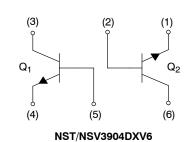
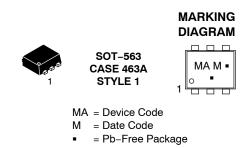
onsemi

Dual General Purpose Transistor NST3904DXV6T1G, NSVT3904DXV6T1G, NST3904DXV6T5G

The NST/NSV3904DXV6 device is a spin-off of our popular SOT-23/SOT-323 three-leaded device. It is designed for general purpose amplifier applications and is housed in the SOT-563 six-leaded surface mount package. By putting two discrete devices in one package, this device is ideal for low-power surface mount applications where board space is at a premium.


Features


- h_{FE}, 100–300
- Low $V_{CE(sat)}$, $\leq 0.4 \text{ V}$
- Simplifies Circuit Design
- Reduces Board Space
- Reduces Component Count
- AEC-Q101 Qualified and PPAP Capable NSVT3904DXV6T1G
- NSV Prefix for Automotive and Other Applications Requiring Unique Site and Control Change Requirements

MAXIMUM RATINGS

Rating		Symbol	Value	Unit
Collector – Emitter Voltage		V _{CEO}	40	Vdc
Collector - Base Voltage		V _{CBO}	60	Vdc
Emitter-Base Voltage		V _{EBO}	6.0	Vdc
Collector Current – Continuous		Ι _C	200	mAdc
Electrostatic Discharge	HBM MM	ESD	>16000 >2000	V

Stresses exceeding those listed in the Maximum Ratings table may damage the device. If any of these limits are exceeded, device functionality should not be assumed, damage may occur and reliability may be affected.

(Note: Microdot may be in either location)

ORDERING INFORMATION

Device	Package	Shipping [†]
NST3904DXV6T1G	SOT-563 (Pb-Free)	4000/Tape & Reel
NSVT3904DXV6T1G	SOT-563 (Pb-Free)	4000/Tape & Reel
NST3904DXV6T5G	SOT-563 (Pb-Free)	8000/Tape & Reel
SNST3904DXV6T1G	SOT-563 (Pb-Free)	4000/Tape & Reel
SNST3904DXV6T5G	SOT-563 (Pb-Free)	8000/Tape & Reel

†For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specifications Brochure, BRD8011/D.

THERMAL CHARACTERISTICS

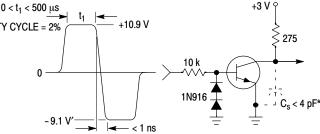
Characteristic (One Junction Heated)	Symbol	Max	Unit
Total Device Dissipation T _A = 25°C Derate above 25°C (Note 1)	PD	357 2.9	mW mW/°C
Thermal Resistance Junction-to-Ambient (Note 1)	R _{θJA}	350	°C/W
Characteristic (Both Junctions Heated)	Symbol	Max	Unit
Total Device Dissipation $T_A = 25^{\circ}C$ Derate above $25^{\circ}C$ (Note 1)	PD	500 4.0	mW mW/°C
Thermal Resistance, Junction-to-Ambient (Note 1)	R _{θJA}	250	°C/W
Junction and Storage Temperature Range	T _J , T _{stg}	-55 to +150	°C

1. FR-4 @ Minimum Pad

Characteristic	Symbol	Min	Max	Unit
OFF CHARACTERISTICS				
Collector – Emitter Breakdown Voltage (Note 2) ($I_C = 1.0 \text{ mAdc}, I_B = 0$)	V _{(BR)CEO}	40	-	Vdc
Collector – Base Breakdown Voltage ($I_C = 10 \ \mu Adc$, $I_E = 0$)	V _{(BR)CBO}	60	-	Vdc
Emitter – Base Breakdown Voltage (I _E = 10 μ Adc, I _C = 0)	V _{(BR)EBO}	6.0	-	Vdc
Base Cutoff Current (V _{CE} = 30 Vdc, V _{EB} = 3.0 Vdc)	I _{BL}	-	50	nAdc
Collector Cutoff Current (V_{CE} = 30 Vdc, V_{EB} = 3.0 Vdc)	I _{CEX}	-	50	nAdc
ON CHARACTERISTICS (Note 2)				
DC Current Gain	h _{EE}			-

	ΠE	40 70 100 60 30	- 300 - -		
Collector – Emitter Saturation Voltage ($I_C = 10 \text{ mAdc}, I_B = 1.0 \text{ mAdc}$) ($I_C = 50 \text{ mAdc}, I_B = 5.0 \text{ mAdc}$)	V _{CE(sat)}	- -	0.2 0.3	Vdc	
Base – Emitter Saturation Voltage ($I_C = 10 \text{ mAdc}, I_B = 1.0 \text{ mAdc}$) ($I_C = 50 \text{ mAdc}, I_B = 5.0 \text{ mAdc}$)	V _{BE(sat)}	0.65	0.85 0.95	Vdc	

