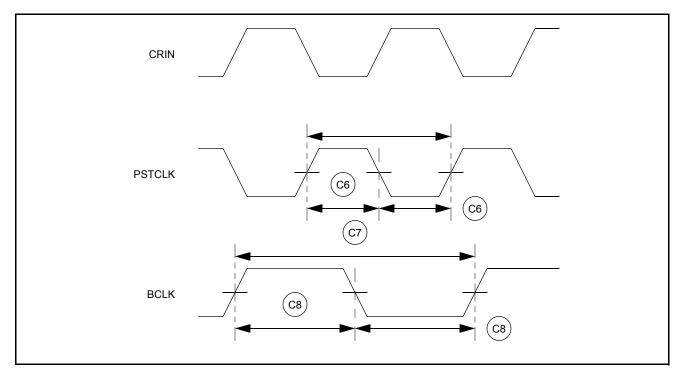
The following signals are not available on the 144 QFP package.

160MAPBGA Ball Number	Function	GPIO
E3	CMD_SDIO2	GPIO34
G4	SDATA0-SDIO1	GPIO54
H3	RSTO/SDATA2_BS2	
K3	A25	GPO8

Table 18. 160 MAPBGA Ball Assignments

SCF5249 Integrated ColdFire® Microprocessor Data Sheet, Rev. 3

Electrical Characteristics


Table 18. 160 MAPBGA Ball Assignments (continued)

160MAPBGA Ball Number	Function	GPIO
L4	QSPI_CS1	GPIO24
L8	QSPI_CS3	GPIO22
N8	SDRAM_CS2	GPIO7
P9	EBUOUT2	GPO37
K11	BUFENB2	GPIO17
G12	SUBR	GPIO53
F13	SFSY	GPIO52
F12	RCK	GPIO51
E8	SRE	GPIO11
B8	LRCK3	GPIO45
E7	SWE	GPIO12
A7	SCLK3	GPIO49

Table 19. Clock Timing Specification

NUM	Characteristic		Units	
IVOW		Min	Max	Office
	CRIN Frequency ¹	11.29	33.86	MHz
C5	PSTCLK cycle time	7.1	_	nSec
C6	PSTCLK duty cycle	40	60	%
C7	BCLK cycle time	14.2	_	nSec
C8	BCLK duty cycle	45	55	%

Note: There are only three choices for the valid Audio frequencies 11.29 MHz, 16.93 MHz, or 33.86 MHz; no other values are allowed. The System Clock is derived from one of these crystals via an internal PLL.

Figure 5. Clock Timing Definition

NOTE

Signals above are shown in relation to the clock. No relationship between signals is implied or intended.

9.1.1 Processor Bus Input Timing Specification

Table 20 lists processor bus input timings.

NOTE

All processor bus timings are synchronous; that is, input setup/hold and output delay with respect to the rising edge of a reference clock. The reference clock is the SCLK output. All other timing relationships can be derived from these values.

Table 20. External Bus Input Timing Specifications

Num	Num Characteristic ^a				Units
Num			Min	Max	Office
В0	SCLK	tCYC	14.26		ns
B1	Control input valid to SCLK high ^b	tCVCH	10	_	ns
B2	SCLK high to control inputs valid ^b	tCHCII	2	_	ns
B4	Data input (D[31:0]) valid to SCLK high	tDIVCH	6	_	ns

SCF5249 Integrated ColdFire® Microprocessor Data Sheet, Rev. 3

Electrical Characteristics

Table 20. External Bus Input Timing Specifications (continued)

Num	Characteristic ^a				Units	
		Symbol	Min	Max	Office	
B5	SCLK high to data input (D[31:0]) invalid	tCHDII	2	1	ns	

a. Timing specifications have been indicated taking into account the full drive strength for the pads.

9.1.2 Processor Bus Output Timing Specifications

Table 21 lists processor bus output timings.

Table 21. External Bus Output Timing Specifications

NAME	CHARACTERISTIC	SYMBOL	MIN	MAX	UNIT					
Control Outputs										
B6a	SCLK high to chip selects valid ^a	t _{CHCV}	_	0.5t _{CYC} +10	ns					
B6b	SCLK high to output enable (OE) valid ^b	t _{CHOV}	_	0.5t _{CYC} +10	ns					
В7а	SCLK high to control output (OE) invalid	t _{CHCOI}	0.5t _{CYC} + 2	_	ns					
B7b	SCLK high to chip selects invalid	t _{CHCI}	0.5t _{CYC} + 2	_	ns					
Address and Attribute Outputs										
B8	SCLK high to address (A[23:1]) and control (R/W) valid	t _{CHAV}	_	10	ns					
B9	SCLK high to address (A[23:1]) and control (R/W) invalid	t _{CHAI}	2	_	ns					
Data Outputs										
B11	SCLK high to data output (D[31:16]) valid	t _{CHDOV}	_	10	ns					
B12	SCLK high to data output (D[31:16]) invalid	t _{CHDOI}	2	_	ns					
B13	SCLK high to data output (D[31:16]) high impedance	t _{CHDOZ}	_	14	ns					

a. $\overline{\text{CS}n}$ transitions after the falling edge of SCLK.

b. TA pin is being referred to as control input.

b. OE transitions after the falling edge of SCLK.

