MOSFET - N-Channel Shielded Gate PowerTrench® 150 V, 15 mΩ, 50 A

NTDS015N15MC

Features

- Shielded Gate MOSFET Technology
- Max $R_{DS(on)} = 15 \text{ m}\Omega$ at $V_{GS} = 10 \text{ V}$, $I_D = 29 \text{ A}$
- Low R_{DS(on)} to Minimize Conduction Losses
- Low Capacitance to Minimize Driver Losses
- Optimized Gate Charge to Minimize Switching Losses
- These Devices are Pb–Free, Halogen Free/BFR Free and are RoHS Compliant

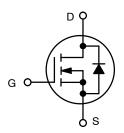
Typical Applications

- Primary Side for 48 V Isolated Bus
- SR for MV Secondary Applications

MAXIMUM RATINGS (T_J = 25°C unless otherwise noted)

Parameter			Symbol	Value	Unit
Drain-to-Source Voltage			V_{DSS}	150	V
Gate-to-Source Voltage	Э		V _{GS}	±20	V
Continuous Drain Current R _{θJC} (Note 2)	Steady State T _C = 25°C		Ι _D	50	Α
Power Dissipation $R_{\theta JC}$ (Note 2)			P _D	83	W
Continuous Drain Current R _{θJA} (Notes 1, 2)	Steady State T _A = 25°C		Ι _D	11	Α
Power Dissipation R _{θJA} (Notes 1, 2)	State		P _D	3.8	W
Pulsed Drain Current	T _C = 25°	C, t _p = 100 μs	I _{DM}	246	Α
Operating Junction and Storage Temperature Range			T _J , T _{stg}	-55 to +175	°C
Single Pulse Drain-to-Source Avalanche Energy (I _L = 10 A _{pk} , L = 3 mH)			E _{AS}	150	mJ
Lead Temperature for Soldering Purposes (1/8" from case for 10 s)			TL	260	°C

Stresses exceeding those listed in the Maximum Ratings table may damage the device. If any of these limits are exceeded, device functionality should not be assumed, damage may occur and reliability may be affected.


- 1. Surface-mounted on FR4 board using a 1 in², 2 oz. Cu pad.
- The entire application environment impacts the thermal resistance values shown, they are not constants and are only valid for the particular conditions noted.

ON Semiconductor®

www.onsemi.com


V _{(BR)DSS}	R _{DS(ON)} MAX	I _D MAX
150 V	15 mΩ @ 10 V	50 A

N-CHANNEL MOSFET

MARKING DIAGRAM

015N15MCG = Specific Device Code

A = Assembly Location

Y = Year WW = Work Week

ORDERING INFORMATION

Device	Package	Shipping [†]
NTDS015N15MCT4G	DPAK (Pb-Free)	2500 / Tube

[†]For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specifications Brochure, BRD8011/D.

THERMAL RESISTANCE MAXIMUM RATINGS

Parameter	Symbol	Value	Unit
Junction-to-Case - Steady State (Note 2)	$R_{ hetaJC}$	1.8	°C/W
Junction-to-Ambient - Steady State (Notes 1, 2)	$R_{ hetaJA}$	40	