SMALL-SIGNAL CHARACTERISTICS


Current – Gain – Bandwidth Product (I_C = 10 mAdc, V_{CE} = 20 Vdc, f = 100 MHz)	f _T	300	-	MHz
Output Capacitance (V _{CB} = 5.0 Vdc, I _E = 0, f = 1.0 MHz)	C _{obo}	-	4.0	pF
Input Capacitance (V _{EB} = 0.5 Vdc, I _C = 0, f = 1.0 MHz)	C _{ibo}	-	8.0	pF
Input Impedance (V _{CE} = 10 Vdc, I _C = 1.0 mAdc, f = 1.0 kHz)	h _{ie}	1.0 2.0	10 12	kΩ
Voltage Feedback Ratio (V _{CE} = 10 Vdc, I _C = 1.0 mAdc, f = 1.0 kHz)	h _{re}	0.5 0.1	8.0 10	X 10 ⁻⁴
Small-Signal Current Gain (V _{CE} = 10 Vdc, I _C = 1.0 mAdc, f = 1.0 kHz)	h _{fe}	100 100	400 400	-
Output Admittance (V _{CE} = 10 Vdc, I _C = 1.0 mAdc, f = 1.0 kHz)	h _{oe}	1.0 3.0	40 60	μmhos
Noise Figure (V _{CE} = 5.0 Vdc, I _C = 100 μ Adc, R _S = 1.0 k Ω , f = 1.0 kHz)	NF		5.0 4.0	dB

SWITCHING CHARACTERISTICS

Delay Time	$(V_{CC} = 3.0 \text{ Vdc}, V_{BE} = -0.5 \text{ Vdc})$	t _d	-	35	20
Rise Time	$(I_{C} = 10 \text{ mAdc}, I_{B1} = 1.0 \text{ mAdc})$	t _r	-	35	ns
Storage Time	$(V_{CC} = 3.0 \text{ Vdc}, I_C = 10 \text{ mAdc})$	t _s	-	200	ns
Fall Time	(I _{B1} = I _{B2} = 1.0 mAdc)	t _f	-	50	115

Product parametric performance is indicated in the Electrical Characteristics for the listed test conditions, unless otherwise noted. Product performance may not be indicated by the Electrical Characteristics if operated under different conditions. 2. Pulse Test: Pulse Width \leq 300 µs; Duty Cycle \leq 2.0%.

 $10 < t_1 < 500 \ \mu s$ +3 V tı DUTY CYCLE = 2% +10.9 V DUTY CYCLE = 2% 300 ns 🔶 +10.9 V 275 10 k 10 k 0 -0.5 V 1N916 7 Cs $< 4 \text{ pF}^3$ - < 1 ns --9.1 V' - < 1 ns -

