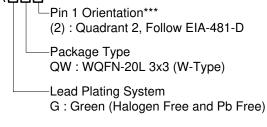
Type-C CC and SBU Short to VBUS Over-Voltage and IEC ESD Protection Switch

General Description

The RT1738A is an USB Type-C interface over-voltage protection IC.


The RT1738A protects the high voltage shorted to VBUS to adjacent pins of CC/SBU up to 28V due to USB Power Delivery (PD) allowing VBUS from 3.3 to 21V sourcing.

The RT1738A is integrated the protection ESDs of IEC61000-4-2 with contact discharge $\pm 8kV$ on CON_CC1/CON_CC2, D1/D2 and $\pm 6kV$ on CON_SBU1/CON_SBU2. The surge immunity level of CON_CC1 /CON_CC2 is up to $\pm 35V$. Besides, the ultra-fast OVP response time of 60ns can protect the system side of application IC from damage.

The RT1738A is available in a 3×3mm WQFN package.

Ordering Information

RT1738A

Note :

***Empty means Pin1 orientation is Quadrant 1

Richtek products are :

- ► RoHS compliant and compatible with the current requirements of IPC/JEDEC J-STD-020.
- Suitable for use in SnPb or Pb-free soldering processes.

Features

- 4-Channels of Short to VBUS Over-Voltage Protection (CON_CC1, CON_CC2, CON_SBU1, CON_SBU2)
- IEC61000-4-2 Contact Discharge Protection
 ► CON_CC1/CON_CC2 : ±8kV
 - ▶ D1/D2 : ±8kV
 - ► CON_SBU1/CON_SBU2 : ±6kV
- High Absolute Maximum Ratings = 28V of CON_CC1, CON_CC2, CON_SBU1 and CON_SBU2
- 60ns Ultra-Fast OVP Response Time of CC/SBU
- 255m Ω Ultra-Low Ron of CC Switch Typical
- 3.6Ω Low Ron of SBU Switch Typical
- 40µA Low Quiescent Current in Standby
- High Bandwidth of 1.1GHz for SBU Switch
- Dead Battery Support
- 20-Pin 3x3mm WQFN Package

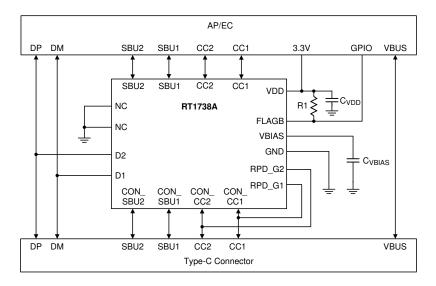
Applications

- PC/Notebook
- Smart Phone/Tablet
- TV/Monitor
- USB-C Dongle/Docking/Hubs

Pin Configuration

(TOP VIEW)