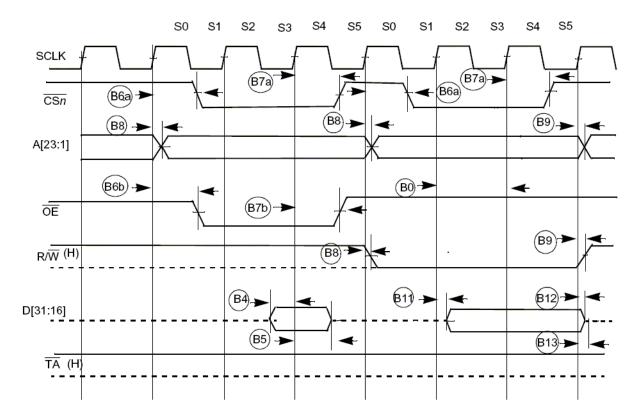


Figure 6. Read/Write (Internally Terminated) Timing

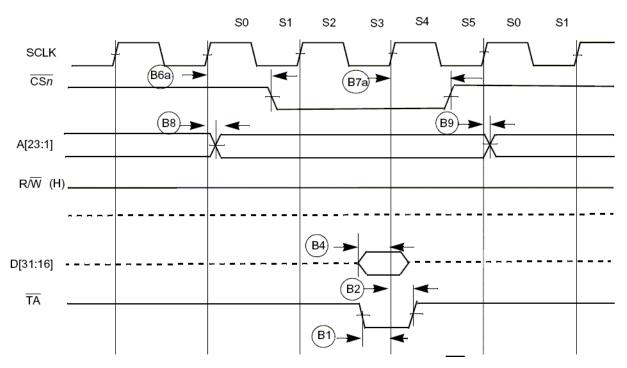


Figure 7. Read Bus Cycle Terminated by $\overline{\text{TA}}$

SCF5249 Integrated ColdFire® Microprocessor Data Sheet, Rev. 3

Table 22. SDRAM Timing

NUM	CHARACTERISTIC ^A	SYMBOL	MIN	MAX	UNIT
SD1	SCLK high to SDRAM address valid	t _{CHDAV}		10	ns
SD2	SCLK high to SDRAM control valid	t _{CHDCV}	_	11	ns
SD3	SCLK high to SDRAM address invalid	t _{CHDAI}	2	_	ns
SD4	SCLK high to SDRAM control invalid	t _{CHDCI}	2	_	ns
SD5	SDRAM data valid to SCLK high	t _{DDVCH}	6	_	ns
SD6	SCLK high to SDRAM data invalid	t _{CHDDI}	2	_	ns
SD7 ^b	SCLK high to SDRAM data valid	t _{CHDDVW}	_	10	ns
SD8 ²	SCLK high to SDRAM data invalid	t _{CHDDIW}	2	_	ns

- a. All timing specifications are based on taking into account, a 25pF load on the SDRAM output pins.
- b. D7 and D8 are for write cycles only.

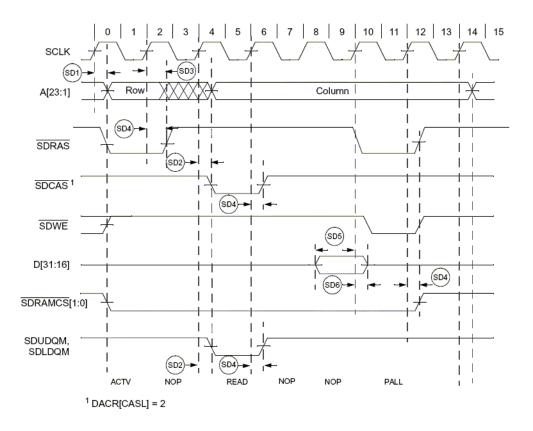


Figure 8. SDRAM Read Cycle

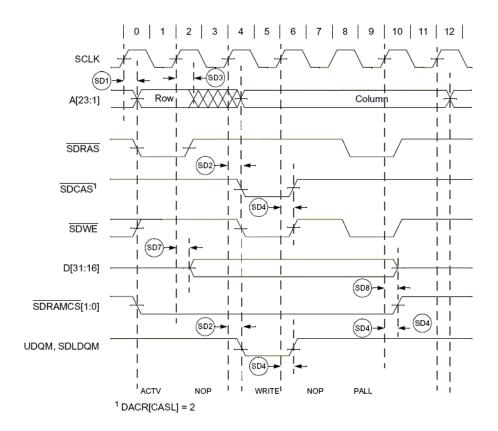


Figure 9. SDRAM Write Cycle

Table 23. Debug AC Timing Specification

Num	Characteristic			Units	
Nulli	Characteristic	Min	Max	Onits	
D1	PSTCLK to signal Valid (Output valid)		6	nSec	
D2	PSTCLK to signal Invalid (Output hold)	1.8	_	nSec	
D3 ¹	Signal Valid to PSTCLK (Input setup)	3	_	nSec	
D4	PSTCLK to signal Invalid (Input hold)	5	_	nSec	

