
SN54LVTH16501, SN74LVTH16501 3.3-V ABT 18-BIT UNIVERSAL BUS TRANSCEIVERS WITH 3-STATE OUTPUTS

SCBS700F - JULY 1997 - REVISED AUGUST 2009

- Members of the Texas Instruments Widebus™ Family
- UBT[™] Transceiver Combines D-Type Latches and D-Type Flip-Flops for Operation in Transparent, Latched, or Clocked Mode
- State-of-the-Art Advanced BiCMOS Technology (ABT) Design for 3.3-V Operation and Low Static-Power Dissipation
- Support Mixed-Mode Signal Operation (5-V Input and Output Voltages With 3.3-V V_{CC})
- Support Unregulated Battery Operation Down to 2.7 V
- Typical V_{OLP} (Output Ground Bounce)
 <0.8 V at V_{CC} = 3.3 V, T_A = 25°C
- I_{off} and Power-Up 3-State Support Hot Insertion
- Bus Hold on Data Inputs Eliminates the Need for External Pullup/Pulldown Resistors
- Distributed V_{CC} and GND Pins Minimize High-Speed Switching Noise
- Flow-Through Architecture Optimizes PCB Layout
- Latch-Up Performance Exceeds 500 mA Per JESD 17
- ESD Protection Exceeds JESD 22
 - 2000-V Human-Body Model (A114-A)
 - 200-V Machine Model (A115-A)

SN54LVTH16501 . . . WD PACKAGE SN74LVTH16501 . . . DGG OR DL PACKAGE (TOP VIEW)

description/ordering information

The 'LVTH16501 devices are 18-bit universal bus transceivers designed for low-voltage (3.3-V) V_{CC} operation, but with the capability to provide a TTL interface to a 5-V system environment.

ORDERING INFORMATION

TA	PACKAG	ΕŤ	ORDERABLE PART NUMBER	TOP-SIDE MARKING
	0000 01	Tube	SN74LVTH16501DL	1)/71/40504
-40°C to 85°C	SSOP – DL	Tape and reel	SN74LVTH16501DLR	LVTH16501
	TSSOP - DGG	Tape and reel	SN74LVTH16501DGGR	LVTH16501
-55°C to 125°C	CFP – WD	Tube	SNJ54LVTH16501WD	SNJ54LVTH16501WD

[†] Package drawings, standard packing quantities, thermal data, symbolization, and PCB design guidelines are available at www.ti.com/sc/package.

Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet.

Widebus and UBT are trademarks of Texas Instruments

SN54LVTH16501, SN74LVTH16501 3.3-V ABT 18-BIT UNIVERSAL BUS TRANSCEIVERS WITH 3-STATE OUTPUTS

SCBS700F - JULY 1997 - REVISED AUGUST 2009

description/ordering information (continued)

Data flow in each direction is controlled by output-enable (OEAB and OEBA), latch-enable (LEAB and LEBA), and clock (CLKAB and CLKBA) inputs. For A-to-B data flow, the devices operate in the transparent mode when LEAB is high. When LEAB is low, the A data is latched if CLKAB is held at a high or low logic level. If LEAB is low, the A data is stored in the latch/flip-flop on the low-to-high transition of CLKAB. When OEAB is high, the outputs are active. When OEAB is low, the outputs are in the high-impedance state.

Data flow for B to A is similar to that of A to B but uses OEBA, LEBA, and CLKBA. The output enables are complementary (OEAB is active high and OEBA is active low).

Active bus-hold circuitry holds unused or undriven inputs at a valid logic state. Use of pullup or pulldown resistors with the bus-hold circuitry is not recommended.

