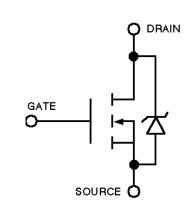

JANTX, JANTXV POWER MOSFET IN TO-254AA PACKAGE, QUALIFIED TO MIL-PRF-19500/592

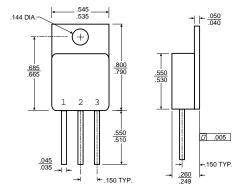
100V Thru 500V, Up to 34A, N-Channel, MOSFET Power Transistor, Repetitive Avalanche Rated

FEATURES

- · Repetitive Avalanche Rating
- · Isolated and Hermetically Sealed
- Low R_{DS(on)}
- · Ease of Paralleling
- Ceramic Feedthroughs
- Qualified to MIL-PRF-19500

DESCRIPTION


This hermetically packaged QPL product features the latest advanced MOSFET and packaging technology. It is ideally suited for Military requirements where small size, high performance and high reliability are required, and in applications such as switching power supplies, motor controls, inverters, chappers, audio amplifiers and high energy pulse circuits.


PRIMARY ELECTRICAL CHARACTERISTICS @ $T_c = 25$ C

PART NUMBER	V _{DS,} Volts	R _{DS(on)}	Į, Amps
2N7224	100	.070	34
2N7225	200	.100	27.4
2N7227	400	.315	14
2N7228	500	.415	12

SCHEMATIC

MECHANICAL OUTLINE

Pin Connection
Pin 1: Drain
Pin 2: Source
Pin 3: Gate

Parameter		JANIXV, JANIX, 2N7224	Units
$I_D @ V_{GS} = 10V, T_C = 25$ °C	Continuous Drain Current	34	A
$I_D @ V_{GS} = 10V, T_C = 100$ °C	Continuous Drain Current	21	A
Ъм	Pulsed Drain Current'	136	А
$P_D @ T_C = 25$ °C Maximum Power Dissipation		150	W
	Linear Derating Factor	1.2	W/°C
V _{GS}	V _{GS} Gate-Source Voltage		V
E _{AS}	Single Pulse Avalanche Energy ²	150 ⁴	mJ
Į _R	Avalanche Current ¹	34 ⁴	A
E _{AR}	Repetitive Avalanche Energy ¹	15 ⁴	mJ
T _J Operating Junction T _{STG} Storage Temperature Range		-55 to 150	°C
	Lead Temperature	300(.06 from case for 10 sec)	°C

	Parameter	Min.	Typ.	Max.	Units	Test Conditions
BV_{DSS}	Drain-Source	100			V	$V_{GS} = 0V$, $I_D = 1.0 \text{ mA}$,
	Breakdown Voltage					
R _{DS(on)}	Static Drain-to-Source	_	_	0.07		$V_{GS} = 10 \text{ V}, \text{ I}_{D} = 21 \text{ A}^{-3}$
	On-State Resistance	_	_	0.081		V_{GS} = 10 V, I_{D} = 34 A 3
$V_{\text{GS(th)}}$	Cate Threshold Voltage	2.0	-	4.0	V	$V_{DS} = V_{GS} I_{D} = 250 \mu A$
₽ss	Zero Gate Voltage Drain	_	_	25	7	$V_{DS} = 80 \text{ V}, V_{GS} = 0 \text{V}$
	Current	_	_	250	μA	$V_{DS} = 80 \text{ V}, V_{GS} = 0\text{V}, T_{J} = 125 ^{\circ}\text{C}$
Į _{ss}	Gate -to-Source Leakage Forward	_	_	100	nA	V _{GS} = 20 V
Į _{ss}	Gate -to-Source Leakage Reverse	_	_	-100	nA	V _{GS} = -20 V
Q _{G(cn)}	On-state Gate Charge	_	_	125	nC	$V_{GS} = 10 \text{ V}, I_{D} = 34 \text{A}$
Q _{GS}	Gate-to-Source Charge	_	_	22	nC	$V_{DS} = 50 \text{ V}$
Q _{Gd}	Gate-to-Drain ("Miller") Charge	_	_	65	nC	See note 4
ţ _(an)	Turn-On Delay Time	_	_	35	ns	$V_{DD} = 50 \text{ V}, I_{D} = 21 \text{A}, R_{G} = 2.35$
ţ	Rise Time	_	_	190	ns	See note 4
ţ _{xoff)}	Tum-Off Delay Time	_	_	170	ns	
t.	Fall Time	_	_	130	ns	

