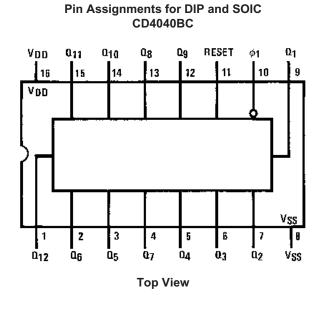


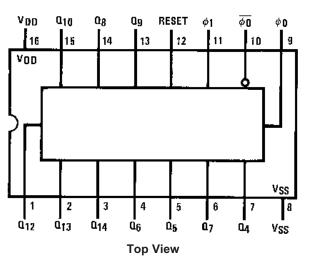
Features

- Wide supply voltage range: 3.0V to 15V
- High noise immunity: 0.45 V_{DD} (Typ.)
- Low power TTL compatibility: Fan out of 2 driving 74L or 1 driving 74LS
- Medium speed operation: 8MHz typ. at V_{DD} = 10V
- Schmitt trigger clock input

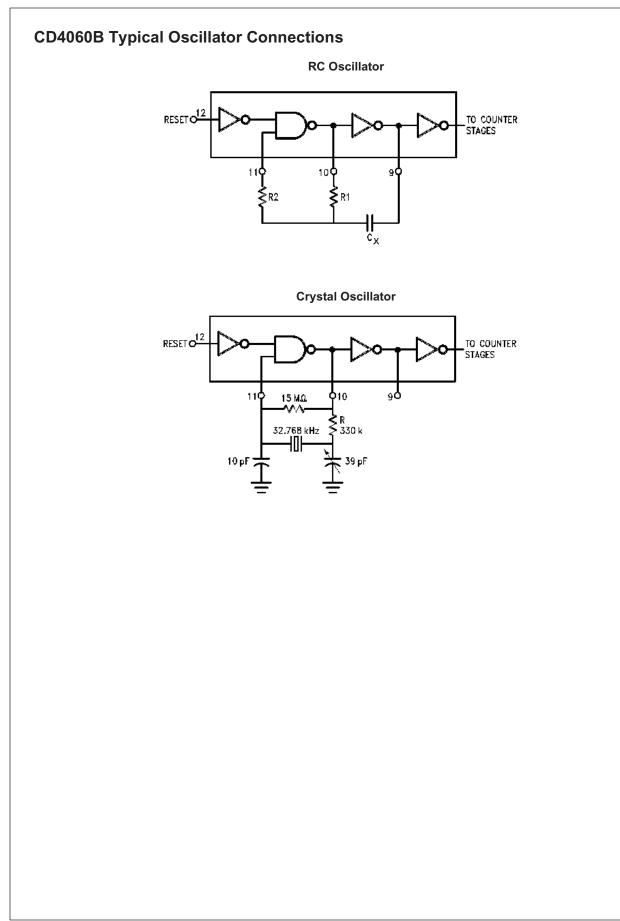
Ordering Information


General Description

The CD4060BC is a 14-stage ripple carry binary counter, and the CD4040BC is a 12-stage ripple carry binary counter. The counters are advanced one count on the negative transition of each clock pulse. The counters are reset to the zero state by a logical "1" at the reset input independent of clock.


Order Number	Package Number	Package Description
CD4040BCM	M16A	16-Lead Small Outline Integrated Circuit (SOIC), JEDEC MS-012, 0.150" Narrow
CD4060BCM	M16A	16-Lead Small Outline Integrated Circuit (SOIC), JEDEC MS-012, 0.150" Narrow
CD4060BCN	N16E	16-Lead Plastic Dual-In-Line Package (PDIP), JEDEC MS-001, 0.300" Wide


Devices also available in Tape and Reel. Specify by appending the suffix letter "X" to the ordering number.


Connection Diagrams

Pin Assignments for DIP and SOIC CD4060BC

Absolute Maximum Ratings⁽¹⁾

Stresses exceeding the absolute maximum ratings may damage the device. The device may not function or be operable above the recommended operating conditions and stressing the parts to these levels is not recommended. In addition, extended exposure to stresses above the recommended operating conditions may affect device reliability. The absolute maximum ratings are stress ratings only.

Symbol	Parameter	Rating
V _{DD}	Supply Voltage	-0.5V to +18V
V _{IN}	Input Voltage	–0.5V to V _{DD} +0.5V
Τ _S	Storage Temperature Range	–65°C to +150°C
PD	Package Dissipation	
	N Package	700mW
	M Package	500 mW
TL	Lead Temperature (Soldering, 10 seconds)	260°C

Note:

1. $V_{SS} = 0V$ unless otherwise specified.

Recommended Operating Conditions

The Recommended Operating Conditions table defines the conditions for actual device operation. Recommended operating conditions are specified to ensure optimal performance to the datasheet specifications. Fairchild does not recommend exceeding them or designing to absolute maximum ratings.

