

VLA542-01R

IGBT Gate Driver

Circuit Diagram

Dimensions	Inches	Millimeters		
А	1.73 Max.	44.0 Max.		
В	1.02 Max.	26.0 Max.		
С	0.31 Max.	8.0 Max.		
D	0.21 Max.	5.5 Max.		
E	0.1	2.54		
F	0.02+0.006/-0.00	4 0.5+0.15/-0.1		
G	0.17±0.06	4.5±1.5		
Н	0.01+0.008/-0.00	4 0.25+0.2/-0.1		
J	0.21 Max.	5.5 Max.		
K	0.12 Max.	3.0 Max.		

Description:

VLA542-01R is a hybrid integrated circuit designed for driving n-channel IGBT modules in any gate-amplifier application. This device is a fully isolated gate drive circuit with an optically isolated gate drive amplifier that provides an over-current protection function based on desaturation detection.

Features:

- Electrical Isolation Between Input and Output via an Opto-coupler (V_{iso} = 2500V_{rms} for 1 Minute)
- □ Two Supply Drive Topology
- Built in Short-Circuit Protection with a pin for Fault Output
- CMOS Compatible Input Interface

Applications:

To Drive IGBT Modules for Inverter or AC Servo Systems Application.

Recommended IGBT Modules:

 V_{CES} = 600V Series up to 600A Class V_{CES} = 1200V Series up to 400A Class

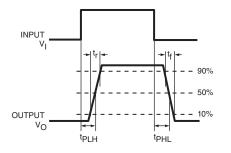
VLA542-01R **IGBT Gate Driver**

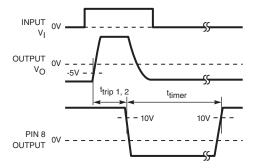
Absolute Maximum Ratings, $T_a = 25^{\circ}C$ unless otherwise specified

Characteristics		Rating	Units
Supply Voltage (DC)	V _{CC}	18	V
Supply Voltage (DC)	V _{EE}	-15	V
Input Signal Voltage (Applied Between; Pin 13 and Pin 14, 50% Duty Cycle, Pulse Width 1ms)	VI	-1 ~ +7	V
Output Voltage (When Output Voltage is "H")	VO	V _{CC}	V
Output Peak Current (Pulse Width 2µs)	I _{OHP}	-5 A	
	IOLP	5	А
Isolation Voltage (Sine Wave Voltage 60Hz, for 1 min.)	V _{iso}	2500	V _{rms}
Case Temperature	т _с	95	°C
Operating Temperature (No Condensation Allowable)	T _{opr}	-20 ~ +70	°C
Storage Temperature (No Condensation Allowable)	T _{stg}	-40 ~ 100 ^{*1}	°C
Fault Output Current (Applied at Pin 8)	I _{FO}	20	mA
Input Voltage at Pin 1 (Applied at Pin 1)	V _{R1}	50	V

Electrical Characteristics, T_a = 25°C, V_{CC} = 15V, V_{EE} = -10V, R_G = 3.3 Ω

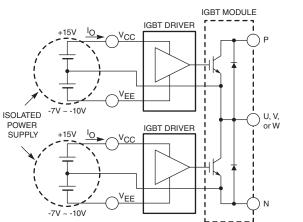
Characteristics	Symbol	Test Conditions	Min.	Typ.	Max.	Units
Supply Voltage	V _{CC}	Recommended Range	14	15	17	V
Supply Voltage	VEE	Recommended Range	-7	_	-12	V
Pull-up Voltage on Primary Side	V _{IN}	Recommended Range	4.75	5	5.25	V
"H" Input Signal Current	IIH	Recommended Range	10	13	16	mA
		$V_{IN} = 5V$	_	13	_	mA
Switching Frequency	f	Recommended Range	_	_	20	kHz
Gate Resistance	R _G	Recommended Range	2	_	_	Ω
"H" Output Voltage	V _{OH}	_	13	14	_	V
"L" Output Voltage	V _{OL}	_	-8	-9	_	V
"L-H" Propagation Time	t _{PLH}	I _{IH} = 13mA	0.2	0.4	1	μs
"L-H" Rise Time	t _r	I _{IH} = 13mA		0.4	1	μs
"H-L" Propagation Time	t _{PHL}	I _{IH} = 13mA	0.2	0.4	1	μs
"H-L" Fall Time	t _f	I _{IH} = 13mA	_	0.3	1	μs
Timer	ttimer	Between Start and Cancel	1	_	2	ms
		(Under Input Sign "OFF")				
Fault Output Current	I _{FO}	Applied at Pin 8, $R = 4.7 k\Omega$	_	5	_	mA
Controlled Time Detect Short-Circuit 1	t _{trip1}	Pin 1: 15V or more, Pin 2: Open	_	2.6	_	μs
Controlled Time Detect Short-Circuit 2*2	t _{trip2}	Pin 1: 15V or more, Pins 2-4: 10pF	_	3	_	μs
	-	(Connective Capacitance)				
SC Detect Voltage	V _{SC}	Collector Voltage of IGBT	15	_	_	V


*1 Differs from H/C condition.
*2 The length of the capacitor from Pin 2 to Pin 4 should be less than 5cm.