ELECTRICAL CHARACTERISTICS (T. 05°C unloss

Parameter	Symbol	Test Condit	tion	Min	Тур	Max	Unit
OFF CHARACTERISTICS							
Drain-to-Source Breakdown Voltage	V _{(BR)DSS}	$V_{GS} = 0 \text{ V}, I_D =$	250 μΑ	150			V
Drain-to-Source Breakdown Voltage Temperature Coefficient	V _{(BR)DSS} /	I _D = 250 μA, ref	to 25°C		83		mV/°C
Zero Gate Voltage Drain Current	I _{DSS}	V _{GS} = 0 V, V _{DS} = 120 V				1.0	μΑ
Gate-to-Source Leakage Current	I _{GSS}	$V_{DS} = 0 V, V_{GS}$	= ±20 V			±100	nA
ON CHARACTERISTICS							
Gate Threshold Voltage	V _{GS(TH)}	$V_{GS} = V_{DS}, I_D =$: 162 μA	2.5		4.5	V
Negative Threshold Temperature Coefficient	V _{GS(TH)} /T _J	I _D = 162 μA, ref	to 25°C		-8.2		mV/°C
Drain-to-Source On Resistance	R _{DS(on)}	V _{GS} = 10 V, I _D	= 29 A		11.8	15	mΩ
Drain-to-Source On Resistance	R _{DS(on)}	V _{GS} = 8 V, I _D = 15 A			12.6	16.8	mΩ
Forward Transconductance	9 _{FS}	V _{DS} = 10 V, I _D = 29 A			58		S
CHARGES, CAPACITANCES & GATE RESIS	STANCE						
Input Capacitance	C _{ISS}	V _{GS} = 0 V, f = 1 MHz, V _{DS} = 75 V			2120		
Output Capacitance	C _{OSS}				595		pF
Reverse Transfer Capacitance	C _{RSS}				10.5		
Gate-Resistance	R_{G}				0.6	1.2	Ω
Total Gate Charge	Q _{G(TOT)}	V _{GS} = 10 V, V _{DS} = 75 V; I _D = 29 A			27		nC
Threshold Gate Charge	Q _{G(TH)}				7		
Gate-to-Source Charge	Q_{GS}				11		
Gate-to-Drain Charge	Q_{GD}				4		1
Plateau Voltage	V_{GP}				5.5		V
Output Charge	Q _{OSS}	V _{DD} = 75 V, V _G	is = 0 V		66		nC
SWITCHING CHARACTERISTICS (Note 3)							
Turn-On Delay Time	t _{d(ON)}				16		
Rise Time	t _r	V _{GS} = 10 V, V _{DD}	₀ = 75 V,		5]
Turn-Off Delay Time	t _{d(OFF)}	I_D = 29 A, R_G = 6 Ω			21		ns
Fall Time	t _f				4		
DRAIN-SOURCE DIODE CHARACTERISTIC	s						
Forward Diode Voltage	V _{SD}	V _{GS} = 0 V, I _S = 29 A	T _J = 25°C		0.89	1.2	V
Reverse Recovery Time	t _{RR}	V _{GS} = 0 V, V _{DD}	= 75 V		49		ns
Reverse Recovery Charge	Q _{RR}	$dI_S/dt = 300 \text{ A/}\mu\text{s}, I_S = 29 \text{ A}$			197		nC
Reverse Recovery Time	t _{RR}	V _{GS} = 0 V, V _{DD}	= 75 V		34		ns
Reverse Recovery Charge	Q _{RR}	$dl_S/dt = 1000 \text{ A/}\mu\text{s}, l_S = 29 \text{ A}$			345		nC

Product parametric performance is indicated in the Electrical Characteristics for the listed test conditions, unless otherwise noted. Product performance may not be indicated by the Electrical Characteristics if operated under different conditions.