Symbol	Parameter	Rating
V _{DD}	Supply Voltage	+3V to +15V
V _{IN}	Input Voltage	0V to V _{DD}
T _A	Operating Temperature Range	–55°C to +125°C

			–55°C		+25°C			+125°C		
Symbol	Parameter	Conditions	Min.	Max.	Min.	Тур.	Max.	Min.	Max.	Units
I _{DD} C	Quiescent Device	$V_{DD} = 5V, V_{IN} = V_{DD} \text{ or } V_{SS}$		5			5		150	μA
	Current	$V_{DD} = 10V, V_{IN} = V_{DD} \text{ or } V_{SS}$		10			10		300	
		$V_{DD} = 15V$, $V_{IN} = V_{DD}$ or V_{SS}		20			20		600	
V _{OL}	LOW Level	$V_{DD} = 5V$		0.05		0	0.05		0.05	V
	Output Voltage	$V_{DD} = 10V$		0.05		0	0.05		0.05	
		$V_{DD} = 15V$		0.05		0	0.05		0.05	
V _{OH}	HIGH Level	$V_{DD} = 5V$	4.95		4.95	5		4.95		V
	Output Voltage	$V_{DD} = 10V$	9.95		9.95	10		9.95		-
		$V_{DD} = 15V$	14.95		14.95	15		14.95		
	LOW Level Input Voltage	$V_{DD} = 5V, V_{O} = 0.5V \text{ or } 4.5V$		1.5		2	1.5		1.5	V
		$V_{DD} = 10V, V_{O} = 1.0V \text{ or } 9.0V$		3.0		4	3.0		3.0	
		$V_{DD} = 15V, V_{O} = 1.5V \text{ or } 13.5V$		4.0		6	4.0		4.0	
V _{IH}	HIGH Level Input Voltage	$V_{DD} = 5V, V_{O} = 0.5V \text{ or } 4.5V$	3.5		3.5	3		3.5		V
1		$V_{DD} = 10V, V_{O} = 1.0V \text{ or } 9.0V$	7.0		7.0	6		7.0		
		$V_{DD} = 15V, V_{O} = 1.5V \text{ or } 13.5V$	11.0		11.0	9		11.0		
	LOW Level Output Current ⁽³⁾	$V_{DD} = 5V, V_{O} = 0.4V$	0.64		0.51	0.88		0.36		mA
		$V_{DD} = 10V, V_{O} = 0.5V$	1.6		1.3	2.25		0.9		
		$V_{DD} = 15V, V_{O} = 1.5V$	4.2		3.4	8.8		2.4		
·Un I	HIGH Level Output Current ⁽³⁾	$V_{DD} = 5V, V_{O} = 4.6V$	-0.64		-0.51	-0.88		-0.36		mA
		$V_{DD} = 10V, V_{O} = 9.5V$	-1.6		-1.3	-2.25		-0.9		
		V _{DD} = 15V, V _O = 13.5V	-4.2		-3.4	-8.8		-2.4		
I _{IN}	Input Current	$V_{DD} = 15V, V_{IN} = 0V$		-0.1		-10 ⁻⁵	-0.1		-1.0	μA
		V _{DD} = 15V, V _{IN} = 15V		0.1		10 ⁻⁵	0.1		1.0]

DC Electrical Characteristics⁽²⁾

Note:

2. $V_{SS} = 0V$ unless otherwise specified.

3. Data does not apply to oscillator points ϕ_0 and $\overline{\phi_0}$ of CD4060BC. I_{OH} and I_{OL} are tested one output at a time.

AC Electrical Characteristics⁽⁴⁾

Symbol	Parameter	Conditions	Min.	Тур.	Max.	Units
t _{PHL1} , t _{PLH1}	Propagation Delay Time to Q ₁	$V_{DD} = 5V$		250	550	ns
		$V_{DD} = 10V$		100	210	
		$V_{DD} = 15V$		75	150	
t _{PHL} , t _{PLH}	Interstage Propagation Delay Time	$V_{DD} = 5V$		150	330	ns
	from Q _n to Q _{n+1}	$V_{DD} = 10V$		60	125	
		$V_{DD} = 15V$		45	90	
t _{THL} , t _{TLH}	Transition Time	$V_{DD} = 5V$		100	200	ns
		$V_{DD} = 10V$		50	100	1
		$V_{DD} = 15V$		40	80	
t _{WL} , t _{WH}	Minimum Clock Pulse Width	$V_{DD} = 5V$		125	335	ns
		$V_{DD} = 10V$		50	125	
		$V_{DD} = 15V$		40	100	
t _{rCL} , t _{fCL}	Maximum Clock Rise and Fall Time	$V_{DD} = 5V$			No Limit	ns
		$V_{DD} = 10V$			No Limit	
		$V_{DD} = 15V$			No Limit	
f _{CL}	Maximum Clock Frequency	$V_{DD} = 5V$	1.5	4		MHz
		$V_{DD} = 10V$	4	10		
		$V_{DD} = 15V$	5	12		
t _{PHL(R)}	Reset Propagation Delay	$V_{DD} = 5V$		200	450	ns
		$V_{DD} = 10V$		100	210	
		V _{DD} = 15V		80	170	
t _{WH(R)}	Minimum Reset Pulse Width	$V_{DD} = 5V$		200	450	ns
		$V_{DD} = 10V$		100	210	
		$V_{DD} = 15V$		80	170	1
C _{IN}	Average Input Capacitance	Any Input		5	7.5	pF
C _{PD}	Power Dissipation Capacitance			50		pF