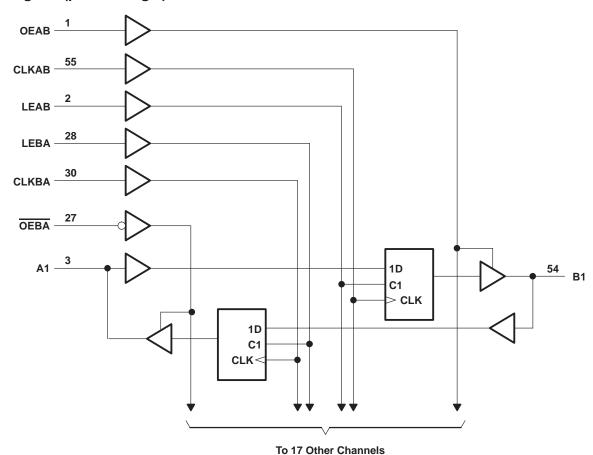
When V_{CC} is between 0 and 1.5 V, the devices are in the high-impedance state during power up or power down. However, to ensure the high-impedance state above 1.5 V, OE should be tied to V_{CC} through a pullup resistor and OE should be tied to GND through a pulldown resistor; the minimum value of the resistor is determined by the current-sinking/current-sourcing capability of the driver.

These devices are fully specified for hot-insertion applications using I_{off} and power-up 3-state. The I_{off} circuitry disables the outputs, preventing damaging current backflow through the devices when they are powered down. The power-up 3-state circuitry places the outputs in the high-impedance state during power up and power down, which prevents driver conflict.

FUNCTION TABLE[†]

	INP	UTS		OUTPUT
OEAB	LEAB	CLKAB	Α	В
L	Х	Х	Χ	Z
Н	Н	Χ	L	L
Н	Н	Χ	Н	Н
Н	L	\uparrow	L	L
Н	L	\uparrow	Н	Н
Н	L	Н	Χ	В ₀ ‡
Н	L	L	Χ	В ₀ §

[†] A-to-B data flow is shown; B-to-A flow is similar, but uses OEBA, LEBA, and CLKBA.



[‡] Output level before the indicated steady-state input conditions were established, provided that CLKAB was high before LEAB went low

[§] Output level before the indicated steady-state input conditions were established

SCBS700F - JULY 1997 - REVISED AUGUST 2009

logic diagram (positive logic)

absolute maximum ratings over operating free-air temperature range (unless otherwise noted)†

Supply voltage range, V _{CC} –0	.5 V to 4.6 V
Input voltage range, V _I (see Note 1)	-0.5 V to 7 V
Voltage range applied to any output in the high-impedance	
or power-off state, V _O (see Note 1)	-0.5 V to 7 V
Voltage range applied to any output in the high state, V _O (see Note 1)0.5 V to	V _{CC} + 0.5 V
Current into any output in the low state, IO: SN54LVTH16501	96 mA
SN74LVTH16501	128 mA
Current into any output in the high state, IO (see Note 2): SN54LVTH16501	48 mA
SN74LVTH16501	64 mA
Input clamp current, I _{IK} (V _I < 0)	–50 mA
Output clamp current, I _{OK} (V _O < 0)	50 mA
Package thermal impedance, θ _{JA} (see Note 3): DGG package	64°C/W
DL package	56°C/W
Storage temperature range, T _{stg} –65	°C to 150°C

[†] Stresses beyond those listed under "absolute maximum ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under "recommended operating conditions" is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

- NOTES: 1. The input and output negative-voltage ratings may be exceeded if the input and output clamp-current ratings are observed.
 - 2. This current flows only when the output is in the high state and $V_O > V_{CC}$.
 - 3. The package thermal impedance is calculated in accordance with JESD 51-7.

SN54LVTH16501, SN74LVTH16501 3.3-V ABT 18-BIT UNIVERSAL BUS TRANSCEIVERS WITH 3-STATE OUTPUTS SCBS700F - JULY 1997 - REVISED AUGUST 2009

recommended operating conditions (see Note 4)

•			SN54LVT	H16501	SN74LVT	H16501	
			MIN	MAX	MIN	MAX	UNIT
Vcc	Supply voltage		2.7	3.6	2.7	3.6	V
VIH	High-level input voltage		2		2		V
V _{IL}	Low-level input voltage			0.8		0.8	V
VI	Input voltage			5.5		5.5	V
loн	High-level output current			-24		-32	mA
loL	Low-level output current			48		64	mA
Δt/Δν	Input transition rise or fall rate	Outputs enabled		10		10	ns/V
Δt/ΔV _{CC}	Power-up ramp rate		200		200		μs/V
TA	Operating free-air temperature		-55	125	-40	85	°C

NOTE 4: All unused control inputs of the device must be held at V_{CC} or GND to ensure proper device operation. Refer to the TI application report, Implications of Slow or Floating CMOS Inputs, literature number SCBA004.