* Total shunt capacitance of test jig and connectors

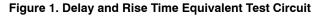


Figure 2. Storage and Fall Time Equivalent Test Circuit

TYPICAL TRANSIENT CHARACTERISTICS

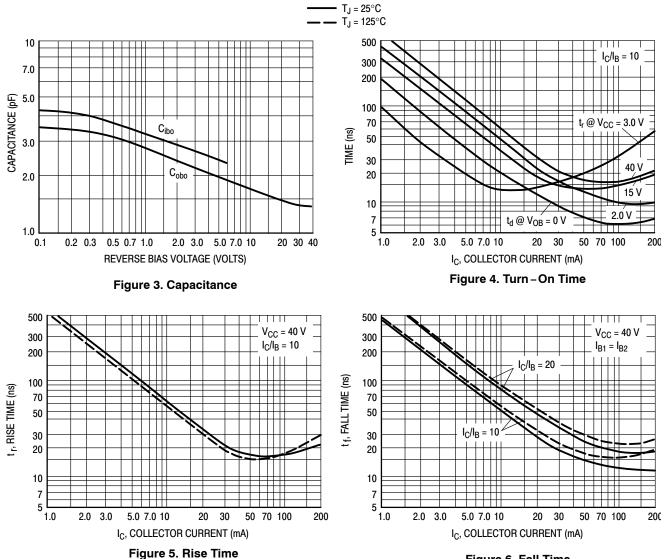
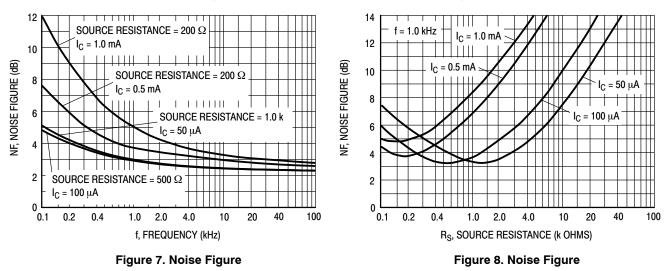
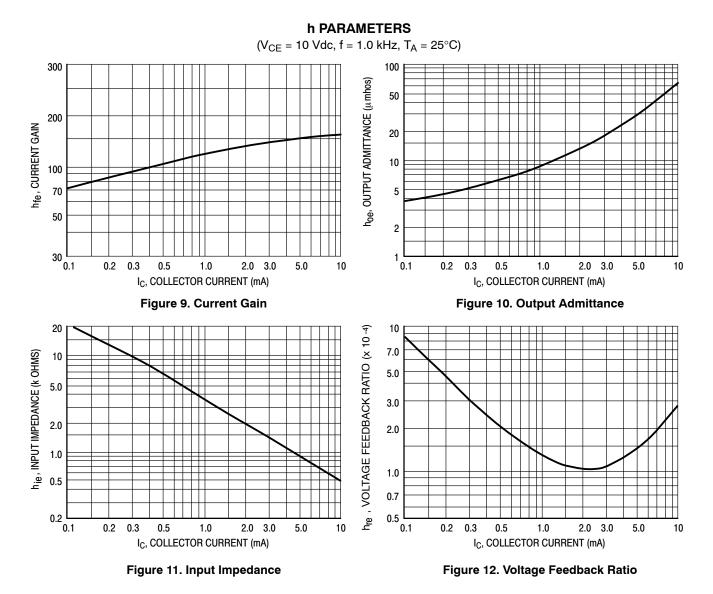
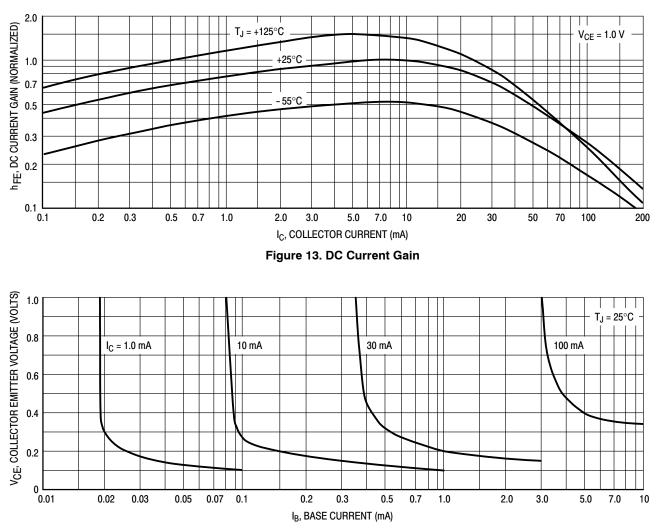




Figure 6. Fall Time

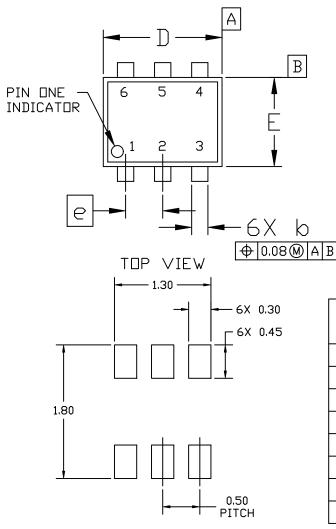

(V_{CE} = 5.0 Vdc, T_A = 25°C, Bandwidth = 1.0 Hz)

www.onsemi.com 5

TYPICAL STATIC CHARACTERISTICS

TYPICAL STATIC CHARACTERISTICS

Figure 17. Collector Emitter Saturation Voltage vs. Collector Current



SOT-563, 6 LEAD CASE 463A ISSUE H

DATE 26 JAN 2021

- NDTES: DIMENSIONING AND TOLERANCING PER ASME Y14.5M, 2009.
- 1. CONTROLLING DIMENSION: MILLIMETERS 2.
- MAXIMUM LEAD THICKNESS INCLUDES LEAD FINISH З. MINIMUM LEAD THICKNESS IS THE MINIMUM THICKNESS. THICKNESS OF BASE MATERIAL.

RECOMMENDED MOUNTING FOOTPRINT* For additional information on our Pb-Free ж strategy and soldering details, please download

the DN Semiconductor Soldering and Mounting Techniques Reference Manual, SOLDERRM/D.