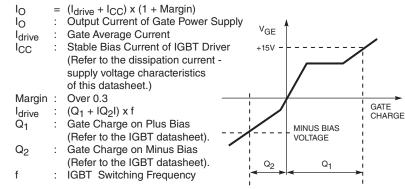

VLA542-01R IGBT Gate Driver

Definition of Characteristics

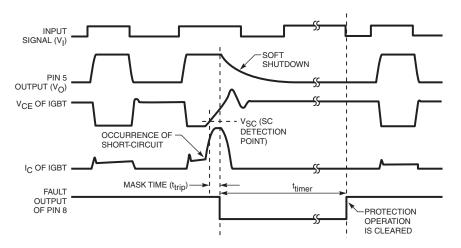
SWITCHING OPERATION



OPERATION OF SHORT CIRCUIT PROTECTION


Power Supply for IGBT Driver

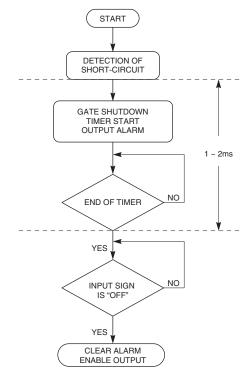
For IGBT driving, an isolated power supply (+15V and approximately -10V) is necessary for every IGBT driver.



Gate Charge Characteristic of IGBT

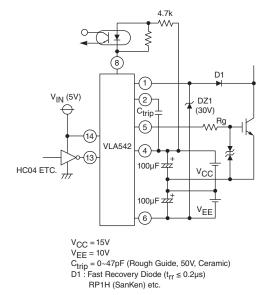
When choosing the gate power supply, choose a product that can supply the current capacity provided by the following calculation.

Timing Chart



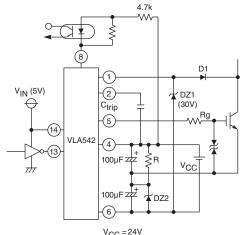
VLA542-01R IGBT Gate Driver

Operation of Protection Circuit


- In the case where the gate voltage is "H" and the collector voltage is high, the hybrid IC will recognize a short-circuit condition and immediately reduce the gate voltage. Additionally, it will output an error signal ("L") which indicates that the protection circuit is operating at the same time from Pin 8.
- The protection circuit resets if the input signal is "OFF" when the premised 1~2msec passed. ("OFF" period needs 10µm or more.)
- 3. When the output rises, the controlled time detect short-circuit (typically 2.6 μ s) is set up so that the on-time of the IGBT can be secured properly. It is possible to adjust this time by connecting the capacitor (C_{trip}) between Pin 2 and Pin 4.

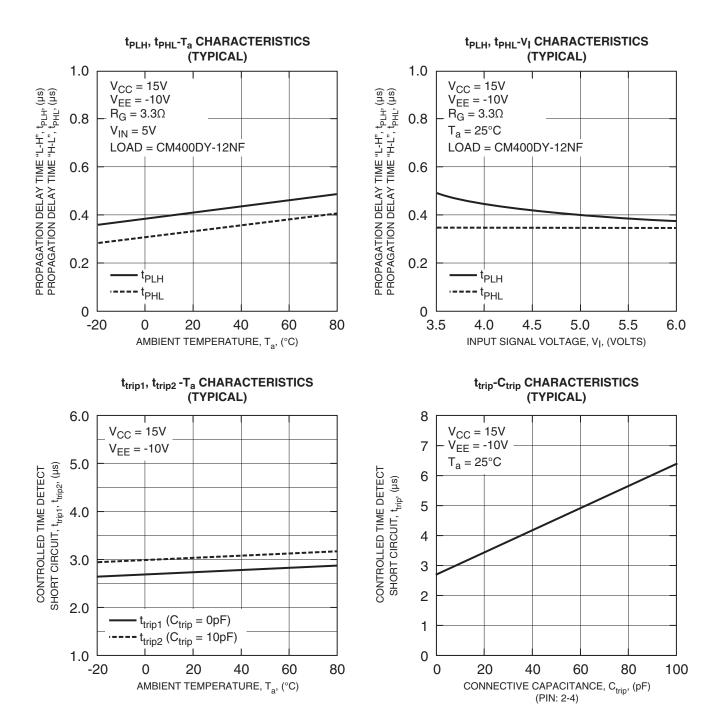
Operation Flow on Detecting Short Circuit

NOTE: Output voltage with protection circuit operating is about -IV_{EE}I + 2V

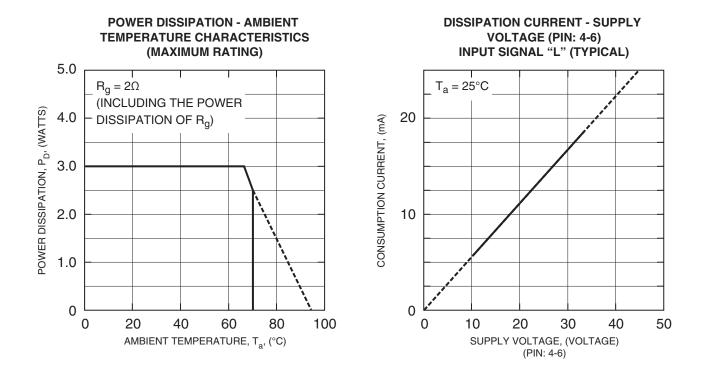

Application Circuit Example

Precaution

- 1. Voltage compensation capacitors are expected to be located as close as possible to the hybrid IC.
- 2. D₁ requires approximately the same voltage rating as the power modules.
- If reverse recovery time of D₁ is long, Pin 1 is applied a high voltage. In that case, a zener diode between Pin 1 and Pin 6 is inserted for necessary protection as shown above.
- 4. In case Pin 2 is operating, the C_{trip} is expected to be wired as close as possible to Pin 2 and Pin 4 (less than 5cm).


Application Example of Single Power Supply

 $V_{CC} = 24V$ DZ2 : 8.2V, 1/2W R : 2.7k ~ 3.3k Ω



VLA542-01R IGBT Gate Driver

VLA542-01R IGBT Gate Driver

05/15 Rev. 0