

- NOTES: A. CL includes probe and jig capacitance.
 - B. Waveform 1 is for an output with internal conditions such that the output is low except when disabled by the output control.
 Waveform 2 is for an output with internal conditions such that the output is high except when disabled by the output control.
 All input pulses are supplied by generators begins the following characteristics: PBP < 10 MHz, 7a = 50.0 t < 2 as t < 2 as
 - C. All input pulses are supplied by generators having the following characteristics: PRR \leq 10 MHz, Z_O = 50 Ω , t_f \leq 2 ns, t_f \leq 2 ns.
 - $\mathsf{D}.\;\;$ The outputs are measured one at a time with one transition per measurement.
 - E. t_{PLZ} and t_{PHZ} are the same as t_{dis} .
 - F. t_{PZL} and t_{PZH} are the same as t_{en} .
 - G. tPLH and tPHL are the same as tpd.

Figure 4. Load Circuit and Voltage Waveforms

PRODUCT PREVIEW

SCES175F – DECEMBER 1998 – REVISED FEBRUARY 2000

NOTES: A. C₁ includes probe and jig capacitance.

- B. Waveform 1 is for an output with internal conditions such that the output is low except when disabled by the output control. Waveform 2 is for an output with internal conditions such that the output is high except when disabled by the output control.
 C. All input pulses are supplied by generators having the following characteristics: PRR ≤ 10 MHz, Z_O = 50 Ω, t_f ≤ 2 ns, t_f ≤ 2 ns.
- D. The outputs are measured one at a time with one transition per measurement.
- E. tpLz and tpHz are the same as tdis.
- F. tpzL and tpzH are the same as ten.
- G. t_{PLH} and t_{PHL} are the same as t_{pd} .

Figure 5. Load Circuit and Voltage Waveforms

- Member of the Texas Instruments *Widebus™* Family
- *EPIC*[™] (Enhanced-Performance Implanted CMOS) Submicron Process
- DOC[™] (Dynamic Output Control) Circuit Dynamically Changes Output Impedance, Resulting in Noise Reduction Without Speed Degradation
- Less Than 2-ns Maximum Propagation Delay at 2.5-V and 3.3-V V_{CC}

- Dynamic Drive Capability Is Equivalent to Standard Outputs With I_{OH} and I_{OL} of ±24 mA at 2.5-V V_{CC}
- Overvoltage-Tolerant Inputs/Outputs Allow Mixed-Voltage-Mode Data Communications
- I_{off} Supports Partial-Power-Down Mode Operation
- Package Options Include Plastic Thin Shrink Small-Outline (DGG) and Thin Very Small-Outline (DGV) Packages

description

A Dynamic Output Control (DOC) circuit is implemented, which, during the transition, initially lowers the output impedance to effectively drive the load and, subsequently, raises the impedance to reduce noise. Figure 1 shows typical V_{OL} vs I_{OL} and V_{OH} vs I_{OH} curves to illustrate the output impedance and drive capability of the circuit. At the beginning of the signal transition, the DOC circuit provides a maximum dynamic drive that is equivalent to a high-drive standard-output device. For more information, refer to the TI application reports, *AVC Logic Family Technology and Applications*, literature number SCEA006, and *Dynamic Output Control (DOCTM) Circuitry Technology and Applications*, literature number SCEA009.

Figure 1. Output Voltage vs Output Current

This 20-bit non-inverting buffer/driver is operational at 1.2-V to 3.6-V V_{CC} , but is designed specifically for 1.65-V to 3.6-V V_{CC} operation.

The SN74AVC16827 is composed of two 10-bit sections with separate output-enable signals. For either 10-bit buffer section, the two output-enable ($1\overline{OE1}$ and $1\overline{OE2}$ or $2\overline{OE1}$ and $2\overline{OE2}$) inputs must both be low for the corresponding Y outputs to be active. If either output-enable input is high, the outputs of that 10-bit buffer section are in the high-impedance state.

To ensure the high-impedance state during power up or power down, \overline{OE} should be tied to V_{CC} through a pullup resistor; the minimum value of the resistor is determined by the current-sinking capability of the driver.

This device is fully specified for partial-power-down applications using I_{off} . The I_{off} circuitry disables the outputs, preventing damaging current backflow through the device when it is powered down.

DOC, EPIC, and Widebus are trademarks of Texas Instruments Incorporated.