DSCLK and DSI are internally synchronized. This setup time must be met only if recognition on a particular clock is required.

AC timing specs assume 50pF load capacitance on PSTCLK and output pins. If this value is different, the input and output timing specifications would need to be adjusted to match the clock load.

Electrical Characteristics

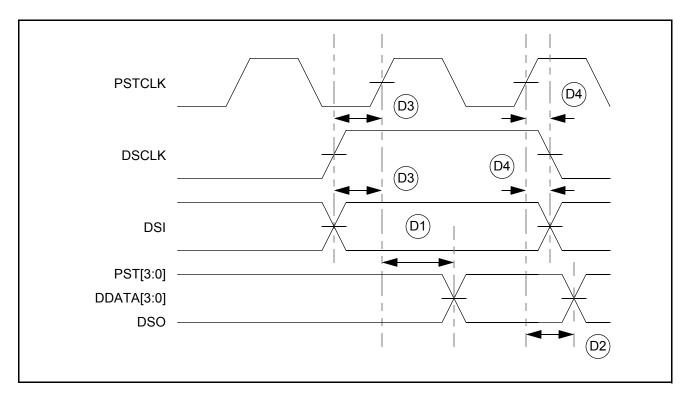
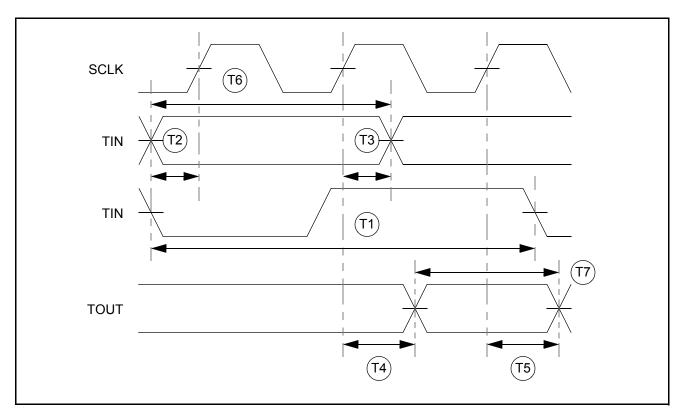



Figure 10. Debug Timing Definition

Table 24. Timer Module AC Timing Specification

Num	Characteristic			Units
Num	Characteristic	Min	Max	Office
T1	TIN Cycle time	tbd	_	bus clocks
T2	TIN Valid to BCLK (input setup)	tbd	_	nSec
ТЗ	SCLK to TIN Invalid (input hold)	tbd	_	nSec
T4	SCLK to TOUT Valid (output valid)	_	tbd	nSec
T5	SCLK to TOUT Invalid (output hold)	tbd	_	nSec
T6	TIN Pulse Width	tbd	_	bus clocks
T7	TOUT Pulse Width	tbd	_	bus clocks

Figure 11. Timer Module Timing Definition

Table 25. UART Module AC Timing Specifications

Num	Characteristic	_		Units	
Nulli	Characteristic	Min	Max	Omto	
U1	RXD Valid to BCLK (input setup)	tbd	_	nSec	
U2	SCLK to RXD Invalid (input hold)	tbd	_	nSec	
U3	CTS Valid to SCLK (input setup)	tbd	_	nSec	
U4	SCLK to CTS Invalid (input hold)	tbd		nSec	
U5	SCLK to TXD Valid (output valid)		tbd	nSec	
U6	SCLK to TXD Invalid (output hold)	tbd	_	nSec	
U7	SCLK to RTS Valid (output valid)		tbd	nSec	
U8	SCLK to RTS Invalid (output hold)	tbd		nSec	