SN54LVTH16501, SN74LVTH16501 3.3-V ABT 18-BIT UNIVERSAL BUŚ TRANSCEIVERS WITH 3-STATE OUTPUTS

SCBS700F - JULY 1997 - REVISED AUGUST 2009

electrical characteristics over recommended operating free-air temperature range (unless otherwise noted)

				SN5	4LVTH16	5501	SN7	4LVTH16	5501	
PAI	RAMETER	TEST CO	ONDITIONS	MIN	TYP†	MAX	MIN	TYP [†]	MAX	UNIT
VIK		$V_{CC} = 2.7 \text{ V},$	I _I = -18 mA			-1.2			-1.2	V
		$V_{CC} = 2.7 \text{ V to } 3.6 \text{ V},$	I _{OH} = -100 μA	V _{CC} -0	.2		V _{CC} -0	.2		
V		$V_{CC} = 2.7 \text{ V},$	$I_{OH} = -8 \text{ mA}$	2.4			2.4			.,
VOH		V 2V	$I_{OH} = -24 \text{ mA}$	2						V
		V _{CC} = 3 V	$I_{OH} = -32 \text{ mA}$				2			
		V 27V	I _{OL} = 100 μA			0.2			0.2	
		V _{CC} = 2.7 V	I _{OL} = 24 mA			0.5			0.5	
\/ - ·			$I_{OL} = 16 \text{ mA}$			0.4			0.4	V
VOL		N 2 V	$I_{OL} = 32 \text{ mA}$			0.5			0.5	V
		VCC = 3 V	$I_{OL} = 48 \text{ mA}$			0.55				
			$I_{OL} = 64 \text{ mA}$						0.55	
	Control innuts	$V_{CC} = 3.6 \text{ V},$	$V_I = V_{CC}$ or GND			±1			±1	
	Control inputs	$V_{CC} = 0 \text{ or } 3.6 \text{ V},$	V _I = 5.5 V			10			10	
lį			V _I = 5.5 V			120			20	μΑ
	A or B ports‡	V _{CC} = 3.6 V	$V_I = V_{CC}$			1			1	
			V _I = 0			-5			- 5	
l _{off}		$V_{CC} = 0$,	V_I or $V_O = 0$ to 4.5 V						±100	μΑ
		\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	V _I = 0.8 V	75			75			
l _l (hold)	A or B ports	VCC = 3 V	V _I = 2 V	-75			-75			μΑ
		V _{CC} = 3.6 V§,	$V_{I} = 0 \text{ to } 3.6 \text{ V}$						±500	
lozpu		$\frac{V_{CC}}{OE/OE} = 0$ to 1.5 V, $V_{O} = 0$	0.5 V to 3 V,			±100*			±100	μΑ
lozpd		$\frac{\text{VCC}}{\text{OE/OE}} = 1.5 \text{ V to 0, VO} =$	0.5 V to 3 V,			±100*			±100	μΑ
		V _{CC} = 3.6 V,	Outputs high			0.19			0.19	
Icc		$I_{O} = 0$,	Outputs low			5			5	mA
	$V_I = V_{CC}$ or GND		Outputs disabled			0.19			0.19	
ΔICC¶		$V_{CC} = 3 \text{ V to } 3.6 \text{ V, One}$ Other inputs at V_{CC} or 0				0.2			0.2	mA
Ci		V _I = 3 V or 0			4			4		pF
C _{io}		V _O = 3 V or 0			10			10		pF
				_		_		_	_	

^{*} On products compliant to MIL-PRF-38535, this parameter is not production tested.