SN74AVC16827 20-BIT BUFFER/DRIVER WITH 3-STATE OUTPUTS SCES176F – DECEMBER 1998 – REVISED FEBRUARY 2000

SCESTIOF - DECEMBER 1998 - REVISED FEBRUA

description (continued)

The SN74AVC16827 is characterized for operation from -40°C to 85°C.

terminal assignments

DGG OR DGV PACKAGE							
	(10	P VI	EW)			
1 <u>0E1</u>	þ	1	υ	56	þ	1 <u>0E2</u>	
1Y1	Ц	2		55	P	1A1	
1Y2	q	3		54	P	1A2	
GND	Ц	4		53	μ	GND	
1Y3	Ц	5		52	μ	1A3	
1Y4	q	6		51	P	1A4	
V _{CC}	q	7		50		V _{CC}	
1Y5	g	8		49	2	1A5	
1Y6	g	9		48	μ	1A6	
1Y7	g	10		47		1A7	
GND	g	11		46	0	GND	
1Y8	g	12		45	μ	1A8	
1Y9	g	13		44	μ	1A9	
1Y10	q	14		43	μ	1A10	
2Y1	q	15		42	P	2A1	
2Y2	g	16		41	P	2A2	
2Y3	g	17		40	P	2A3	
GND	g	18		39	P	GND	
2Y4	q	19		38	μ	2A4	
2Y5	g	20		37	D	2A5	
2Y6	Ц	21		36	μ	2A6	
V _{CC}	l	22		35	μ	V _{CC}	
2Y7	Ц	23		34	μ	2A7	
2Y8	Ц	24		33	μ	2A8	
GND	Ц	25		32	ĥ	GND	
2Y9	Ц	26		31	ĥ	2A9	
2Y10	Ц	27		30	Ľ	2A10	
2OE1	q	28		29	μ	2 <mark>0E</mark> 2	

FUNCTION TABLE (each 10-bit buffer/driver)

(**************************************								
	OUTPUT							
OE1	OE2	Α	Y					
L	L	L	L					
L	L	Н	н					
Н	Х	Х	Z					
х	Н	Х	Z					

SN74AVC16827 **20-BIT BUFFER/DRIVER** WITH 3-STATE OUTPUTS SCES176F - DECEMBER 1998 - REVISED FEBRUARY 2000

logic symbol[†]

	4			1	
10E1	1	&			
10E2	56		EN1		
2054	28	&			
20E1	29		EN2		
20E2	1	L			
1 \ 1	55		1 1 7	2	1 \ 1
140	54		1 1 *	3	475
IAZ	52			5	112
1A3	51			6	1Y3
1A4	49			8	1Y4
1A5	48			9	1Y5
1A6	47			10	1Y6
1A7	45			12	1Y7
1A8	45			12	1Y8
1A9	44			13	1Y9
1A10	43			14	1Y10
2A1	42		1 2▽	15	2Y1
242	41			16	2Y2
243	40			17	2/2
243	38			19	213
2A4	37			20	214
2A5	36			21	215
2A6	34			23	2Y6
2A7	33			24	2Y7
2A8	31				2Y8
2A9	20			20	2Y9
2A10				21	2Y10

[†] This symbol is in accordance with ANSI/IEEE Std 91-1984 and IEC Publication 617-12.

logic diagram (positive logic)

To Nine Other Channels

To Nine Other Channels

absolute maximum ratings over operating free-air temperature range (unless otherwise noted)[†]

Supply voltage range, V _{CC} Input voltage range, V _I (see Note 1)	0.5 V to 4.6 V 0.5 V to 4.6 V
Voltage range applied to any output in the high-impedance or power-off state, V_O	
(see Note 1)	–0.5 V to 4.6 V
Voltage range applied to any output in the high or low state, V_O	
(see Notes 1 and 2)	. –0.5 V to V _{CC} + 0.5 V
Input clamp current, I _{IK} (V _I < 0)	
Output clamp current, I _{OK} (V _O < 0)	
Continuous output current, I _O	±50 mA
Continuous current through each V _{CC} or GND	±100 mA
Package thermal impedance, θ_{JA} (see Note 3): DGG package	64°C/W
DGV package	
Storage temperature range, T _{stg}	\ldots –65°C to 150°C

[†] Stresses beyond those listed under "absolute maximum ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under "recommended operating conditions" is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

NOTES: 1. The input negative-voltage and output voltage ratings may be exceeded if the input and output current ratings are observed.

- 2. This value is limited to 4.6 V maximum.
- 3. The package thermal impedance is calculated in accordance with JESD 51.