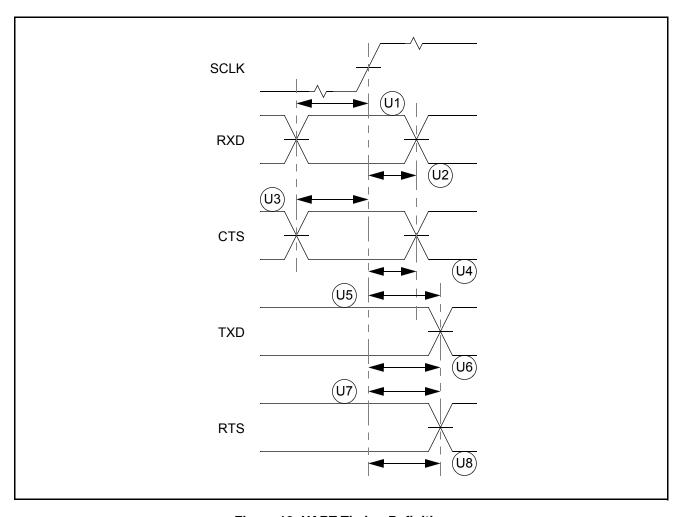


Figure 12. UART Timing Definition

Table 26. I2C-Bus Input Timing Specifications Between SCL and SDA

Num	Characteristic			Units
Num	Onaracteristic	Min	Max	Office
M1	Start Condition Hold Time	tbd	_	bus clocks
M2	Clock Low Period	tbd	_	bus clocks
МЗ	SCL/SDA Rise Time (VIL= 0.5 V to VIH = 2.4 V)	_	tbd	mSec
M4	Data Hold Time	tbd	_	nSec
M5	SCL/SDA Fall Time (VIH= 2.4 V to VIL = 0.5 V)	_	tbd	mSec
M6	Clock High time	tbd	_	bus clocks
M7	Data Setup Time	tbd	_	nSec
M8	Start Condition Setup Time (for repeated start condition only)	tbd	_	bus clocks

Table 26. I2C-Bus Input Timing Specifications Between SCL and SDA

Num	Characteristic			Units
Num	Characteristic	Min	Max	Office
M9	Stop Condition Setup Time	tbd	_	bus clocks

Table 27. I2C-Bus Output Timing Specifications Between SCL and SDA

Num	Characteristic			Units
Italii	Ondidoteristic	Min	Max	Omes
M1 ¹	Start Condition Hold Time	tbd	_	bus clocks
M2 ¹	Clock Low Period	tbd	_	bus clocks
M3 ²	SCL/SDA Rise Time (V _{IL} = 0.5 V to V _{IH} = 2.4 V)	_	tbd	mSec
M4 ¹	Data Hold Time	tbd	_	bus clocks
M5 ³	SCL/SDA Fall Time $(V_{IH}= 2.4 \text{ V to } V_{IL}= 0.5 \text{ V})$	_	tbd	nSec
M6 ¹	Clock High time	tbd	_	bus clocks
M7 ¹	Data Setup Time	tbd	_	bus clocks
M8 ¹	Start Condition Setup Time (for repeated start condition only)	tbd	_	bus clocks
M9 ¹	Stop Condition Setup Time	tbd	_	bus clocks

- Note: Output numbers are dependent on the value programmed into the MFDR; an MFDR programmed
 with the maximum frequency (MFDR = 0x20) will result in minimum output timings as shown in the above
 table. The MBUS interface is designed to scale the actual data transition time to move it to the middle of
 the SCL low period. The actual position is affected by the prescale and division values programmed into
 the MFDR; however, numbers given in the above table are the minimum values.
- Since SCL and SDA are open-collector-type outputs, which the processor can only actively drive low, the time required for SCL or SDA to reach a high level depends on external signal capacitance and pull-up resistor values.
- 3. Specified at a nominal 20 pF load.

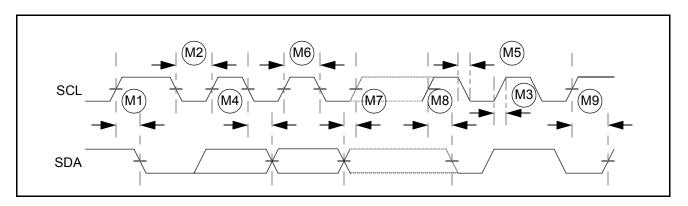


Figure 13. I2C Timing Definition

Num	Characteristic			Units
Num	Characteristic	Min	Max	Oillis
M10 ³	SCL, SDA Valid to SCLK (input setup)	tbd	_	nSec
M11	SCLK to SCL, SDA Invalid (input hold)	tbd	_	nSec
M12 ¹	SCLK to SCL, SDA Low (output valid)	_	tbd	nSec
M13 ²	SCLK to SCL, SDA Invalid (output hold)	tbd	_	nSec

- Since SCL and SDA are open-collector-type outputs, which the processor can only actively drive low, this
 specification applies only when SCL or SDA are driven low by the processor. The time required for SCL or
 SDA to reach a high level depends on external signal capacitance and pull-up resistor values.
- 2. Since SCL and SDA are open-collector-type outputs, which the processor can only actively drive low, this specification applies only when SCL or SDA are actively being driven or held low by the processor.
- SCL and SDA are internally synchronized. This setup time must be met only if recognition on a particular clock is required.