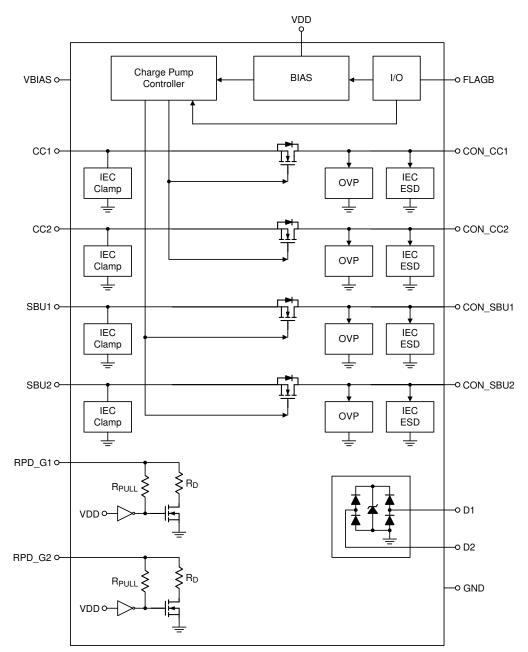
WQFN-20L 3x3



Marking Information

RS= : Product Code YMDNN : Date Code

Simplified Application Circuit


Functional Pin Description

Pin No.	Pin Name	Pin Function			
1	CON_SBU1	Type-C connector side SBU1 switch. Connect SBU1 pin of the USB Type-C connector.			
2	CON_SBU2	Type-C connector side SBU2 switch. Connect SBU2 pin of the USB Type-C connector.			
3	VBIAS	VBIAS pin connect capacitor for ESD protection. Put a $0.1\mu\text{F}$ capacitor on this pin to ground.			
4	CON_CC1	Type-C connector side CC1 switch. Connect CC1 pin of the USB Type-C connector.			
5	CON_CC2	Type-C connector side CC2 switch. Connect CC2 pin of the USB Type-C connector.			
6	RPD_G2	If dead battery resistors are required, short pin to CON_CC2. If dead battery resistors are not required, short pin to GND.			
7	RPD_G1	If dead battery resistors are required, short pin to CON_CC1. If dead battery resistors are not required, short pin to GND.			
8, 13, 18	GND	Ground.			
9	FLAGB	Open-drain output cautioning fault condition.			
10	VDD	2.5V to 5.5V power supply. Bypass VDD to GND with a $1\mu\text{F}$ capacitor.			
11	CC2	System side of the CC2 switch. Connect to CC pin of the CC/PD controller.			
12	CC1	System side of the CC1 switch. Connect to CC pin of the CC/PD controller.			
14	SBU2	System side of the SBU2 switch. Connect to SBU pin of the SBU MUX.			

RT1738A

Pin No.	Pin Name	Pin Function				
15	SBU1	ystem side of the SBU1 switch. Connect to SBU pin of the SBU MUX.				
16, 17	NC	No internal connection. Connect to ground.				
19	D2	USB2.0 IEC ESD protection. Connect to the USB2.0 pins of the USB Type-C connector.				
20	D1	USB2.0 IEC ESD protection. Connect to the USB2.0 pins of the USB Type-C connector.				
	Thermal Pad	Used as a heatsink. Thermal pad connect to PCB ground plane.				

Functional Block Diagram

RT1738A

Absolute Maximum Ratings (Note1)	
CON_CC1/CON_CC2/CON_SBU1/CON_SBU2	–0.3V to 28V
VBIAS/RPD_G1/RPD_G2	–0.3V to 28V
CC1/CC2/SBU1/SBU2/VDD/FLAGB/D1/D2	–0.3V to 6V
Output Current (CON_CC1/CON_CC2/CC1/CC2)	1.25A to 1.25A
Output Current (CON_SBU1/CON_SBU2/SBU1/SBU2)	–100mA to 100mA
 Power Dissipation, PD @ TA = 25°C 	
WQFN-20L 3x3	3.33W
Package Thermal Resistance (Note 2)	
WQFN-20L 3x3, θJA	30°C/W
WQFN-20L 3x3, өјс	7.5°C/W
Lead Temperature (Soldering, 10 sec.)	260°C
Junction Temperature	150°C
Storage Temperature Range	–65°C to 150°C
• ESD Susceptibility (Note 3)	
HBM (Human Body Model)	±2kV
CDM	±500V
CON_CC1/CON_CC2/D1/D2 (IEC 61000-4-2 Contact Discharge)	±8kV
CON_CC1/CON_CC2/D1/D2 (IEC 61000-4-2 Air Discharge)	±15kV
CON_SBU1/CON_SBU2 (IEC 61000-4-2 Contact Discharge)	±6kV
CON_SBU1/CON_SBU2 (IEC 61000-4-2 Air Discharge)	±15kV
CON_CC1/CON_CC2 (IEC 61000-4-5 Surge)	±35V
CON_SBU1/CON_SBU2 (IEC 61000-4-2 Air Discharge)	±15kV

Recommended Operating Conditions (Note 4)

Supply Input Voltage, VDD	2.5V to 5.5V
CON_CC1/CON_CC2/CC1/CC2/RPD_G1/RPD_G2/D1/D2/FLAGB	0V to 5.5V
CON_SBU1/CON_SBU2/SBU1/SBU2	0V to 4.25V
Ambient Temperature Range	
Junction Temperature Range	

Electrical Characteristics

 $(V_{DD} = 3.3V, T_A = 25^{\circ}C, unless otherwise specified)$

Parameter	Symbol Test Conditions		Min	Тур	Max	Unit	
Static Characteristics							
VDD Under-Voltage Lockout	Vvdd_uvlo	$V_{DD} = 1.5V$, and the rises V_{DD} until CC and SBU switches turn on.	2	2.2	2.45	V	