CD4040BC T_A = 25°C, C_L = 50pF, R_L = 200k\Omega, t_r = t_f = 20 ns, unless otherwise noted.

Note:

4. AC Parameters are guaranteed by DC correlated testing.

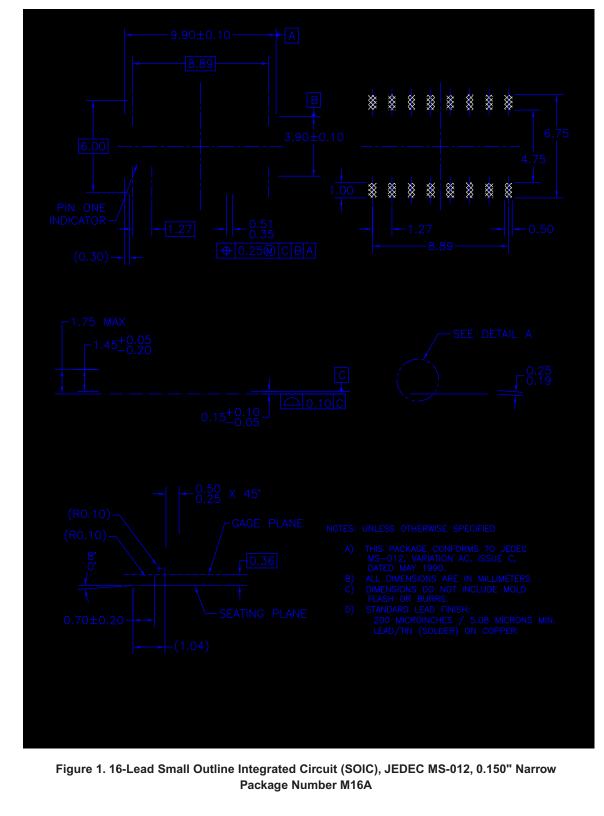
AC Electrical Characteristics ⁽⁵⁾	
--	--