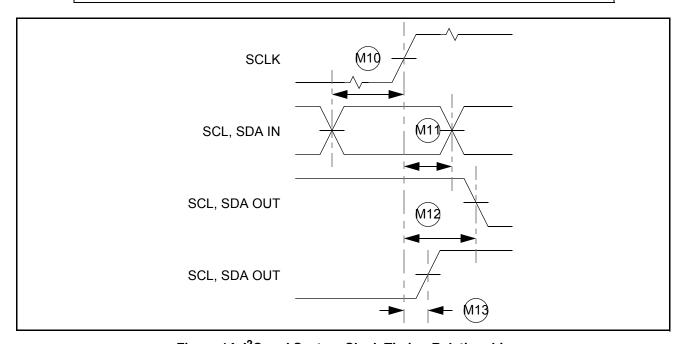


Figure 14. I²C and System Clock Timing Relationship

Table 29. General-Purpose I/O Port AC Timing Specifications

Num	Characteristic			Units
Italii	Onaracteristic	Min	Max	Office
P1	GPIO Valid to SCLK (input setup)	tbd		nSec
P2	SCLK to GPIO Invalid (input hold)	tbd		nSec

Table 29. General-Purpose I/O Port AC Timing Specifications

Num	Characteristic			Units
Num	Characteristic	Min Max	Max	Office
P3	SCLK to GPIO Valid (output valid)	_	tbd	nSec
P4	SCLK to GPIO Invalid (output hold)	tbd	_	nSec

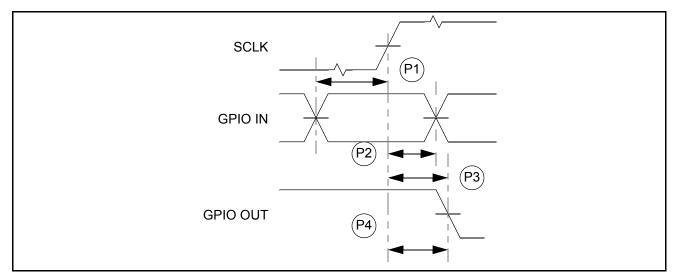


Figure 15. General-Purpose Parallel Port Timing Definition

Table 30. IEEE 1149.1 (JTAG) AC Timing Specifications

Num	Chavastaviatia		Units	
Num	Characteristic	Min	Max	Units
-	TCK Frequency of Operation	0	10	MHz
J1	TCK Cycle Time	100	-	nSec
J2a	TCK Clock Pulse High Width	25	-	nSec
J2b	TCK Clock Pulse Low Width	25	-	nSec
J3a	TCK Fall Time (V _{IH} =2.4 V to V _{IL} =0.5 V)	_	5	nSec
J3b	TCK Rise Time (V _{IL} =0.5 v to V _{IH} =2.4 V)	_	5	nSec
J4	TDI, TMS to TCK rising (Input Setup)	8	_	nSec
J5	TCK rising to TDI, TMS Invalid (Hold)	10	_	nSec
J6	Boundary Scan Data Valid to TCK (Setup)	tbd	_	nSec
J7	TCK to Boundary Scan Data Invalid to rising edge (Hold)	tbd	_	nSec

Electrical Characteristics

Table 30. IEEE 1149.1 (JTAG) AC Timing Specifications

Num	Characteristic		Units	
Num		Min	Max	Offics
J8	TRST Pulse Width (asynchronous to clock edges)	12	_	nSec
J9	TCK falling to TDO Valid (signal from driven or three-state)	_	15	nSec
J10	TCK falling to TDO High Impedance	_	15	nSec
J11	TCK falling to Boundary Scan Data Valid (signal from driven or three-state)	_	tbd	nSec
J12	TCK falling to Boundary Scan Data High Impedance	_	tbd	nSec

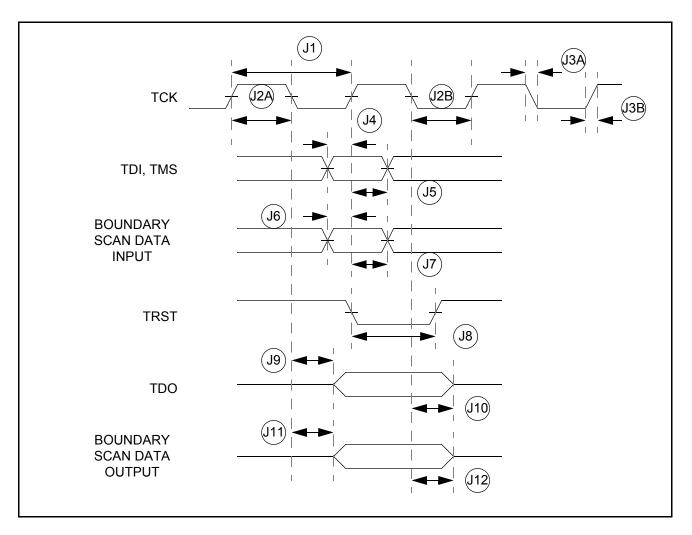


Figure 16. JTAG Timing

9.2 JTAG Timing Definition IIS Module AC Timing Specifications

Table 31. SCLK INPUT, SDATAO OUTPUT Timing Specifications

Name	Characteristic		Unit	
Name	e Characteristic		Max	Oill
TU	SCLK fall to SDATAO rise		25	ns
TD	SCLK fall to SDATAO fall		25	ns