Parameter	Symbol	Test Conditions	Min	Тур	Max	Unit
V _{DD} Under-Voltage Lockout Hysteresis	VVDD_UVLO_HYS	$V_{DD} = 3V$, and the lower V_{DD} until CC and SBU switches turn off measure the difference between rising and falling.	95	165	260	mV
Quiescent Supply Current	lq	VDD = 3.3V (Typical)		40	70	μA
Leakage Current for CC Pins when Device is Powered	ICC_LEAK	V _{DD} = 3.3V, V _{CON_CCx} = 5V; CCx floating			3.1	μA
Leakage Current for SBU Pins when Device is Powered	ISBU_LEAK	VDD = 3.3V, VCON_SBUx = 3.6V; SBUx floating			2	μA
Leakage Current for CON_CC Pins when Device is in OVP	ICON_CC_LEAK_OVP	VDD = 3.3V, VCON_CCx = 24V; VCCx = 0V, measure the current of CON_CCx	-1	11.5	30	μA
Leakage Current for CON_SBU Pins when Device is in OVP	ICON_SBU_LEAK_OVP	$V_{DD} = 3.3V$, $V_{CON}SBUx = 24V$; $V_{SBUx} = 0V$, measure the current of CON_SBUx	-1	7	20	μA
Leakage Current for CC Pins when Device is in OVP			-1		30	μA
Leakage Current for SBU Pins when Device is in OVP	ISBU_LEAK_OVP	VDD = 3.3V, VCON_SBUx = 24V; VSBUx = 0V, measure the current into SBUx	-1		1	μA
Leakage Current for Dx Pins			-1		1	μA
CC Switch Characteristics						
Switch Turn On Resistance	Ron_cc	VDD = 3.3V, $VCCx = 5V$		255	390	mΩ
Switch Turn On Resistance Flatness	RON_CC_FLAT	Sweep CCx voltage between 0V and 3.6V			5	mΩ
Equivalent on Capacitance	Capacitance between CCx/CON_CCx and			11.25		pF
Threshold Voltage of the		External 80µA	0.3		1.2	
Pull-Down Switch in Series	VTH_DB	External 180µA	0.5		1.2	V
with Rd during Dead Battery		External 330µA	0.9		2.13	
OVP Threshold on CC Pins	Vovpcc	V _{DD} = 3.3V, CON_CCx rises from 5.5V until FLAGB goes from H to L	5.7	5.9	6.1	V
Hysteresis on CC OVP	Vovpcc_hys	V _{DD} = 3.3V, CON_CCx falls from 6.1V until FLAGB goes from L to H		75		mV

RT1738A

Parameter	Symbol	Test Conditions	Min	Тур	Max	Unit	
On Bandwidth Single Ended (-3dB)	BWcc	Single ended, 50Ω terminal, $V_{CCx} = 0.1V$ to 1.2V		400		MHz	
Clamp Voltage on System Side	VCLAMP	Hot plug voltage CON_CCx from 0V to 24V, 40V/ μ s; load 30 Ω in series to GND on CCx			8	V	
SBU Switch Characteristics	SBU Switch Characteristics						
Switch Turn on Resistance	Ron_sbu	V _{DD} = 3.3V, V _{SBUx} = 3.6V		3.6	6.5	Ω	
Switch Turn on Resistance Flatness	RON_SBU_FLAT	Sweep SBUx voltage between 0V and 3.6V		30	150	mΩ	
Equivalent on Capacitance	Con_sbu	Capacitance between SBUx/CON_SBUx and Ground when powered on. VDD = 3.3V, VSBUx = 0V to 1.2V, f = 1MHz		6.4		pF	
OVP Threshold on SBU Pins	Vovpsbu	V _{DD} = 3.3V, CON_SBUx rises from 4.5V until FLAGB goes from H to L	4.35	4.5	4.7	V	
Hysteresis on SBU OVP	VOVPSBU_HYS	V _{DDf} = 3.3V, CON_SBUx falls from 4.8V until FLAGB goes from L to H		60		mV	
On Bandwidth Single Ended (-3dB)	BWSBU	Single ended, 50Ω terminal, V _{SBUx} = 0.1V to 1.2V		1.1		GHz	
Crosstalk	Xtalk	Swing 1VPP at 1MHz, measure the SBU1 to CON_SBU2 or SBU2 to CON_SBU1 with 50Ω terminal		-80		dB	
Clamp Voltage on System Side	VCLAMP	Hot plug voltage CON_SBUx from 0V to 24V, 40V/ μ s; load 100nF cap and 40 Ω in series to GND on SBUx			8	V	
Over-Temperature Protection	on				-	-	
Over-Temperature Protection Shutdown Threshold Rising	Tsd	V _{DD} = 3.3V		150		°C	
Over-Temperature Protection Shutdown Threshold Hysteresis	Tsd_hys	VDD = 3.3V		20		°C	
FLAGB Characteristics							
Low-Level Output Voltage	Vol	IOL = 5mA			0.4	V	
VIH High-Level Leakage Current	Іон	VFLAGB = 5.5V			1	μA	