PRODUCT PREVIEW

SN74AVC16827 20-BIT BUFFER/DRIVER WITH 3-STATE OUTPUTS

SCES176F - DECEMBER 1998 - REVISED FEBRUARY 2000

recommended operating conditions (see Note 4)

			MIN	MAX	UNIT	
Vee	Supply voltage	Operating	1.4	3.6	V	
VCC	Supply voltage	Data retention only	1.2		V	
		V _{CC} = 1.2 V	VCC			
		$V_{CC} = 1.4 \text{ V to } 1.6 \text{ V}$	$0.65 \times V_{CC}$			
VIH	High-level input voltage	V _{CC} = 1.65 V to 1.95 V	$0.65 \times V_{CC}$		V	
		V_{CC} = 2.3 V to 2.7 V	1.7			
	Low-level input voltage	$V_{CC} = 3 V \text{ to } 3.6 V$	2			
		V _{CC} = 1.2 V		GND		
V _{IL} I		V _{CC} = 1.4 V to 1.6 V		$0.35 \times V_{\hbox{CC}}$		
	Low-level input voltage	V _{CC} = 1.65 V to 1.95 V		$0.35 \times V_{CC}$	V	
		V_{CC} = 2.3 V to 2.7 V		0.7		
		$V_{CC} = 3 V \text{ to } 3.6 V$		0.8		
VI	Input voltage		0	3.6	V	
Vo		Active state	0	VCC	V	
V0	Oulput voltage	3-state	0	3.6	v	
		$V_{CC} = 1.4 V \text{ to } 1.6 V$		-2		
	Static high lovel output current	V _{CC} = 1.65 V to 1.95 V		-4	m۸	
OHS	Static high-level output current?	V_{CC} = 2.3 V to 2.7 V		-8	IIIA	
		V_{CC} = 3 V to 3.6 V		-12]	
		$V_{CC} = 1.4 \text{ V to } 1.6 \text{ V}$		2		
	Static low lovel output current [†]	V _{CC} = 1.65 V to 1.95 V		4	mA	
IOLS		V_{CC} = 2.3 V to 2.7 V		8		
		$V_{CC} = 3 V \text{ to } 3.6 V$		12		
$\Delta t/\Delta v$	Input transition rise or fall rate	$V_{CC} = 1.4 \text{ V to } 3.6 \text{ V}$		5	ns/V	
TA	Operating free-air temperature		-40	85	°C	

[†] Dynamic drive capability is equivalent to standard outputs with I_{OH} and I_{OL} of ±24 mA at 2.5-V V_{CC}. See Figure 1 for V_{OL} vs I_{OL} and V_{OH} vs I_{OH} characteristics. Refer to the TI application reports, *AVC Logic Family Technology and Applications*, literature number **SCEA006**, and *Dynamic Output Control (DOC™) Circuitry Technology and Applications*, literature number **SCEA009**.

NOTE 4: All unused inputs of the device must be held at V_{CC} or GND to ensure proper device operation. Refer to the TI application report, Implications of Slow or Floating CMOS Inputs, literature number SCBA004.

SN74AVC16827 **20-BIT BUFFER/DRIVER** WITH 3-STATE OUTPUTS

SCES176F - DECEMBER 1998 - REVISED FEBRUARY 2000

electrical characteristics over recommended operating free-air temperature range (unless otherwise noted)

	PARAMETER	TEST C	ONDITIONS	VCC	MIN	TYP†	MAX	UNIT	
		I _{OHS} = -100 μA		1.4 V to 3.6 V	V _{CC} -0.	.2			
		$I_{OHS} = -2 \text{ mA},$	V _{IH} = 0.91 V	1.4 V	1.05				
∨он		$I_{OHS} = -4 \text{ mA},$	V _{IH} = 1.07 V	1.65 V	1.2			V	
		$I_{OHS} = -8 \text{ mA},$	V _{IH} = 1.7 V	2.3 V	1.75				
		$I_{OHS} = -12 \text{ mA},$	V _{IH} = 2 V	3 V	2.3				
		I _{OLS} = 100 μA		1.4 V to 3.6 V			0.2		
		$I_{OLS} = 2 \text{ mA},$	V _{IL} = 0.49 V	1.4 V			0.4		
VOL		$I_{OLS} = 4 \text{ mA},$	V _{IL} = 0.57 V	1.65 V			0.45	V	
	I _{OLS} = 8 mA,	$V_{IL} = 0.7 V$	2.3 V			0.55			
		$I_{OLS} = 12 \text{ mA},$	V _{IL} = 0.8 V	3 V			0.7		
Ц	Control inputs	$V_I = V_{CC}$ or GND		3.6 V			±2.5	μΑ	
I _{off}		$V_I \text{ or } V_O = 3.6 \text{ V}$		0			±10	μΑ	
IOZ		$V_{O} = V_{CC} \text{ or } GND$		3.6 V			±10	μΑ	
ICC		$V_I = V_{CC}$ or GND,	IO = 0	3.6 V			40	μΑ	
	Control inputs			2.5 V					
C.				3.3 V				ъĒ	
Ci	Data inpute			2.5 V				рі	
	Data inputs			3.3 V					
C	Outpute			2.5 V				рĒ	
<i>C</i> 0	Ouipuis			3.3 V				μ	