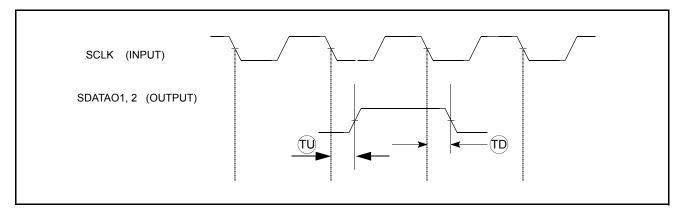


Figure 17. SCLK Input, SDATA Output Timing

Table 32. SCLK OUTPUT, SDATA0 OUTPUT Timing Specifications

Name	Characteristic				
Name	Name Characteristic	Min	Max	Unit	
TU	SCLK fall to SDATAO rise		3	ns	
TD	SCLK fall to SDATAO fall		3	ns	

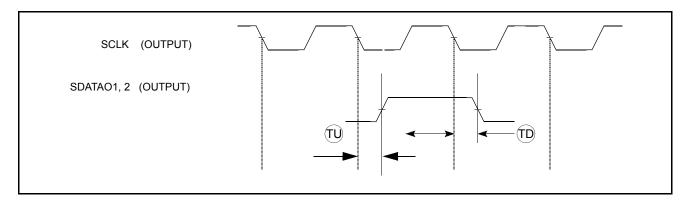


Figure 18. SCLK Output, SDATAO Output Timing Diagram

SCF5249 Integrated ColdFire® Microprocessor Data Sheet, Rev. 3

Table 33. SCLK INPUT, SDATAI INPUT Timing Specifications

Name	Characteristic		Unit	
Name	anie Characteristic		Max	Ome
TSU	SDATAI IN to SCLKn	-5	_	ns
TH	SCLK rise to SDATAI	3	_	ns

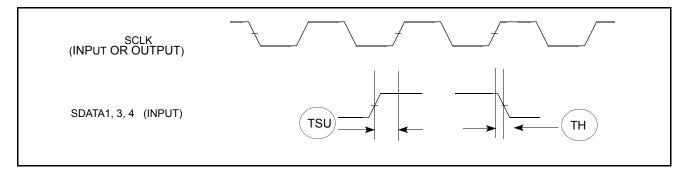


Figure 19. SCLK Input/Output, SDATAI Input Timing Diagram

10.1 Pinning Chart

Table 34. 144 QFP Pin Assignments

144 QFP Pin Number	Name	Туре	Description
01	SCL/QSPI_CLK	I/O	IIC clock/QSPI clock pin function select is PLLCR(11)
02	CS0	0	static chip select 0
03	A21	0	SDRAM address / static adr
04	A11	0	SDRAM address / static adr
05	A10	0	SDRAM address / static adr
06	A9	0	SDRAM address / static adr
07	A18	0	SDRAM address / static adr
08	A17	0	SDRAM address / static adr
09	BCLK/GPIO10	I/O	sdram clock output

SCF5249 Integrated ColdFire® Microprocessor Data Sheet, Rev. 3

Table 34. 144 QFP Pin Assignments (continued)

144 QFP Pin Number	Name	Туре	Description
10	SCLK_OUT/GPIO15	I/O	MemoryStick/SD
11	BCLKE	0	sdram clock enable output
12	SDA/QSPI_DIN	I/O	IIC data/QSPI data in function select is PLLCR(11)
13	DATA24	I/O	data
14	A22	0	SDRAM address / static adr
15	SDUDQM	0	SDRAM UDQM
16	EF/GPIO19	I/O	error flag input
17	DATA25	I/O	data
18	DATA26	I/O	data
19	DATA27	I/O	data
20	PAD-GND		PAD-GND
21	DATA28	I/O	data
22	DATA29	I/O	data
23	SDATA3/GPIO56	I/O	SD interface data line
24	DATA30	I/O	data
25	BUFENB1/GPIO57	I/O	external buffer 1 enable
26	DATA31	I/O	data
27	CORE-VDD		CORE-VDD
28	A13	0	SDRAM address / static adr
29	CORE-GND		CORE-GND
30	A23	0	SDRAM address / static adr
31	A14	0	SDRAM address / static adr
32	A15	0	SDRAM address / static adr
33	A16	0	SDRAM address / static adr
34	PAD-VDD		PAD-VDD
35	A19	0	SDRAM address / static adr