6

RT1738A	
----------------	--

Parameter	Symbol	Test Conditions	Min	Тур	Max	Unit
Dx ESD Protection						
Reverse Stand-Off Voltage from Dx to GND	VRWM_POS	Dx to GND. IDx ≤ 1μA			5.5	V
Reverse Stand-Off Voltage from GND to Dx	VRWM_NEG	GND to Dx			0	V
Break-Down Voltage from Dx to GND	VBR_POS	Dx to GND. IBR = 1mA	7			V
Break-Down Voltage from GND to Dx	VBR_NEG	GND to Dx. IBR = 8mA	0.6			V
Dx to GND or GND to Dx	Сю	f= 1MHz, VIO = 2.5V		D1 = 3 D2 = 3		pF
Differential Capacitance between Two Dx Pins	ΔCΙΟ	f = 1MHz, VIO = 2.5V		0.02		pF
Dynamic On-Resistance Dx IEC Clamps	Rdyn	Dx to GND or GND to Dx		0.45		Ω
Switch Dynamic Character	stics					
Turn-On Time, Time form Rising VDD UVLO to CC Switches Turn on	ton_cc	V _{DD} power-up from UVLO until CCx switches fully turn on		1.5		ms
Turn-On Time, Time from Rising VDD UVLO to SBU Switches Turn On	ton_sbu	VDD power-up from UVLO until SBUx switches fully turn on		1.3		ms
Time from Crossing Rising V _{DD} UVLO until CC and SBU Switches Turn On and the Dead Battery Resistors Turn Off	ton_db	V _{DD} power-up from UVLO until the dead battery resistors turn off		5		ms
Minimum Slew Rate Allowed to Ensure CC and SBU Switches Turn Off during a Power Off	dVDD_OFF/dt		-0.5			V/µs
OVP Response Time on the CC Switches. Time from OVP Predicated until Switches Turn Off	tovp_response_cc	Time from OVP trip voltage predicated to switches to turn OFF		60		ns
OVP Response Time on the SBU Switches. Time from OVP Predicated until Switches Turn Off	tovp_response_sbu	Time from OVP trip voltage predicated to switches to turn OFF		60		ns
OVP Recovery Time on the CCx	tovp_recovery_cc	CON_CCx OVP remove until CCx switches fully turn back on		0.87		ms
OVP Recovery Time on the SBUx	tOVP_RECOVERY_SBU	CON_SBUx OVP remove until SBUx switches fully turn back on		0.75		ms
OVP Recovery Time on the CON_CCx's Dead Battery Resistors	tovp_recovery_cc_d B	CON_CCx OVP remove until the dead battery resistors turn back off		5		ms

Parameter	Symbol	Test Conditions	Min	Тур	Max	Unit
Time from OVP Asserted to FLAGB Assertion	tOVP_FLAGB_ ASSERTION	Switches OVP asserted until FLAGB pull down	10	20	40	μS
Time from Switches Turn On after an OVP to FLAGB De-Assertion	tovp_flagb_ deassertion	Switches OVP de-asserted until FLAGB pull high		5		ms
Time from OTP to FLABG Assertion	tOTP_FLAGB_ ASSERTION	Switches OTP de-asserted until FLAGB pull down	10	20	40	μS

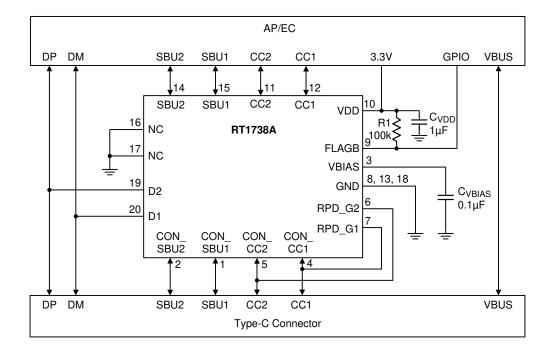
Note 1. Stresses beyond those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions may affect device reliability.

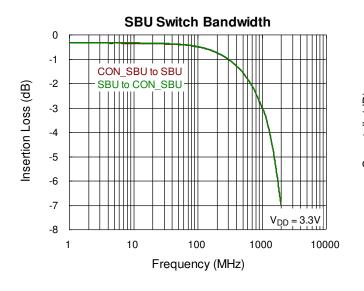
Note 2. θ_{JA} is measured under natural convection (still air) at $T_A = 25^{\circ}C$ with the component mounted on a high effective-thermal-conductivity four-layer test board on a JEDEC 51-7 thermal measurement standard. θ_{JC} is measured at the exposed pad of the package.

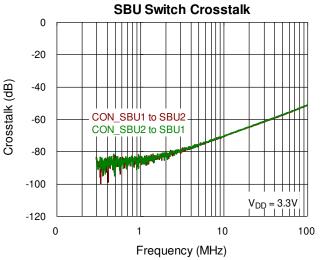
Note 3. Devices are ESD sensitive. Handling precaution is recommended.

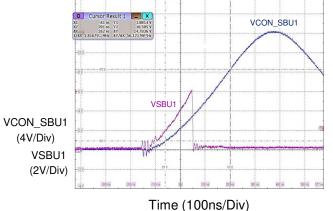
Note 4. The device is not guaranteed to function outside its operating conditions.