A	-	-	6X	l
		I	' H _E	
		⊂		

SIDE VIEW

	MILLIMETERS				
DIM	MIN.	NDM.	MAX.		
А	0.50	0.55	0.60		
b	0.17	0.22	0.27		
С	0.08	0.13	0.18		
D	1.50	1.60	1.70		
E	1.10	1.20	1.30		
е	0.50 BSC				
L	0.10	0.20	0.30		
Η _Ε	1.50	1.60	1.70		

Electronic versions are uncontrolled except when accessed directly from the Document Repository. **DOCUMENT NUMBER:** 98AON11126D Printed versions are uncontrolled except when stamped "CONTROLLED COPY" in red. **DESCRIPTION:** SOT-563, 6 LEAD PAGE 1 OF 2

ON Semiconductor and 💷 are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. ON Semiconductor does not convey any license under its patent rights nor the rights of others.

STYLE 1:	STYLE 2:	STYLE 3:
PIN 1. EMITTER 1	PIN 1. EMITTER 1	PIN 1. CATHIDE 1
2. BASE 1	2. EMITTER 2	2. CATHIDE 1
3. COLLECTOR 2	3. BASE 2	3. ANUDE/ANUDE 2
4. EMITTER 2	4. COLLECTOR 2	4. CATHIDE 2
5. BASE 2	5. BASE 1	5. CATHIDE 2
6. COLLECTOR 1	6. COLLECTOR 1	6. ANUDE/ANUDE 1
STYLE 4:	STYLE 5:	STYLE 6;
PIN 1. COLLECTOR	PIN 1. CATHEDE	PIN 1. CATHODE
2. COLLECTOR	2. CATHEDE	2. ANODE
3. BASE	3. ANEDE	3. CATHODE
4. EMITTER	4. ANEDE	4. CATHODE
5. COLLECTOR	5. CATHEDE	5. CATHODE
6. COLLECTOR	6. CATHEDE	6. CATHODE
STYLE 7:	STYLE 8:	STYLE 9:
PIN 1. CATHEDE	PIN 1. DRAIN	PIN 1. SDURCE 1
2. ANEDE	2. DRAIN	2. GATE 1
3. CATHEDE	3. GATE	3. DRAIN 2
4. CATHEDE	4. SDURCE	4. SDURCE 2
5. ANEDE	5. DRAIN	5. GATE 2
6. CATHEDE	6. DRAIN	6. DRAIN 1
STYLE 10: PIN 1. CATHEDE 1 2. N/C 3. CATHEDE 2 4. ANEDE 2 5. N/C	STYLE 11: PIN 1. EMITTER 2 2. BASE 2 3. COLLECTOR 1 4. EMITTER 1 5. BASE 1	

5. BASE 1 6. COLLECTOR 2

6. ANDDE 1

DATE 26 JAN 2021

GENERIC **MARKING DIAGRAM***

XX = Specific Device Code

M = Month Code

. = Pb-Free Package

*This information is generic. Please refer to device data sheet for actual part marking. Pb-Free indicator, "G" or microdot "•", may or may not be present. Some products may not follow the Generic Marking.

DOCUMENT NUMBER:	98AON11126D	Electronic versions are uncontrolled except when accessed directly from the Document Repository Printed versions are uncontrolled except when stamped "CONTROLLED COPY" in red.		
DESCRIPTION:	SOT-563, 6 LEAD PAG		PAGE 2 OF 2	

ON Semiconductor and (III) are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. ON Semiconductor does not convey any license under its patent rights or the rights of others.

onsemi, ONSEMI, and other names, marks, and brands are registered and/or common law trademarks of Semiconductor Components Industries, LLC dba "onsemi" or its affiliates and/or subsidiaries in the United States and/or other countries. onsemi owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of onsemi's product/patent coverage may be accessed at <u>www.onsemi.com/site/pdf/Patent-Marking.pdf</u>. onsemi reserves the right to make changes at any time to any products or information herein, without notice. The information herein is provided "as-is" and onsemi makes no warranty, representation or guarantee regarding the accuracy of the information, product features, availability, functionality, or suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or indental damages. Buyer is responsible for its products and applications using onsemi products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by onsemi. "Typical" parameters which may be provided in onsemi data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. onsemi does not convey any license under any of its intellectual property rights nor the rights of others. onsemi products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification. Buyer shall indemnify and hold onsemi and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs,

ADDITIONAL INFORMATION

TECHNICAL PUBLICATIONS:

Technical Library: www.onsemi.com/design/resources/technical-documentation onsemi Website: www.onsemi.com ONLINE SUPPORT: <u>www.onsemi.com/support</u> For additional information, please contact your local Sales Representative at www.onsemi.com/support/sales