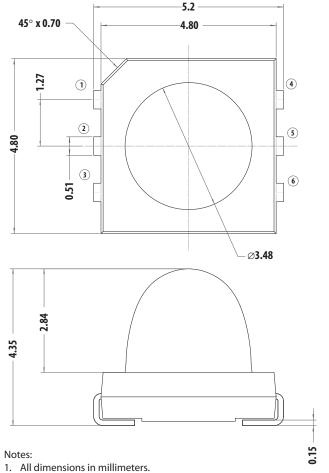
ASMT-FJ60-AFJ00

Surface Mount AFA LED

AVAGO


Data Sheet

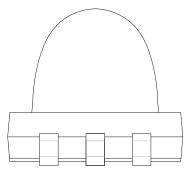
Description

Avago Technologies ASMT-FJ60-AFJ00 is a SMT dome lamp that uses an untinted, non diffused lens to provide a high luminous intensity within a narrow radiation pattern.

The device is made by encapsulating an LED chip on an axial lead frame to form a molded epoxy lamp package with six bent leads for surfacing mounting.

Package Dimensions

Features


- Smooth, consistent narrow radiation pattern
- 10degree viewing angle
- 4.8L x4.8W x4.35H mm package dimension
- Available in 16mm tape on 15" (380mm) diameter reel
- Clear, non-diffused epoxy.
- RoHS compliant

Application

Camera

Pin 1,2,4 - Anode Pin 3,5,6 - Cathode

2. Tolerance is ± 0.1 mm unless otherwise specified.

CAUTION: ASMT-FJ60-AFJ00 LED is Class 1A ESD sensitive per JESD22-A114C.01 standard. Please observe appropriate precautions during handling and processing.

Device Selection Guide

Color	Parts Number	Typ. Iv (cd)	Test Current (mA)	Dice Technology
Orange	ASMT-FJ60-AFJ00	29	20	AllnGaP

Notes

- 1. The luminous intensity I_V is measured at the peak of the spatial radiation pattern which may not be aligned with the mechanical axis of the LED package.
- 2. I_V Tolerance = $\pm 15\%$.

Absolute Maximum Ratings at $T_A = 25$ °C

Parameter	ASMT-FJ60-AFJ00	Units
DC Forward Current	70	mA
Power Dissipation	180	mW
LED Junction Temperature	110	°C
Operating Temperature Range	-40 to 85	°C
Storage Temperature Range	-40 to 85	℃

Optical Characteristics at $T_A = 25^{\circ}C$

		Peak Wavelength λ_{peak} (nm)	Dominant Wavelength $\lambda_{\mathbf{d}}^{[1]}$ (nm)	Viewing Angle 2 $\theta_{1/2}^{[2]}$ (Degrees)
Part Number	Color	Тур.	Тур.	Тур.
ASMT-FJ60-AFJ00	Orange	612	605	10

Notes

- 1. The dominant wavelength, λ_d , is derived from the CIE Chromaticity Diagram and represents the perceived color of the device.
- 2. $\theta_{1/2}$ is the off-axis angle where the luminous intensity is $\frac{1}{2}$ the peak intensity.

Electrical Characteristics at T_A = 25°C

	Forward Voltage V _F (Volts) ^[1]				Reverse Breakdown, V_R (Volts)@ $I_R = 10 \mu A$
Color	Test Current	Min.	Тур.	Max.	Min.
Orange	20mA	1.8	2.1	2.6	5

Notes:

1. Vf tolerance: ±0.1V

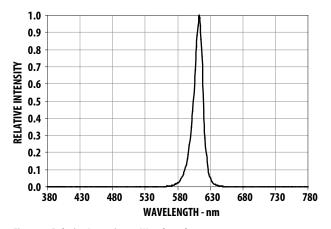


Figure 1. Relative Intensity vs. Wavelength

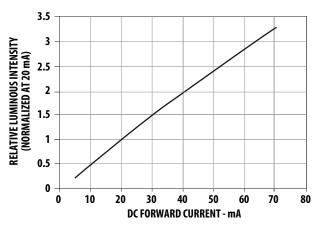


Figure 3. Relative Intensity vs. Forward Current

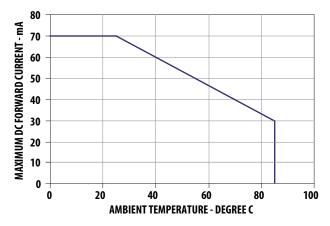


Figure 5. Maximum forward current vs ambient temperature.