Typical Application Circuit

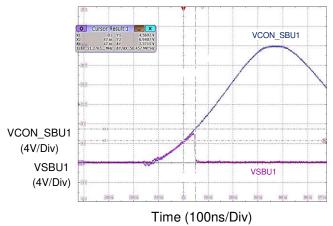


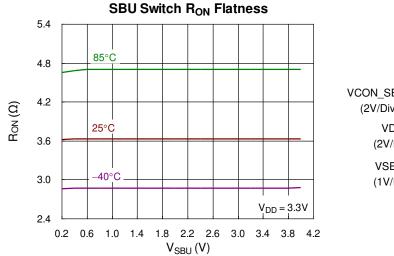

Table 1. Recommended Components Information


Reference	Q'ty	Part Number	Description	Package	Manufacturer
Cvdd	1	TMK107BJ105KA-T	1μF/X5R/25V	0603	TAIYO YUDEN
CVBIAS	1	0402B104K500CT	0.1µF/50V/X7R	0402	WALSIN
R1	1	RTT021003FTH	100k	0402	RALEC


Typical Operating Characteristics

RT1738A



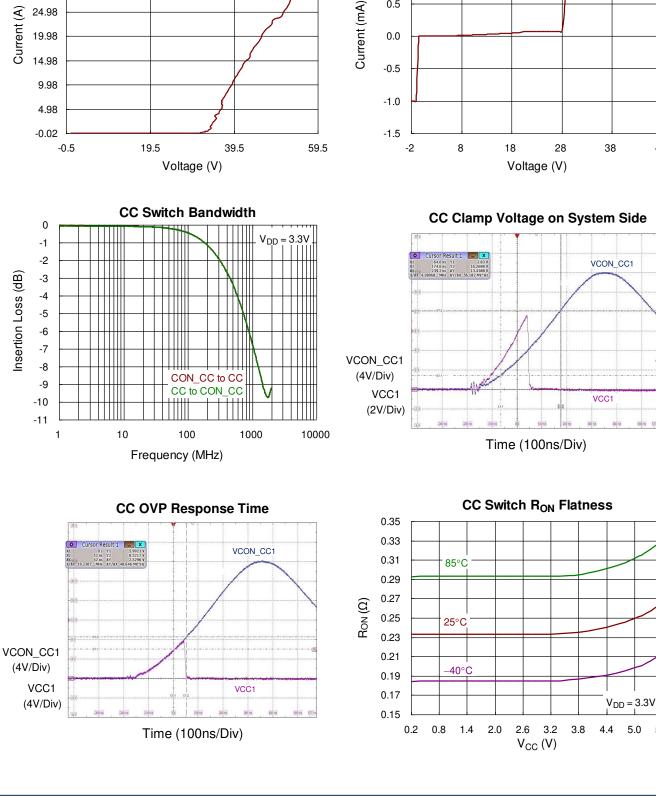


SBU Clamp Voltage on System Side

SBU Switch Turn on Timing

39.98

34.98


29.98

24.98

Current (A)

Insertion Loss (dB)

CON SBU TLP Curve Unpowered

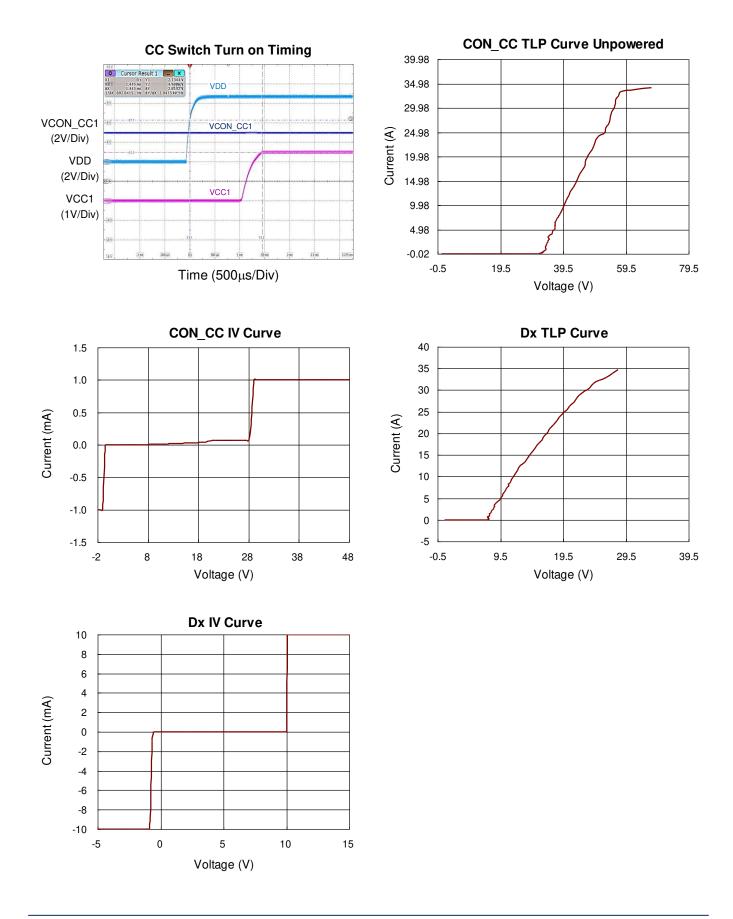
Copyright © 2023 Richtek Technology Corporation. All rights reserved. RICHTEK is a registered trademark of Richtek Technology Corporation.