Source-Drain Diode Ratings and Characteristics

	Parameter	Min.	Typ.	Max.	Units	Test Conditions
7	V _{SD} Diode Forward Voltage	_	_	1.8	V	$T_{J} = 25^{\circ}\text{C}, I_{S} = 34\text{A}^{-3}, V_{G,S} = 0 \text{ V}$
ţ	Reverse Recovery Time	_	_	500	ns	$T_J = 25$ °C, $I_F = 34$ A, $di/dt < 100$ A/ μ s

	Parameter	Min.	Typ.	Max.	Units	Test Conditions
R thuc	Junction-to-Case	_	_	0.83		Mounting surface flat,
R _{thCS}	Case-to-sink	_	0.21	_	°C/W	smooth, and greased
R _{thTA}	Junction-to-Ambient	_	_	48		Typical socket mount

- 1. Repetitive Rating: Pulse width limited by maximum junction temperature.
- 2. @V_D_B= 25V, Starting T_J = 25 °C, L \geq 200 $\mu\text{H},~R_{\text{\tiny G}}$ = 25 $\,$, Peak I_L= 34A
- 3. Pulse width \leq 300 µs; Duty Cycle \leq 2 %
- 4. See MIL-S-19500/592

Parameter	JANTXV, JANTX, 2N7225	Units
I, @ V_{GS} = 10V, T_{C} = 25°C Continuous Drain Current	27.4	А
I @ V_{GS} = 10V, T_{C} = 100°C Continuous Drain Current	17	А
I _M Pulsed Drain Current	110	А
$P_D @ T_C = 25^{\circ}C$ Maximum Power Dissipation	150	W
Linear Derating Factor	1.2	W/°C
V _{GS} Cate-Source Voltage	± 20	V
E _{AS} Single Pulse Avalanche Energy ²	500 ⁴	mJ
I _{AR} Avalanche Current ¹	27.4 4	А
E _{AR} Repetitive Avalanche Energy ¹	15 ⁴	mJ
T _J Operating Junction T _{STG} Storage Temperature Range	-55 to 150	°C
Lead Temperature	300(.06 from case for 10 sec)	°C

ELECTRICAL CHARACTERISTICS @ T_J = 25°C (Unless Otherwise Specified)

	Description	N //	m	1/	77-24	m
	Parameter	Min.	Typ.	Max.	Units	Test Conditions
BV _{DSS}	Drain-Source	200			V	$V_{GS} = OV$, $I_D = 1.0 \text{ mA}$,
	Breakdown Voltage					
R _{DS(on)}	Static Drain-to-Source	-	_	0.100		$V_{\rm GS}$ = 10 V, $I_{\rm D}$ = 17 A 3
	On-State Resistance	_	_	0.105		V_{GS} = 10 V, I_D = 27.4 A 3
$V_{GS(th)}$	Gate Threshold Voltage	2.0	_	4.0	V	$V_{DS} = V_{GS} I_{D} = 250 \mu A$
₽ss	Zero Gate Voltage Drain	_	_	25	7	$V_{DS} = 160 \text{ V}, V_{GS} = 0 \text{V}$
	Current	_	_	250	μА	V_{DS} = 160 V, V_{GS} = 0V, T_{J} = 125 °C
Į _{ss}	Gate -to-Source Leakage Forward	_	_	100	nA	V _{GS} = 20 V
Į _{ss}	Gate -to-Source Leakage Reverse	_	_	-100	nA	$V_{GS} = -20 \text{ V}$
Q _{G(cn)}	On-state Gate Charge	_	_	115	nC	$V_{GS} = 10 \text{ V}, I_D = 27.4 \text{A}$
Q _{GS}	Gate-to-Source Charge	_	_	22	nC	$V_{DS} = 100 \text{ V}$
Q _{Gd}	Gate-to-Drain ("Miller") Charge	_	_	60	nC	See note 4
ţ _(cn)	Turn-On Delay Time	_	_	35	ns	$V_{DD} = 100 \text{ V}, I_D = 17A, R_G = 2.35$
ţ	Rise Time	_	_	190	ns	See note 4
t _{e(off)}	Turn-Off Delay Time	_	_	170	ns	
ţ	Fall Time	_	_	130	ns	

Source-Drain Diode Ratings and Characteristics

	Parameter	Min.	Typ.	Max.	Units	Test Canditions
V _{SD}	Diode Forward Voltage	_	_	1.9	V	$T_{J} = 25^{\circ}\text{C}, I_{S} = 27.4\text{A}^{-3}, V_{G,S} = 0 \text{ V}$
t _e	Reverse Recovery Time	_	_	950	ns	$T_J = 25$ °C, $I_F = 27.4$ A, $di/dt \le 100$ A/ μ s