Table 34. 144 QFP Pin Assignments (continued)

144 QFP Pin Number	Name	Туре	Description
36	A20	0	SDRAM address / static adr
37	TEST2	I	test
38	SDRAM-CS1	0	SDRAM chip select out 1
39	SDATA1_BS1/GPIO9	I/O	Memory Stick / SD
40	SDRAS	0	SDRAM RAS
41	SDCAS	0	SDRAM CAS
42	SDWE	0	SDRAM write enable
43	SDLDQM	0	SDRAM LDQM
44	GPIO5	I/O	GPIO5
45	QSPI_CS0/GPIO29	I/O	QSPI chip select 0
46	QSPI_DOUT/GPIO26	I/O	QSPI data out
47	GPIO6	I/O	GPIO6
48	DATA21	I/O	data
49	DATA19	I/O	data
50	QSPI_CS2/GPIO21	I/O	QSPI chip select 2
51	DATA20	I/O	data
52	DATA22	I/O	data
53	DATA18	I/O	data
54	DATA23	I/O	data
55	DATA17	I/O	data
56	PADD-VDD		PAD-VDD
57	DATA16	I/O	data
58	CFLG/GPIO18	I/O	CFLG input
59	EBUOUT1/GPO36	0	audio interfaces EBU out 1
60	CORE-GND		CORE-GND
61	EBUIN3/ADIN0/GPI38	I	audio interfaces EBU in 3 / AD convertor input0

SCF5249 Integrated ColdFire® Microprocessor Data Sheet, Rev. 3

Table 34. 144 QFP Pin Assignments (continued)

144 QFP Pin Number	Name	Туре	Description
62	EBUIN2/GPI37	I	audio interfaces EBU in 2
63	CORE-VDD		CORE-VDD
64	SCL2/GPIO3	I/O	IIS2 clock line
65	RSTI	I	Reset
66	TOUT1/ADOUT/GPO35	0	timer output 1 / AD output
67	LRCK2/GPIO44	0	audio interfaces EBU out 1
68	OE	0	Output Enable
69	SDA2/GPIO55	I/O	IIS2 data
70	SDATAO2/GPO41	0	audio interfaces serial data output 2
71	SCLK2/GPIO48	I/O	audio interfaces serial clock 2
72	PAD-GND		PAD-GND
73	TEST3	I	test
74	SDATAO1/GPIO25	I/O	audio interfaces serial data output 1
75	LRCK1	I/O	audio interfaces word clock 1
76	LRCK4/GPIO46	I/O	audio interfaces word clock 4
77	SDATAI4/GPI42	I	audio interfaces serial data in 4
78	SCLK1	I/O	audio interfaces serial clock 1
79	SCLK4/GPIO50	I/O	audio interfaces serial clock 4
80	TA/GPIO20	I/O	Transfer acknowledge
81	SDATAI1	I	audio interfaces serial data in 1
82	EBUIN1/GPI36	I	audio interfaces EBU in 1
83	PLLGRDVDD		PLLGRDVDD
84	PLLGRDGND		PLLGRDGND
85	PLLPADGND		PLLPADGND
86	PLLPADVDD		PLLPADVDD
87	PLLCOREGND		PLLCOREGND
88	PLLCOREVDD		PLLCOREVDD

Table 34. 144 QFP Pin Assignments (continued)

144 QFP Pin Number	Name	Туре	Description
89	IDE-DIOW/GPIO14	I/O	ide diow
90	CRIN	I	crystal
91	IDE-DIOR/GPIO13	I/O	ide dior
92	IDE-IORDY/GPIO16	I/O	ide iordy
93	MCLK1/GPO39	0	Audio master clock output 1
94	MCLK2/GPO42	0	Audio master clock output 2
95	XTRIM/GPO38	0	audio interfaces X-tal trim
96	TRST/DSCLK	I	Debug / interrupt monitor output 2
97	CORE-VDD		CORE-VDD
98	RW_B	0	Bus write enable
99	TMS/BKPT	I	JTAG/debug
100	CORE-GND		CORE-GND
101	TCK	I	JTAG
102	PAD-GND		PAD-GND
103	PST3/GPIO62	I/O	debug
104	CNPSTCLK/GPO63	0	debug
105	PST1/GPIO60	I/O	debug
106	PAD-VDD		PAD-VDD
107	PST2/GPIO61	I/O	debug
108	PST0/GPIO59	I/O	debug
109	TDI/DSI	I	jtag/debug
110	TEST0	I	test
111	TIN0/GPI33	I	timer input 0
112	HI-Z	I	jtag
113	DDATA3/GPIO4	I/O	debug
114	TOUT0/GPO33	0	timer output 0
115	DDATA1/GPIO1	I/O	debug