[†] All typical values are at V_{CC} = 3.3 V, T_A = 25°C. † Unused pins at V_{CC} or GND § This is the bus-hold maximum dynamic current. It is the minimum overdrive current required to switch the input from one state to another.

[¶] This is the increase in supply current for each input that is at the specified TTL voltage level rather than VCC or GND.

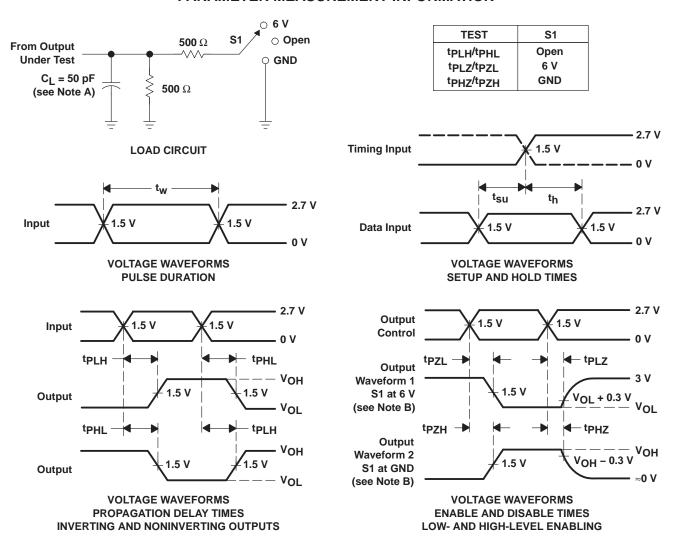
SN54LVTH16501, SN74LVTH16501 3.3-V ABT 18-BIT UNIVERSAL BUS TRANSCEIVERS **WITH 3-STATE OUTPUTS**

SCBS700F - JULY 1997 - REVISED AUGUST 2009

timing requirements over recommended operating free-air temperature range (unless otherwise noted) (see Figure 1)

				5	SN54LV	ГН16501		5	N74LV	ГН16501		
				V _{CC} =		VCC =	2.7 V	V _{CC} =		VCC =	2.7 V	UNIT
				MIN	MAX	MIN	MAX	MIN	MAX	MIN	MAX	
fclock	Clock frequency				150		150		150		150	MHz
	Dula a dunation	LE high		3.3		3.3		3.3		3.3		
t _w	Pulse duration	CLK high or low		3.3		3.3		3.3		3.3		ns
		A before CLKAB↑		2.5		2.8		2.1		2.4		
		B before CLKBA↑		2.5		2.8		2.1		2.4		
t _{su}	Setup time	A or B before LE↓	CLK high	3.4		2.8		2.4		1.6		ns
		A OI B Deloie LEV	CLK low	2.2		1.3		1.4		0.5		
4.	I lald time	A or B after CLK↑		2.2		1.5		1		0		
th	Hold time	A or B after LE↓		2.1		1.9		1.7		1.7		ns

switching characteristics over recommended operating free-air temperature range, C_L = 50 pF (unless otherwise noted) (see Figure 1)


			5	SN54LV	ГН16501			SN74	LVTH16	5501		
PARAMETER	FROM (INPUT)	TO (OUTPUT)		V_{CC} = 3.3 V \pm 0.3 V		2.7 V	V _{CC} = 3.3 V ± 0.3 V			V _{CC} = 2.7 V		UNIT
			MIN	MAX	MIN	MAX	MIN	TYP [†]	MAX	MIN	MAX	
f _{max}			150		150		150			150		MHz
tPLH	B or A	A == D	1.2	4.3		4.7	1.3	2.7	3.7		4	
tPHL	BOLA	A or B	1.2	4.3		4.6	1.3	2.4	3.7		4	ns
^t PLH	LEBA or LEAB	A D	1.4	6.2		6.6	1.5	3.4	5.1		5.7	
^t PHL	LEDA OI LEAD	A or B	1.4	5.9		6.5	1.5	3.5	5.1		5.7	ns
^t PLH	CLKBA or	۸ ۵	1.2	6		6.7	1.3	3.5	5.1		5.7	
t _{PHL}	CLKAB	A or B	1.2	5.9		6.6	1.3	3.4	5.1		5.7	ns
^t PZH		A D	1.2	5.5		5.9	1.3	3.4	4.8		5.5	
t _{PZL}	OEBA or OEAB	A or B	1.2	5.5		5.9	1.3	3.4	4.8		5.5	ns
t _{PHZ}	OEBA or OEAB	A or B	1.6	6.3		6.7	1.7	4.2	5.8		6.3	ns
tPLZ	OEDA UI OEAB	AUIB	1.6	6.1		6.6	1.7	3.8	5.8		6.3	115