I		Parameter	Min.	Typ.	Max.	Units	Test Conditions
	R thuc	Junction-to-Case	_	_	0.83		Mounting surface flat,
	R _{thCS}	Case-to-sink	_	0.21	_	°C/W	smooth, and greased
Į	R than	Junction-to-Ambient	_	_	48		Typical socket mount

- 1. Repetitive Rating: Pulse width limited by maximum junction temperature.
- 2. @ V_{DD} = 50V, Starting T_{J} = 25 °C, $L \ge 1\,\text{mH}$, R_{G} = 25 , Peak I_{L} = 27.4A
- 3. Pulse width \leq 300 µs; Duty Cycle \leq 2 %
- 4. See MIL-S-19500/592

Parameter	JANTXV, JANTX, 2N7227	Units
\mathbb{L} @ V_{GS} = 10V, T_{C} = 25°C Continuous Drain Current	14	А
\mathbb{L} @ V_{GS} = 10V, T_{C} = 100°C Continuous Drain Current	9.0	А
I _M Pulsed Drain Current'	56	А
$P_{\rm D}$ @ $T_{\rm C}$ = 25°C Maximum Power Dissipation	150	W
Linear Derating Factor	1.2	W/°C
V _{GS} Gate-Source Voltage	± 20	V
E _{AS} Single Pulse Avalanche Energy ²	700 ⁴	mJ
I _{AR} Avalanche Current ¹	14 4	A
E _{AR} Repetitive Avalanche Energy ¹	15 ⁴	mJ
T _J Operating Junction T _{STG} Storage Temperature Range	-55 to 150	°C
Lead Temperature	300(.06 from case for 10 sec)	°C

_						
	Parameter	Min.	Typ.	Max.	Units	Test Conditions
BV _{DSS}	Drain-Source	400			V	$V_{GS} = 0V$, $I_{D} = 1.0$ mA,
	Breakdown Voltage					
R _{DS(on)}	Static Drain-to-Source	-	_	0.315		$V_{GS} = 10 \text{ V}, I_D = 9.0 \text{ A}^{-3}$
	On-State Resistance	_	_	0.415		$V_{\rm GS}$ = 10 V, $I_{\rm D}$ = 14 A $^{\rm 3}$
V _{GS(th)}	Gate Threshold Voltage	2.0	_	4.0	V	$V_{DS} = V_{GS} I_{D} = 250 \mu A$
₽ss	Zero Gate Voltage Drain	_	_	25	7	$V_{DS} = 320 \text{ V}, V_{GS} = 0 \text{V}$
	Current	_	_	250	μA	$V_{DS} = 320 \text{ V}, V_{GS} = 0\text{V}, T_{J} = 125 ^{\circ}\text{C}$
Į _{ss}	Gate -to-Source Leakage Forward	_	_	100	nA	$V_{GS} = 20 \text{ V}$
Į _{ss}	Gate -to-Source Leakage Reverse	_	_	-100	nA	$V_{GS} = -20 \text{ V}$
Q _{G(an)}	On-state Gate Charge	_	_	110	nC	$V_{GS} = 10 \text{ V}, I_D = 14A$
Q _{GS}	Gate-to-Source Charge	_	_	18	nC	$V_{DS} = 200 \text{ V}$
Q _{Gd}	Gate-to-Drain ("Miller") Charge	_	_	65	nC	See note 4
t _{D(cn)}	Turn-On Delay Time	_	_	35	ns	$V_{DD} = 200 \text{ V}, I_D = 9 \text{ A}, R_G = 2.35$
ţ	Rise Time	_	_	190	ns	See note 4
₽ _(off)	Turn-Off Delay Time	_	_	170	ns	
ţ	Fall Time	_	_	130	ns	

Source-Drain Diode Ratings and Characteristics

	Parameter	Min.	Typ.	Max.	Units	Test Conditions
V _{SD}	Diode Forward Voltage	_	_	1.7	V	$T_{J} = 25$ °C, $I_{S} = 14$ A 3 , $V_{G,S} = 0$ V
t _e	Reverse Recovery Time	_	_	1200	ns	$T_{_{ m J}}$ = 25°C, $I_{_{ m F}}$ = 14A, di/dt <100A/µs

	Parameter	Min.	Typ.	Max.	Units	Test Conditions
R thuc	Junction-to-Case	_	_	0.83		Mounting surface flat,
R that	Case-to-sink	_	0.21	_	°C/W	smooth, and greased
R that	Junction-to-Ambient	_	_	48		Typical socket mount

- 1. Repetitive Rating: Pulse width limited by maximum junction temperature.
- 2. @V_D_0=50V, Starting T_J = 25 °C, L \geq 6.25 mH, R_G = 25 , Peak I_L = 14A
- 3. Pulse width \leq 300 µs; Duty Cycle \leq 2 %
- 4. See MIL-S-19500/592