5.0 5.6

RT1738A

48

CON SBU IV Curve


1.5

1.0

0.5

Application Information

Richtek's component specification does not include the following information in the Application Information section. Thereby no warranty is given regarding its validity and accuracy. Customers should take responsibility to verify their own designs and to ensure the functional suitability of their components and systems.

6-Channels of IEC 61000-4-2 ESD Protection (CON_CC1, CON_CC2, CON_SBU1, CON_SBU2, D1 and D2)

The RT1738A provides 6-Channels of IEC 61000-4-2 system level ESD protection for the CC1, CC2, SBU1, SBU2, D1 and D2 pins. As USB Type-C interface need IEC system level ESD protection in order to provide plenty protection for the ESD events that the connector can be exposed to end users.

Input Over-Voltage Protection

The RT1738A has 4-channels of Short to VBUS overvoltage protection for the CC1, CC2, SBU1 and SBU2 pins of the USB Type-C receptacle via internal OVP level. When the input voltage exceeds the OVP level, the RT1738A will ultra-fast turn off internal switches around 60ns to prevent the high input voltage from damaging the end system. When the CC/SBU input voltage returns to normal operation voltage range with hysteresis 75/60mV, the will turn on the switches to turn on channel.

All switches for CC1/2 and SBU1/2 are each own OVP comparator and controlled by its comparator independently. If any one of channel voltage exceed OVP threshold, the channel switch is turned off, and the others switches are also turned off.

Over-Temperature Protection (OTP)

The RT1738A monitors its internal temperature to prevent thermal failures. The chip turns off the switches when the junction temperature reaches 150°C. The IC will resume after the junction temperature is cooled down 20°C.

Dead Battery

The RT1738A supports dead battery function. If system side haven't enough power to provide the RT1738A work, short the RPD_G1 pin to the CON_CC1 pin, and short the RPD_G2 pin to the CON_CC2 pin. When it is connected to a Source, DRP or Sourcing Device, the system will receive the default VBUS.

If dead battery function is not required in application, connect the RPD_G1 and RPD_G2 pins to ground.

FLAGB Pin Operation

The FLAGB operation for fault reporting. When OVP or OTP event occurred, FLAGB pin will pull low until fault event assert. Time from OVP or OTP to FLAGB pull down is around 20μ s, then time from OVP asserted to FLAGB assertion is around 5ms.

How to Connect Unused Pins

If the RPD_Gx pins, the Dx pins and the NC pin 16, 17 are unused in a design, they must be connected to GND.

Device Functional Modes

The RT1738A all functional modes.

	MODE	VDD	RPD_Gx	TJ	FLAGB	CC Switches	SBU Switches
Normal Operating Conditions	Powered Off No Dead Battery Support	< UVLO	Grounded		High-Z	OFF	OFF
	Powered Off Dead Battery Support	< UVLO	Shorted to CON_CCx		High-Z	OFF	OFF
	Powered On	> UVLO	Forced OFF	< 0T	High-Z	ON	ON
	Thermal shutdown	> UVLO	Forced OFF	> OT	Low	OFF	OFF
Fault Conditions	CC Over-Voltage Condition	> UVLO	Forced OFF	< 0T	Low	OFF	OFF
	SBU Over-Voltage Condition	> UVLO	Forced OFF	< 0T	Low	OFF	OFF

Thermal Considerations

The junction temperature should never exceed the absolute maximum junction temperature $T_{J(MAX)}$, listed under Absolute Maximum Ratings, to avoid permanent damage to the device. The maximum allowable power dissipation depends on the thermal resistance of the IC package, the PCB layout, the rate of surrounding airflow, and the difference between the junction and ambient temperatures. The maximum power dissipation can be calculated using the following formula :

 $\mathsf{P}_{\mathsf{D}(\mathsf{MAX})} = (\mathsf{T}_{\mathsf{J}(\mathsf{MAX})} - \mathsf{T}_{\mathsf{A}}) / \theta_{\mathsf{J}\mathsf{A}}$

where $T_{J(MAX)}$ is the maximum junction temperature, TA is the ambient temperature, and θ_{JA} is the junction-to-ambient thermal resistance.