[†] All typical values are at V_{CC} = 3.3 V, T_A = 25°C.

SCBS700F - JULY 1997 - REVISED AUGUST 2009

PARAMETER MEASUREMENT INFORMATION

NOTES: A. C_I includes probe and jig capacitance.

- B. Waveform 1 is for an output with internal conditions such that the output is low except when disabled by the output control. Waveform 2 is for an output with internal conditions such that the output is high except when disabled by the output control.
- C. All input pulses are supplied by generators having the following characteristics: PRR \leq 10 MHz, $Z_Q = 50 \,\Omega$, $t_f \leq 2.5 \,\text{ns}$.
- D. The outputs are measured one at a time with one transition per measurement.
- E. All parameters and waveforms are not applicable to all devices.

Figure 1. Load Circuit and Voltage Waveforms

www.ti.com 14-Oct-2022

PACKAGING INFORMATION

Orderable Device	Status (1)	Package Type	Package Drawing	Pins	Package Qty	Eco Plan	Lead finish/ Ball material	MSL Peak Temp	Op Temp (°C)	Device Marking (4/5)	Samples
74LVTH16501DGGRE4	ACTIVE	TSSOP	DGG	56	2000	RoHS & Green	NIPDAU	Level-1-260C-UNLIM	-40 to 85	LVTH16501	Samples
SN74LVTH16501DGGR	ACTIVE	TSSOP	DGG	56	2000	RoHS & Green	NIPDAU	Level-1-260C-UNLIM	-40 to 85	LVTH16501	Samples
SN74LVTH16501DL	ACTIVE	SSOP	DL	56	20	RoHS & Green	NIPDAU	Level-1-260C-UNLIM	-40 to 85	LVTH16501	Samples
SN74LVTH16501DLR	ACTIVE	SSOP	DL	56	1000	RoHS & Green	NIPDAU	Level-1-260C-UNLIM	-40 to 85	LVTH16501	Samples

(1) The marketing status values are defined as follows:

ACTIVE: Product device recommended for new designs.

LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.

NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.

PREVIEW: Device has been announced but is not in production. Samples may or may not be available.

OBSOLETE: TI has discontinued the production of the device.

(2) RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may reference these types of products as "Pb-Free".

RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption.

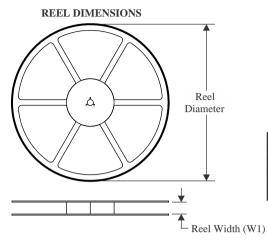
Green: TI defines "Green" to mean the content of Chlorine (Cl) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of <=1000ppm threshold. Antimony trioxide based flame retardants must also meet the <=1000ppm threshold requirement.

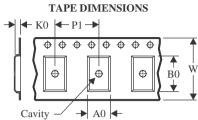
- (3) MSL, Peak Temp. The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.
- (4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.
- (5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation of the previous line and the two combined represent the entire Device Marking for that device.
- (6) Lead finish/Ball material Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two lines if the finish value exceeds the maximum column width.

Important Information and Disclaimer: The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and

PACKAGE OPTION ADDENDUM

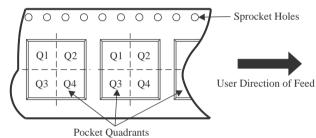
www.ti.com 14-Oct-2022


continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.