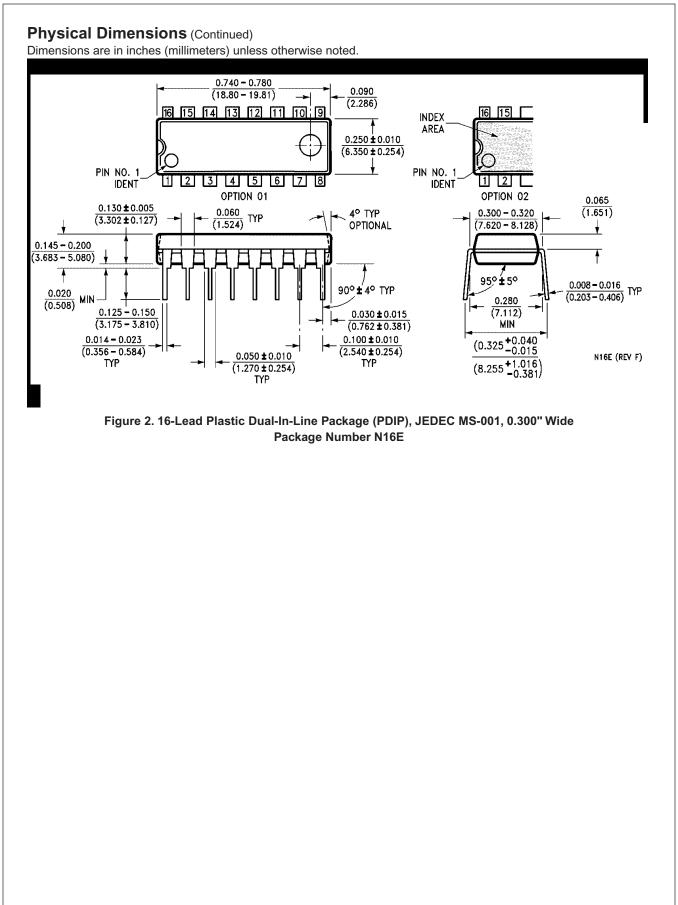
Symbol	Parameter	Conditions	Min.	Тур.	Max.	Units
t _{PHL4} , t _{PLH4}	Propagation Delay Time to Q ₄	$V_{DD} = 5V$		550	1300	ns
		$V_{DD} = 10V$		250	525	1
		$V_{DD} = 15V$		200	400	
t _{PHL} , t _{PLH}	Interstage Propagation Delay Time	$V_{DD} = 5V$		150	330	ns
	from Q _n to Q _{n+1}	$V_{DD} = 10V$		60	125	
		$V_{DD} = 15V$		45	90	
t _{THL} , t _{TLH}	Transition Time	$V_{DD} = 5V$		100	200	ns
		$V_{DD} = 10V$		50	100	
		$V_{DD} = 15V$		40	80	
t _{WL} , t _{WH}	Minimum Clock Pulse Width	$V_{DD} = 5V$		170	500	ns
		$V_{DD} = 10V$		65	170	
		$V_{DD} = 15V$		50	125	
t _{rCL} , t _{fCL}	Maximum Clock Rise and Fall Time	$V_{DD} = 5V$			No Limit	ns
		$V_{DD} = 10V$			No Limit	
		$V_{DD} = 15V$			No Limit	
f _{CL}	Maximum Clock Frequency	$V_{DD} = 5V$	1	3		MHz
		$V_{DD} = 10V$	3	8		
		$V_{DD} = 15V$	4	10		
t _{PHL(R)}	Reset Propagation Delay	$V_{DD} = 5V$		200	450	ns
		$V_{DD} = 10V$		100	210	
		$V_{DD} = 15V$		80	170	
t _{WH(R)}	Minimum Reset Pulse Width	$V_{DD} = 5V$		200	450	ns
		$V_{DD} = 10V$		100	210	
		$V_{DD} = 15V$		80	170	1
C _{IN}	Average Input Capacitance	Any Input		5	7.5	pF
C _{PD}	Power Dissipation Capacitance			50		pF

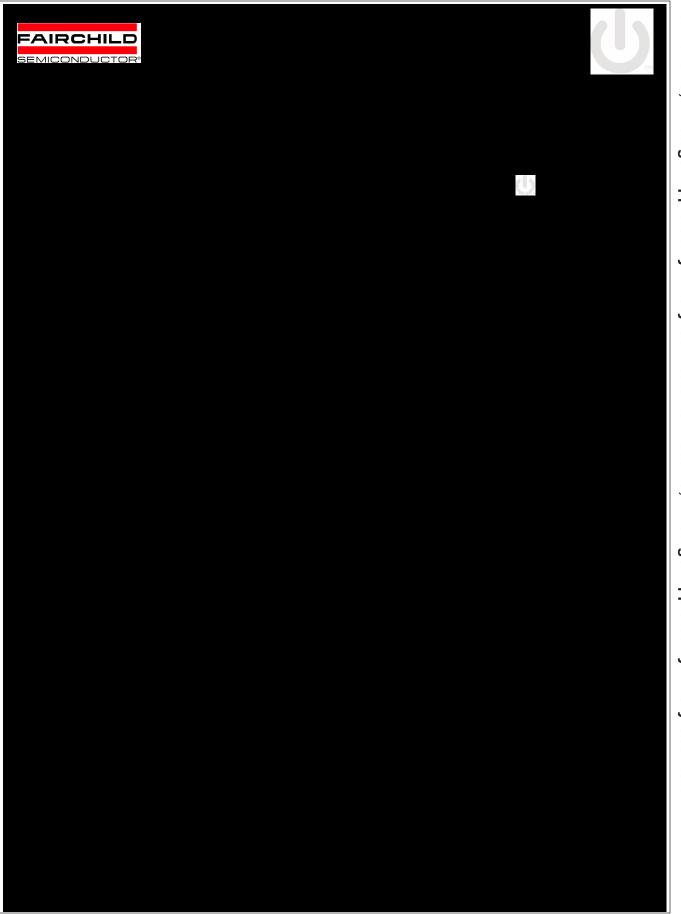
CD4060BC T_A = 25°C, C_L = 50pF, R_L = 200k, t_r = t_f = 20 ns, unless otherwise noted.

Note:

5. AC Parameters are guaranteed by DC correlated testing.


RC Oscillator Notes:


- 1. $R_2 = 2 R_1 \text{ to } 10 R_1$
- 2. RC Oscillator applications are not recommended at supply voltages below 7.0V for $R_1 < 50 k \Omega$


3.
$$f \approx \frac{1}{2.2 R_1 C_X}$$
 at $V_{CC} = 10V$

Dimensions are in millimeters unless otherwise noted.