For continuous operation, the maximum operating junction temperature indicated under Recommended Conditions 125°C. The Operating is junction-to-ambient thermal resistance, θ_{JA} , is highly package dependent. For a WQFN-20L 3x3 package, the thermal resistance, θ_{JA} , is 30°C/W on a standard JEDEC 51-7 high effective-thermal-conductivity four-layer test board. The maximum power dissipation at TA = 25°C can be calculated as below :

 $\mathsf{PD}(\mathsf{MAX})$ = (125°C - 25°C) / (30°C/W) = 3.33W for a WQFN-20L 3x3 package.

The maximum power dissipation depends on the operating ambient temperature for the fixed $T_{J}(MAX)$ and the thermal resistance, θ_{JA} . The derating curves in Figure 1 allows the designer to see the effect of rising ambient temperature on the maximum power dissipation.

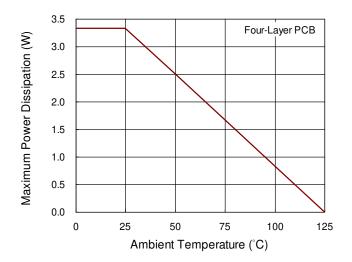


Figure 1. Derating Curve of Maximum Power Dissipation

Layout Considerations

Appropriate routing and placement is significant to maintain the signal integrity the USB2.0, SBU, CC signals. The following guidelines apply to the RT1738A: Place the bypass capacitors close to the VDD pin, and ESD protection capacitor close to the VBIAS pin. Capacitors must be attached to a solid ground. This minimizes voltage disturbances during such as short to VBUS and ESD event. The USB2.0 and SBU trace need to be routed straight and sharp bends must be minimized.

Standard ESD suggestion apply to the CON_CC1, CON _CC2, CON _SBU1, CON _SBU2, D1, and D2 pins as well :

The optimum placement for the device is as close to the connector as possible. The PCB designer must be keeping out unprotected traces away from the protected traces which are between the RT1738A and the connector.

Route the protected path as straight as possible. Reduce any sharp corners on the protected traces between the connector by using rounded corners with the largest radii possible. Suggest to reduce Dx pin via up to another layer and to continue that trace on that same layer.

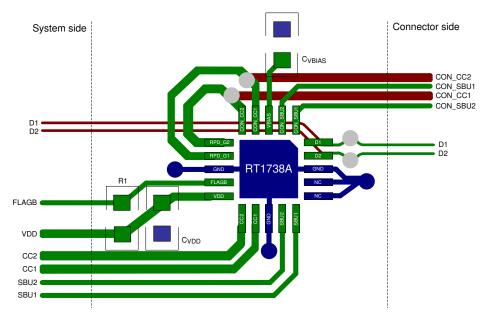
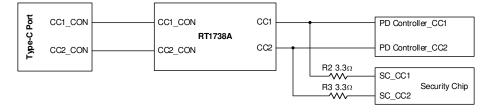
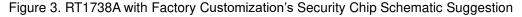
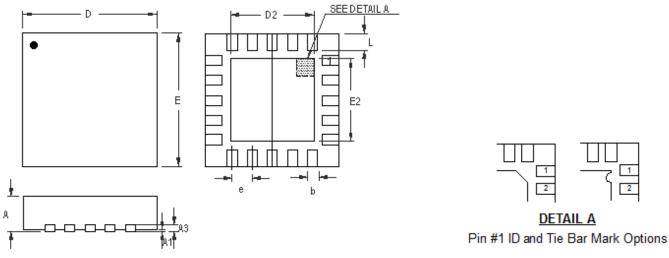




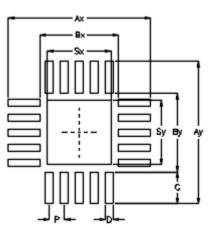
Figure 2. RT1738A Layout Guide

CC1 and CC2 Add Series Resistor with Security Chip

The RT1738A is applied with the factory customization's security chip platform that need CC1 and CC2 add series resistor with security chip. The security chip CC AMR is lower than 6V that but RT1738A CC AMR is 6V. That will have a system IEC61000-4-2 ESD test fail issue and cause to security chip damage. Add a series 3.3Ω resistor with security chip can be avoided ESD fail, that will system IEC61000-4-2 ESD contact discharge ±8kV pass. Then if RT1738A's application with factory customization's security chip, the proposal schematic is as shown below :



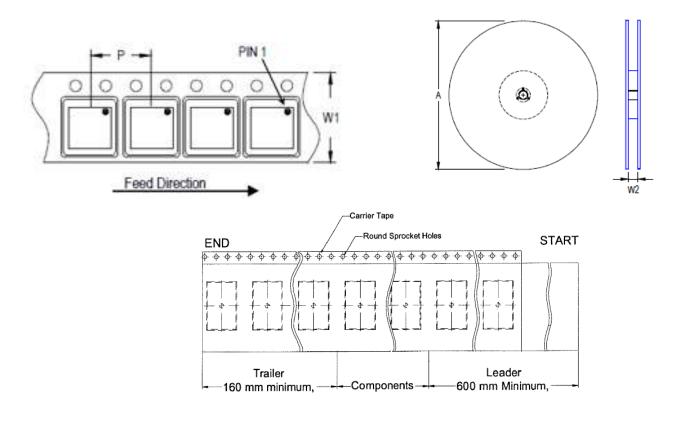
Outline Dimension


Note : The configuration of the Pin #1 identifier is optional, but must be located within the zone indicated.