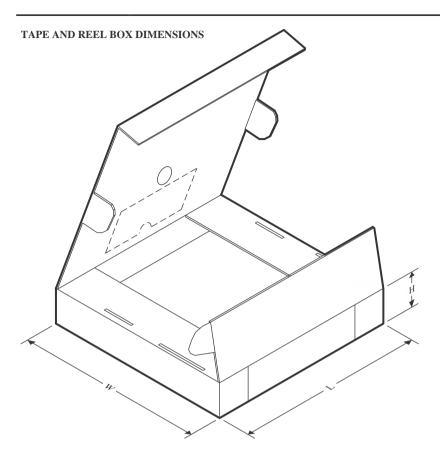

In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.

PACKAGE MATERIALS INFORMATION

www.ti.com 9-Aug-2022


TAPE AND REEL INFORMATION

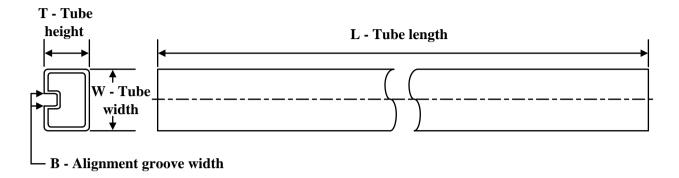
A0	Dimension designed to accommodate the component width
В0	Dimension designed to accommodate the component length
K0	Dimension designed to accommodate the component thickness
W	Overall width of the carrier tape
P1	Pitch between successive cavity centers


QUADRANT ASSIGNMENTS FOR PIN 1 ORIENTATION IN TAPE

*All dimensions are nominal

Device	Package Type	Package Drawing		SPQ	Reel Diameter (mm)	Reel Width W1 (mm)	A0 (mm)	B0 (mm)	K0 (mm)	P1 (mm)	W (mm)	Pin1 Quadrant
SN74LVTH16501DGGR	TSSOP	DGG	56	2000	330.0	24.4	8.6	15.6	1.8	12.0	24.0	Q1
SN74LVTH16501DLR	SSOP	DL	56	1000	330.0	32.4	11.35	18.67	3.1	16.0	32.0	Q1

www.ti.com 9-Aug-2022

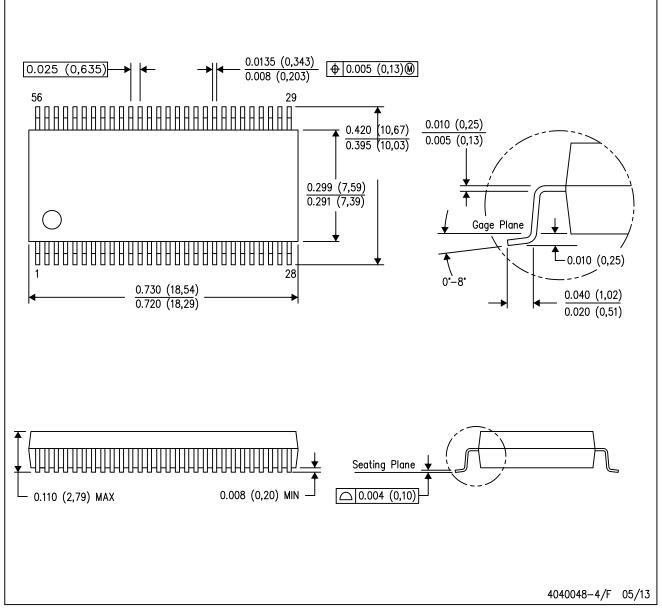

*All dimensions are nominal

Device	Package Type	Package Drawing	Pins	SPQ	Length (mm)	Width (mm)	Height (mm)
SN74LVTH16501DGGR	TSSOP	DGG	56	2000	367.0	367.0	45.0
SN74LVTH16501DLR	SSOP	DL	56	1000	367.0	367.0	55.0