3. Switching characteristics are independent of operating junction temperatures.

TYPICAL CHARACTERISTICS

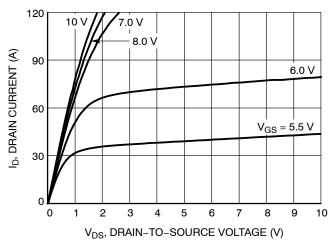


Figure 1. On-Region Characteristics

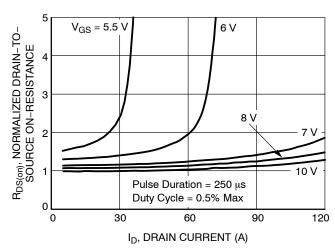


Figure 2. Normalized On–Resistance vs. Drain Current and Gate Voltage

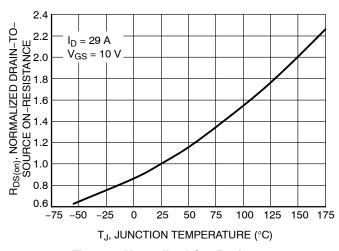


Figure 3. Normalized On–Resistance vs. Junction Temperature

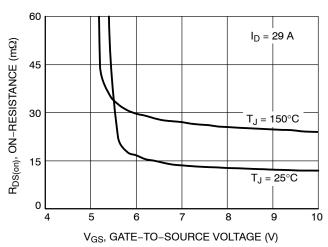


Figure 4. On-Resistance vs. Gate-to-Source Voltage

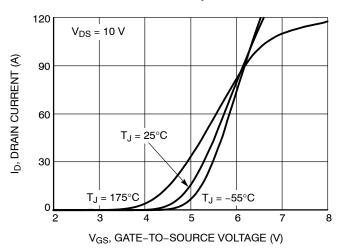


Figure 5. Transfer Characteristics

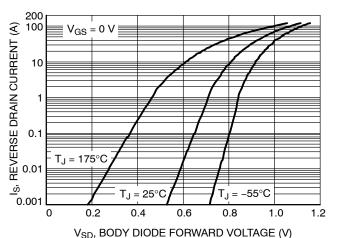


Figure 6. Source-to-Drain Diode Forward Voltage vs. Source Current

TYPICAL CHARACTERISTICS

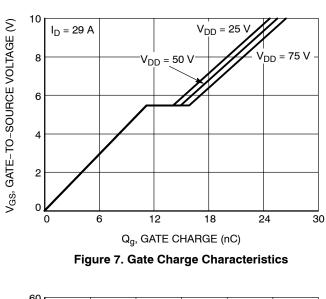
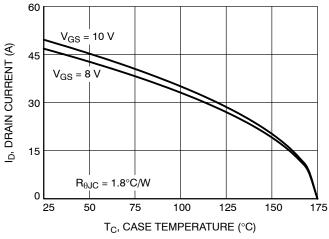



Figure 8. Capacitance vs. Drain-to-Source Voltage

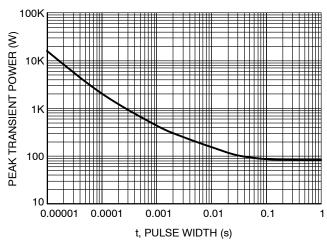
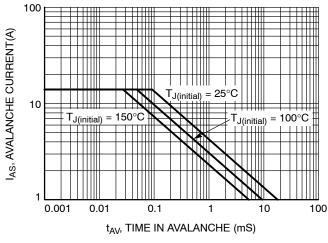



Figure 9. Drain Current vs. Case Temperature

Figure 10. Peak Power

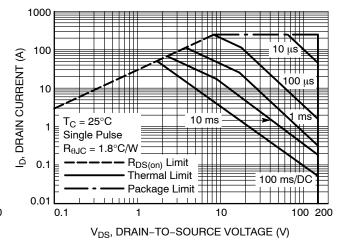


Figure 11. Unclamped Inductive Switching Capability

Figure 12. Forward Bias Safe Operating Area

TYPICAL CHARACTERISTICS

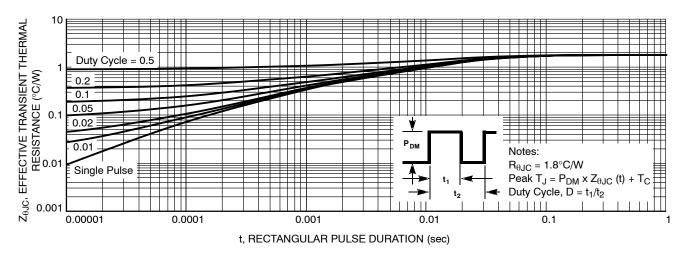
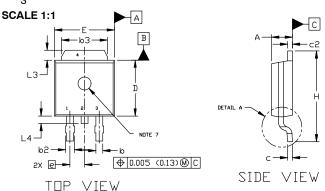
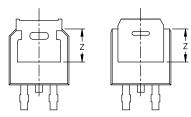
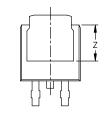



Figure 13. Transient Thermal Impedance

DATE 31 MAY 2023

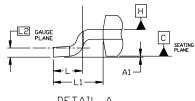



- DIMENSIONING AND TOLERANCING ASME Y14.5M, 1994. CONTROLLING DIMENSION: INCHES
- THERMAL PAD CONTOUR OPTIONAL WITHIN DIMENSIONS 63,
- L3. AND Z. L3, AND Z.

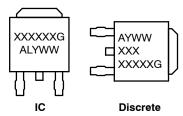
 DIMENSIONS D AND E DO NOT INCLUDE MOLD FLASH,
 PROTRUSIONS, OR BURRS. MOLD FLASH, PROTRUSIONS, OR
 GATE BURRS SHALL NOT EXCEED 0.006 INCHES PER SIDE.
 DIMENSIONS D AND E ARE DETERMINED AT THE
 OUTERMOST EXTREMES OF THE PLASTIC BODY.
 DATUMS A AND B ARE DETERMINED AT DATUM PLANE H.
 DETININAL MOLD ESCALUPE.

- OPTIONAL MOLD FEATURE.