SCF5249 Integrated ColdFire® Microprocessor Data Sheet, Rev. 3

Table 34. 144 QFP Pin Assignments (continued)

144 QFP Pin Number	Name	Туре	Description
116	DDATA2/GPIO2	I/O	debug
117	CTS2_B/ADIN3/GPI31	I	second UART clear / AD input 3
118	DDATA0/GPIO0	I/O	debug
119	RXD2/GPI28/ADIN2	-	second UART receive data input / AD input 2
120	TDSO	0	JTAG/debug
121	RTS2_B/GPO31	0	second UART request to send
122	SDATAI3/GPI41	I	audio interfaces serial data input 3
123	CTS1_B/GPI30	Ι	first UART clear to send
124	TXD2/GPO28	0	second UART transmit data output
125	RTS1_B/GPO30	0	first UART request to send
126	EBUIN4/ADIN1/GPI39	Ι	audio interfaces EBU input 4 / AD input 1
127	TXD1/GPO27	0	first UART transmit data output
128	128 RXD1/GPI27	I	first UART receive data input
129	CS1/GPIO58	I/O	chip select 1
130	CORE-GND		CORE-GND
131	A1	0	SDRAM address / static adr
132	TIN1/GPIO23	I/O	Timer input 1
133	A2	0	address
134	А3	0	address
135	PAD-GND		PAD-GND
136	A4	0	address
137	A6	0	address
138	A5	0	address
139	A8	0	address
140	A7	0	address

Table 34. 144 QFP Pin Assignments (continued)

144 QFP Pin Number	Name	Туре	Description
141	CORE-VDD		CORE-VDD
142	A12	0	address
143	TEST1	ı	test
144	PAD-VDD		PAD-VDD

10.2 Package

The SCF5249 is assembled in 144-pin QFP package. Thermal characteristics are not available at this time.

THIS PAGE INTENTIONALLY LEFT BLANK

SCF5249 Integrated ColdFire® Microprocessor Data Sheet, Rev. 3

THIS PAGE INTENTIONALLY LEFT BLANK

SCF5249 Integrated ColdFire® Microprocessor Data Sheet, Rev. 3

THIS PAGE INTENTIONALLY LEFT BLANK

SCF5249 Integrated ColdFire® Microprocessor Data Sheet, Rev. 3

How to Reach Us:

Home Page:

www.freescale.com

E-mail:

support@freescale.com

USA/Europe or Locations Not Listed:

Freescale Semiconductor Technical Information Center, CH370 1300 N. Alma School Road Chandler, Arizona 85224 +1-800-521-6274 or +1-480-768-2130 support@freescale.com

Europe, Middle East, and Africa:

Freescale Halbleiter Deutschland GmbH Technical Information Center Schatzbogen 7 81829 Muenchen, Germany +44 1296 380 456 (English) +46 8 52200080 (English) +49 89 92103 559 (German) +33 1 69 35 48 48 (French) support@freescale.com

Japan:

Freescale Semiconductor Japan Ltd. Headquarters ARCO Tower 15F 1-8-1, Shimo-Meguro, Meguro-ku, Tokyo 153-0064, Japan 0120 191014 or +81 3 5437 9125 support.japan@freescale.com

Asia/Pacific:

Freescale Semiconductor Hong Kong Ltd.
Technical Information Center
2 Dai King Street
Tai Po Industrial Estate
Tai Po, N.T., Hong Kong
+800 2666 8080
support.asia@freescale.com

For Literature Requests Only:

Freescale Semiconductor Literature Distribution Center P.O. Box 5405 Denver, Colorado 80217 1-800-441-2447 or 303-675-2140

Fax: 303-675-2150

LDCForFreescaleSemiconductor@hibbertgroup.com

Information in this document is provided solely to enable system and software implementers to use Freescale Semiconductor products. There are no express or implied copyright licenses granted hereunder to design or fabricate any integrated circuits or integrated circuits based on the information in this document.

Freescale Semiconductor reserves the right to make changes without further notice to any products herein. Freescale Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does Freescale Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation consequential or incidental damages. "Typical" parameters that may be provided in Freescale Semiconductor data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals", must be validated for each customer application by customer's technical experts. Freescale Semiconductor does not convey any license under its patent rights nor the rights of others. Freescale Semiconductor products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the Freescale Semiconductor product could create a situation where personal injury or death may occur. Should Buyer purchase or use Freescale Semiconductor products for any such unintended or unauthorized application, Buyer shall indemnify and hold Freescale Semiconductor and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that Freescale Semiconductor was negligent regarding the design or manufacture of the part.

Freescale™ and the Freescale logo are trademarks of Freescale Semiconductor, Inc. All other product or service names are the property of their respective owners.© Freescale Semiconductor, Inc. 2005. All rights reserved.

Document Number: SCF5249EC

Rev. 0 04/2005