PACKAGE MATERIALS INFORMATION

www.ti.com 9-Aug-2022

TUBE



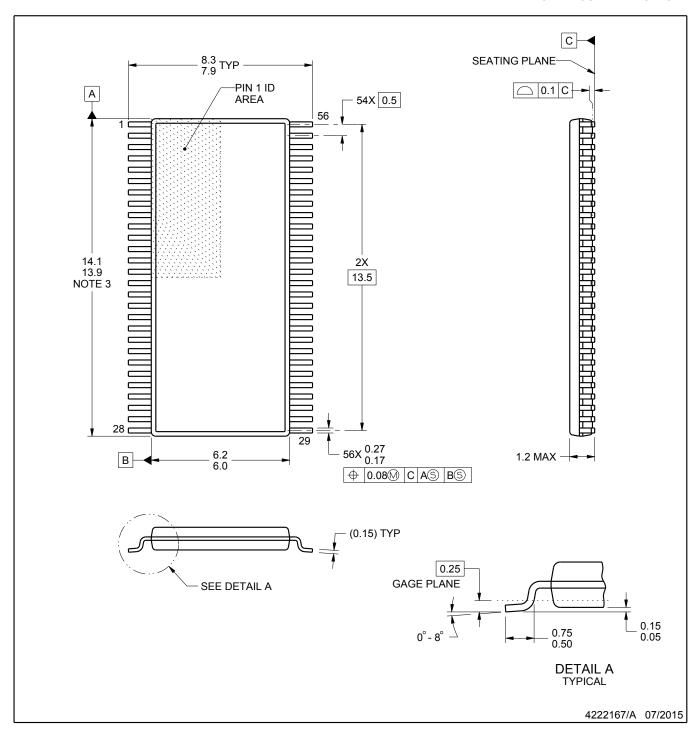
*All dimensions are nominal

ĺ	Device	Package Name	Package Type	Pins	SPQ	L (mm)	W (mm)	T (µm)	B (mm)
	SN74LVTH16501DL	DL	SSOP	56	20	473.7	14.24	5110	7.87

DL (R-PDSO-G56)

PLASTIC SMALL-OUTLINE PACKAGE

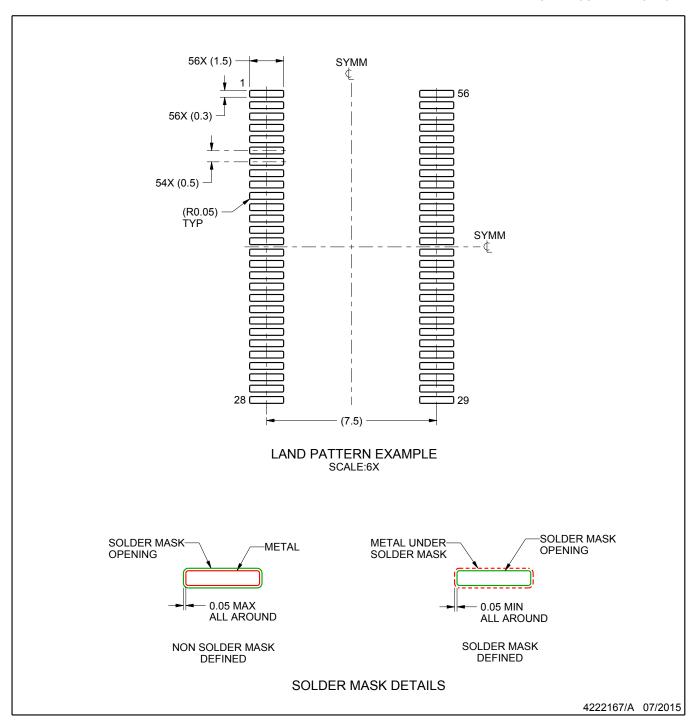
NOTES:


- A. All linear dimensions are in inches (millimeters).
- B. This drawing is subject to change without notice.
- C. Body dimensions do not include mold flash or protrusion not to exceed 0.006 (0,15).
- D. Falls within JEDEC MO-118

PowerPAD is a trademark of Texas Instruments.