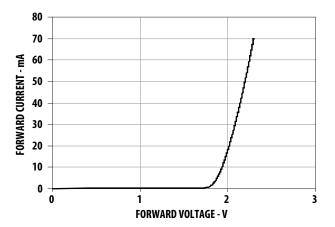


Figure 2. Forward Current vs Forward Voltage

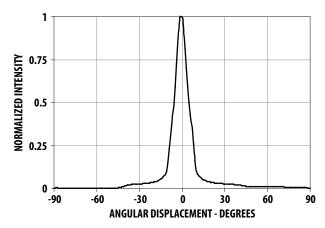
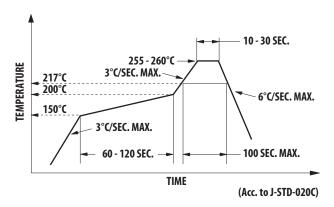



Figure 4. Radiation Pattern

1.2 \(\frac{1}{\psi} \) \(\frac{0.67}{\psi} \) \(\frac{1}{\psi} \) \(

Figure 6. Recommended reflow soldering profile

Figure 7. Recommended soldering land pattern

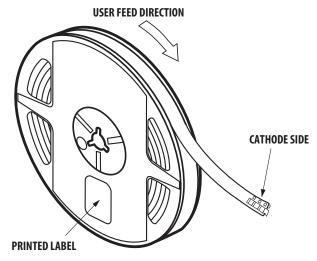


Figure 8. Reel Orientation

Figure 9. Reel Dimensions

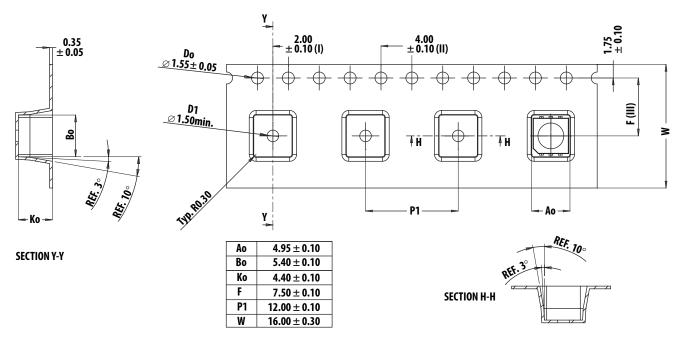


Figure 10. Tape Dimensions

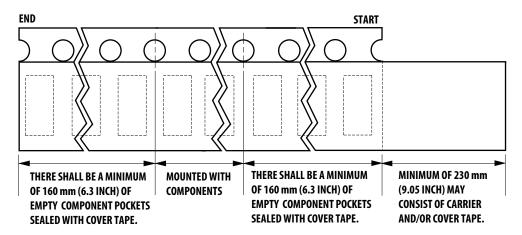


Figure 11. Tape Leader and Trailer Dimensions

Notes:

- 1. All dimensions in millimeters.
- 2. Tolerance is \pm 0.1 mm unless otherwise specified

Iv Bin Category (cd)

	· ·		
Bin ID	Min	Max	
F	15.0	19.5	
G	19.5	25.5	
Н	25.5	33.0	
1	33.0	43.0	
J	43.0	56.0	

Iv Tolerance = ±15%

Color Bin Category Orange

Orange	Min (nm)	Max (nm)	
Α	600	604	
В	604	608	
С	608	612	

Tolerance = ± 1 nm

Handling Precaution

This products is classified as moisture sensitive level 3

When the bag is opened, parts required to mount within 168 hours of factory conditions ≤ 30°C/60%, and stored at <10% RH.

Devices required bake, before mounting if:

- a) The humidity indicator card is > 10% when read at
- b) The pack has been opened for more than 168 hours.

Baking recommended condition: $60 + /- 5^{\circ}$ C for 20 hours.

Note:

1. Do not stack the units after reflow.

DISCLAIMER: Avago's products and software are not specifically designed, manufactured or authorized for sale as parts, components or assemblies for the planning, construction, maintenenace or direct operation of a nuclear facility or for use in medical devices or applications. Customer is solely responsible, and waives all rights to make claims against avago or its suppliers, for all loss, damage, expense or liability in connection with such use.

For product information and a complete list of distributors, please go to our web site: www.avagotech.com