[†] Typical values are measured at $T_A = 25^{\circ}C$.

switching characteristics over recommended operating free-air temperature range (unless otherwise noted) (see Figures 2 through 5)

PARAMETER			V _{CC} = 1.2 V	۲ <mark>0.1 × 0.1</mark> ۲	1.5 V 1 V	V _{CC} = ± 0.1	1.8 V 5 V	V _{CC} = ± 0.2	2.5 V 2 V	V _{CC} = ± 0.3	3.3 V 3 V	UNIT
		(001101)	TYP	MIN	MAX	MIN	MAX	MIN	MAX	MIN	MAX	
^t pd	A	Y										ns
t _{en}	ŌĒ	Y										ns
^t dis	ŌĒ	Y										ns

switching characteristics, $T_A = 0^{\circ}C$ to $85^{\circ}C$, $C_L = 0 \text{ pF}^{\ddagger}$

PARAMETER	FROM (INPLIT)		V _{CC} = 3.3 V ± 0.15 V	UNIT
		(661161)	MIN MAX	
^t pd	A	Y		ns

[‡]Texas Instruments SPICE simulation data

SN74AVC16827 **20-BIT BUFFER/DRIVER** WITH 3-STATE OUTPUTS

SCES176F - DECEMBER 1998 - REVISED FEBRUARY 2000

operating characteristics, T_A = 25°C

PARAMETER			TEST CONDITIONS	V _{CC} = 1.8 V ± 0.15 V	V_{CC} = 2.5 V ± 0.2 V	V _{CC} = 3.3 V ± 0.3 V	UNIT	
				TYP	TYP	TYP		
Power dissipation		Outputs enabled	$C_{1} = 0$ f = 10 MHz				рĒ	
Cpd	capacitance	Outputs disabled	$C_{L} = 0, T = TO MHZ$] ^{µr}	

- NOTES: A. CI includes probe and jig capacitance.
 - B. Waveform 1 is for an output with internal conditions such that the output is low except when disabled by the output control. Waveform 2 is for an output with internal conditions such that the output is high except when disabled by the output control.
 - C. All input pulses are supplied by generators having the following characteristics: PRR \leq 10 MHz, Z_O = 50 Ω , t_f \leq 2 ns, t_f \leq 2 ns.
 - D. The outputs are measured one at a time with one transition per measurement.
 - E. tpl 7 and tpH7 are the same as tdis.
 - F. tpzL and tpzH are the same as ten.
 - G. tPLH and tPHL are the same as tpd.

- NOTES: A. CL includes probe and jig capacitance.
 - B. Waveform 1 is for an output with internal conditions such that the output is low except when disabled by the output control. Waveform 2 is for an output with internal conditions such that the output is high except when disabled by the output control.
 C. All input pulses are supplied by generators having the following characteristics: PRR ≤ 10 MHz, Z_O = 50 Ω, t_f ≤ 2 ns, t_f ≤ 2 ns.
 - D. The outputs are measured one at a time with one transition per measurement.
 - E. t_{PLZ} and t_{PHZ} are the same as t_{dis} .
 - F. tpzL and tpzH are the same as ten.
 - G. tPLH and tPHL are the same as tpd.

Figure 3. Load Circuit and Voltage Waveforms

- NOTES: A. CL includes probe and jig capacitance.
 - B. Waveform 1 is for an output with internal conditions such that the output is low except when disabled by the output control. Waveform 2 is for an output with internal conditions such that the output is high except when disabled by the output control.
 C. All input pulses are supplied by generators having the following characteristics: PRR ≤ 10 MHz, Z_Q = 50 Ω, t_f ≤ 2 ns, t_f ≤ 2 ns.
 - D. The outputs are measured one at a time with one transition per measurement.
 - E. t_{PLZ} and t_{PHZ} are the same as t_{dis} .
 - F. t_{PZL} and t_{PZH} are the same as t_{en} .
 - G. tpLH and tpHL are the same as t_{pd} .

Figure 4. Load Circuit and Voltage Waveforms

NOTES: A. CL includes probe and jig capacitance.

- B. Waveform 1 is for an output with internal conditions such that the output is low except when disabled by the output control. Waveform 2 is for an output with internal conditions such that the output is high except when disabled by the output control.
- C. All input pulses are supplied by generators having the following characteristics: PRR \leq 10 MHz, Z_O = 50 Ω , t_f \leq 2 ns, t_f \leq 2 ns.
- D. The outputs are measured one at a time with one transition per measurement.
- E. t_{PLZ} and t_{PHZ} are the same as t_{dis} .
- F. t_{P7I} and t_{P7H} are the same as t_{en} .
- G. tPLH and tPHL are the same as tpd.

Figure 5. Load Circuit and Voltage Waveforms