SMALL OUTLINE PACKAGE

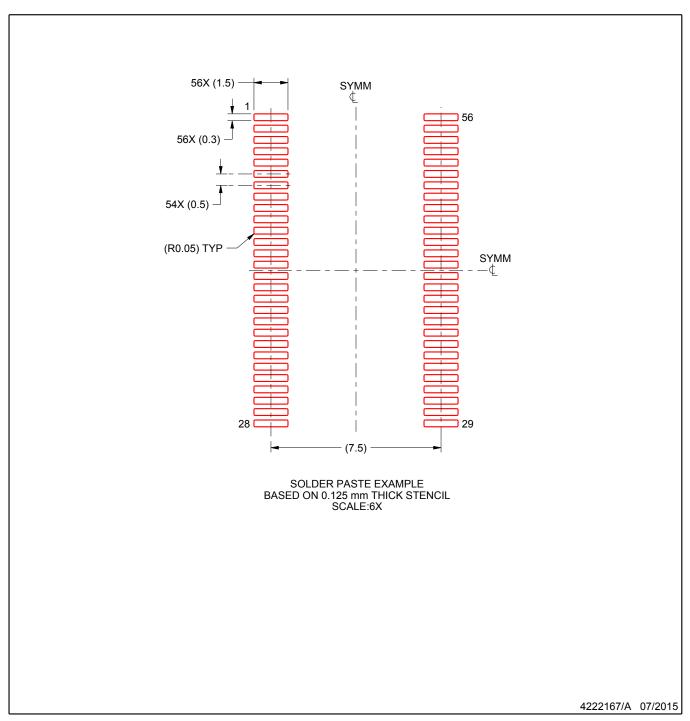
NOTES:


- 1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing per ASME Y14.5M.

 2. This drawing is subject to change without notice.

 3. This dimension does not include mold flash, protrusions, or gate burrs. Mold flash, protrusions, or gate burrs shall not
- exceed 0.15 mm per side.
 4. Reference JEDEC registration MO-153.

SMALL OUTLINE PACKAGE



NOTES: (continued)

- 5. Publication IPC-7351 may have alternate designs.
- 6. Solder mask tolerances between and around signal pads can vary based on board fabrication site.

SMALL OUTLINE PACKAGE

NOTES: (continued)

- Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate design recommendations.
- 8. Board assembly site may have different recommendations for stencil design.

IMPORTANT NOTICE AND DISCLAIMER

TI PROVIDES TECHNICAL AND RELIABILITY DATA (INCLUDING DATA SHEETS), DESIGN RESOURCES (INCLUDING REFERENCE DESIGNS), APPLICATION OR OTHER DESIGN ADVICE, WEB TOOLS, SAFETY INFORMATION, AND OTHER RESOURCES "AS IS" AND WITH ALL FAULTS, AND DISCLAIMS ALL WARRANTIES, EXPRESS AND IMPLIED, INCLUDING WITHOUT LIMITATION ANY IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT OF THIRD PARTY INTELLECTUAL PROPERTY RIGHTS.

These resources are intended for skilled developers designing with TI products. You are solely responsible for (1) selecting the appropriate TI products for your application, (2) designing, validating and testing your application, and (3) ensuring your application meets applicable standards, and any other safety, security, regulatory or other requirements.

These resources are subject to change without notice. TI grants you permission to use these resources only for development of an application that uses the TI products described in the resource. Other reproduction and display of these resources is prohibited. No license is granted to any other TI intellectual property right or to any third party intellectual property right. TI disclaims responsibility for, and you will fully indemnify TI and its representatives against, any claims, damages, costs, losses, and liabilities arising out of your use of these resources.

TI's products are provided subject to TI's Terms of Sale or other applicable terms available either on ti.com or provided in conjunction with such TI products. TI's provision of these resources does not expand or otherwise alter TI's applicable warranties or warranty disclaimers for TI products.

TI objects to and rejects any additional or different terms you may have proposed.

Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265 Copyright © 2022, Texas Instruments Incorporated