Parameter	JANTXV, JANTX, 2N7228	Units
\mathbb{L} @ V_{GS} = 10V, T_{C} = 25°C Continuous Drain Current	12	А
$_{\mbox{\scriptsize J}_{\mbox{\scriptsize GS}}}$ @ $\mbox{\scriptsize V}_{\mbox{\scriptsize GS}}$ = 10V, $\mbox{\scriptsize T}_{\mbox{\scriptsize C}}$ = 100°C Continuous Drain Current	8.0	А
I _M Pulsed Drain Current'	48	А
$P_{\rm D}$ @ $T_{\rm C}$ = 25°C Maximum Power Dissipation	150	W
Linear Derating Factor	1.2	W/°C
V _{GS} Gate-Source Voltage	± 20	V
E _{AS} Single Pulse Avalanche Energy ²	750 ⁴	mJ
I _{AR} Avalanche Current ¹	12 4	A
E _{AR} Repetitive Avalanche Energy ¹	15 ⁴	mJ
T _J Operating Junction T _{STG} Storage Temperature Range	-55 to 150	°C
Lead Temperature	300(.06 from case for 10 sec)	°C

ELECTRICAL CHARACTERISTICS @ T_J = 25°C (Unless Otherwise Specified)

	Parameter	Min.	Typ.	Max.	Units	Test Conditions
	T d T d T d T d T d T d T d T d T d T d	1	-72.	12211	GILGS	ide caricias
$\text{BV}_{\text{\tiny DSS}}$	Drain-Source	500			V	$V_{GS} = 0V$, $I_D = 1.0 \text{ mA}$,
	Breakdown Voltage					
R _{DS(on)}	Static Drain-to-Source	_	_	0.415		V_{GS} = 10 V, I_{D} = 8.0 A 3
	On-State Resistance	_	-	0.515		$V_{GS} = 10 \text{ V}, \text{ I}_{D} = 12 \text{ A}^{-3}$
$V_{cs(th)}$	Gate Threshold Voltage	2.0	_	4.0	V	$V_{DS} = V_{GS} I_{D} = 250 \mu A$
J ss	Zero Gate Voltage Drain	_	_	25	_	$V_{DS} = 400 \text{ V}, V_{GS} = 0 \text{V}$
	Current	_	_	250	μA	$V_{DS} = 400 \text{ V}, V_{GS} = 0\text{V}, T_{J} = 125 ^{\circ}\text{C}$
Į _{ss}	Gate -to-Source Leakage Forward	_	_	100	nA	$V_{GS} = 20 \text{ V}$
Į _{ss}	Gate -to-Source Leakage Reverse	_	_	-100	nA	$V_{GS} = -20 \text{ V}$
Q _{G(an)}	On-state Cate Charge	_	_	120	nC	$V_{GS} = 10 \text{ V}, I_D = 12 \text{A}$
Q _{GS}	Gate-to-Source Charge	_	_	19	nC	$V_{DS} = 250 \text{ V}$
Q _{Gd}	Cate-to-Drain ("Miller") Charge	_	_	70	nC	See note 4
₽ _(cn)	Turn-On Delay Time	_	_	35	ns	$V_{DD} = 250 \text{ V}, I_D = 8A, R_G = 2.35$
ţ	Rise Time	_	_	190	ns	See note 4
t _{b(off)}	Tum-Off Delay Time	_		170	ns	
ţ	Fall Time	_	_	130	ns	

Source-Drain Diode Ratings and Characteristics

	Parameter	Min.	Typ.	Max.	Units	Test Conditions
V _{SD}	Diode Forward Voltage	_	_	1.7	V	$T_{J} = 25$ °C, $I_{S} = 12$ A 3 , $V_{G,S} = 0$ V
t _e	Reverse Recovery Time	_	_	1600	ns	$T_J = 25$ °C, $I_F = 12$ A, $di/dt \leq 100$ A/ μ s

TRETTEE TESTSCARE							
ĺ		Parameter	Min.	Typ.	Max.	Units	Test Conditions
	R thuc	Junction-to-Case	_	_	0.83		Mounting surface flat,
	R _{thCS}	Case-to-sink	_	0.21	_	°C/W	smooth, and greased
	R _{+bTA}	Junctian-to-Ambient	_	_	48		Typical socket mount

- 1. Repetitive Rating: Pulse width limited by maximum junction temperature.
- 2. @V_D_= 50V, Starting T_J = 25 °C, L \geq 9.4 mH, R_G = 25 , Peak I_L = 12A
- 3. Pulse width \leq 300 µs; Duty Cycle \leq 2 %
- 4. See MIL-S-19500/592