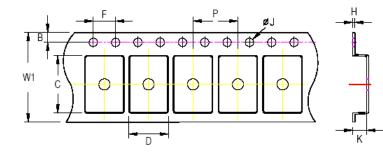
Cumhal	Dimensions I	n Millimeters	Dimensions In Inches			
Symbol	Min	Max	Min	Max		
А	0.700	0.800	0.028	0.031		
A1	0.000	0.050	0.000	0.002		
A3	0.175	0.250	0.007	0.010		
b	0.150	0.250	0.006	0.010		
D	2.900	3.100	0.114	0.122		
D2	1.650	1.750	0.065	0.069		
E	2.900	3.100	0.114	0.122		
E2	1.650	1.750	0.065	0.069		
е	0.4	00	0.016			
L	0.350	0.450	0.014	0.018		

W-Type 20L QFN 3x3 Package

Footprint Information



	Number of		Footprint Dimension (mm)								Telerence
Package	Pin	Р	Ax	Ау	Bx	Ву	С	D	Sx	Sy	Tolerance
V/W/U/XQFN3*3-20	20	0.40	3.80	3.80	2.10	2.10	0.85	0.20	1.70	1.70	±0.05



Packing Information

Tape and Reel Data

Package Type	Tape Size	Pocket Pitch	Reel Si	ze (A)	Units	Trailer	Leader	Reel Width (W2)
	(W1) (mm)	(P) (mm)	(mm)	(in)	per Reel	(mm)	(mm)	Min./Max. (mm)
QFN/DFN 3x3	12	8	180	7	1,500	160	600	12.4/14.4

C, D and K are determined by component size. The clearance between the components and the cavity is as follows:

- For 12mm carrier tape: 0.5mm max.

Tape Size	W1	Р		В		F		ØJ		Н
Tape Size	Max.	Min.	Max.	Min.	Max.	Min.	Max.	Min.	Max.	Max.
12mm	12.3mm	7.9mm	8.1mm	1.65mm	1.85mm	3.9mm	4.1mm	1.5mm	1.6mm	0.6mm

Tape and Reel Packing

Step	Photo/Description	Step	Photo/Description
1		4	
	Reel 7"		3 reels per inner box Box A
2		5	
	HIC & Desiccant (1 Unit) inside		12 inner boxes per outer box
3		6	RIGHTER MARINE BERTAR
	Caution label is on backside of Al bag		Outer box Carton A

Container	F	leel		Box	Box			Carton		
Package	Size	Units	Item	Size(cm)	Reels	Units	Item	Size(cm)	Boxes	Unit
	7"	1 500	Box A	18.3*18.3*8.0	3	4,500	Carton A	38.3*27.2*38.3	12	54,000
QFN/DFN 3x3	1	1,500	Box E	18.6*18.6*3.5	1	1,500		For Combined or F	Partial Reel.	

Packing Material Anti-ESD Property

Surface Resistance	Aluminum Bag	Reel	Cover tape	Carrier tape	Tube	Protection Band
Ω/cm^2	10 ⁴ to 10 ¹¹					

Richtek Technology Corporation

14F, No. 8, Tai Yuen 1st Street, Chupei City Hsinchu, Taiwan, R.O.C. Tel: (8863)5526789

RICHTEK

Richtek products are sold by description only. Richtek reserves the right to change the circuitry and/or specifications without notice at any time. Customers should obtain the latest relevant information and data sheets before placing orders and should verify that such information is current and complete. Richtek cannot assume responsibility for use of any circuitry other than circuitry entirely embodied in a Richtek product. Information furnished by Richtek is believed to be accurate and reliable. However, no responsibility is assumed by Richtek or its subsidiaries for its use; nor for any infringements of patents or other rights of third parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of Richtek or its subsidiaries.

Copyright © 2023 Richtek Technology Corporation. All rights reserved. RICHTEK is a registered trademark of Richtek Technology Corporation.

www.richtek.com

Datasheet Revision History

Version	Date	Description	Item
01	2023/3/2	Modify	Application Information on P13, 15 Packing Information on P18, 19, 20