DIM INC		HES	MILLIM	ETERS
MIM	MIN.	MAX.	MIN.	MAX.
Α	0.086	0.094	2.18	2.38
A1	0.000	0.005	0.00	0.13
b	0.025	0.035	0.63	0.89
b2	0.028	0.045	0.72	1.14
b3	0.180	0.215	4.57	5.46
C	0.018	0.024	0.46	0.61
c2	0.018	0.024	0.46	0.61
D	0.235	0.245	5.97	6.22
E	0.250	0.265	6.35	6.73
e	0.090 BSC		2.29 BSC	
Н	0.370	0.410	9.40	10.41
L	0.055	0.070	1.40	1.78
L1	0.114	REF	2.90	REF
L2	0.020 BSC		0.51	BSC
L3	0.035	0.050	0.89	1.27
L4		0.040		1.01
Z	0.155		3.93	



BOTTOM VIEW


BOTTOM VIEW ALTERNATE CONSTRUCTIONS

5.80 [0.228] 6.20 [0.244] 2.58 3.00 [0.102] [0.118] 1.60 [0.063] 6.17 [0.243]

DETAIL A ROTATED 90° CW

GENERIC MARKING DIAGRAM*

XXXXXX	= Device Code
Α	= Assembly Location
L	= Wafer Lot
Υ	= Year
WW	= Work Week
G	= Pb-Free Package

*This information is generic. Please refer to

*FOR ADDITIONAL INFORMATION ON OUR PB-FREE STRATEGY AND SOLDERING DETAILS, PLEASE DUWNLOAD THE ON SEMICONDUCTOR SOLDERING AND MOUNTING TECHNIQUES REFERENCE MANUAL, SOLDERRM/D.

3 FMITTER

4. COLLECTOR

s

3 GATE

RECOMMENDED MOUNTING FOOTPRINT*

STYLE 1: STYLE 2: PIN 1. BASE PIN 1. GATE 2. COLLECTOR 2. DRAIL 3. EMITTER 3. SOUF 4. COLLECTOR 4. DRAIL	N 2. CATHODE RCE 3. ANODE	3. GATE	STYLE 5: PIN 1. GATE 2. ANODE 3. CATHODE 4. ANODE
--	------------------------------	---------	---

STYLE 7: PIN 1. GATE 2. COLLECTOR STYLE 6: STYLE 8: STYLE 9: STYLE 10: PIN 1. MT1 2. MT2 PIN 1. N/C 2. CATHODE 3. ANODE PIN 1. ANODE 2. CATHODE

4. CATHODE

device data sheet for actual part marking. PIN 1. CATHODE 2. ANODE 3. CATHODE Pb-Free indicator, "G" or microdot "■", may or may not be present. Some products may 3 RESISTOR ADJUST not follow the Generic Marking. 4. ANODE

DOCUMENT NUMBER:	98AON10527D	Electronic versions are uncontrolled except when accessed directly from Printed versions are uncontrolled except when stamped "CONTROLLED of the control of	
DESCRIPTION:	DPAK (SINGLE GAUGE)		PAGE 1 OF 1

4. CATHODE

onsemi and ONSEMI are trademarks of Semiconductor Components Industries, LLC dba onsemi or its subsidiaries in the United States and/or other countries. onsemi reserves the right to make changes without further notice to any products herein. onsemi makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. onsemi does not convey any license under its patent rights nor the rights of others.

onsemi, ONSEMI., and other names, marks, and brands are registered and/or common law trademarks of Semiconductor Components Industries, LLC dba "onsemi" or its affiliates and/or subsidiaries in the United States and/or other countries. onsemi owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of onsemi's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. onsemi reserves the right to make changes at any time to any products or information herein, without notice. The information herein is provided "as-is" and onsemi makes no warranty, representation or guarantee regarding the accuracy of the information, product features, availability, functionality, or suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using **onsemi** products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by **onsemi**. "Typical" parameters which may be provided in **onsemi** data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. **onsemi** does not convey any license under any of its intellectual property rights nor the rights of others. **onsemi** products are not designed, intended, or authorized for use as a critical component in life support systems. or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use **onsemi** products for any such unintended or unauthorized application, Buyer shall indemnify and hold **onsemi** and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that **onsemi** was negligent regarding the design or manufacture of the part. **onsemi** is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner.

ADDITIONAL INFORMATION

TECHNICAL PUBLICATIONS:

 $\textbf{Technical Library:} \ \underline{www.onsemi.com/design/resources/technical-documentation}$

onsemi Website: www.onsemi.com

ONLINE SUPPORT: www.onsemi.com/support

For additional information, please contact your local Sales Representative at

www.onsemi.com/support/sales