

HI-TECH PICC STD Compiler

HI-TECH Software.

Copyright (C) 2008 HI-TECH Software.
All Rights Reserved. Printed in Australia.

PICC is licensed exclusively to HI-TECH Software
by Microchip Technology Inc.

Produced on: February 21, 2008

HI-TECH Software Pty. Ltd.
ACN 002 724 549

45 Colebard Street West
Acacia Ridge QLD 4110

Australia

email: hitech@htsoft.com
web: http://www.htsoft.com
ftp: ftp://www.htsoft.com

mailto:hitech@htsoft.com
http://www.htsoft.com
ftp://www.htsoft.com

Contents

Table of Contents iii

List of Tables xiii

1 Introduction 1

1.1 Typographic conventions . 1

2 PICC Command-line Driver 3

2.1 Long Command Lines . 4

2.2 Default Libraries . 4

2.3 Standard Runtime Code . 4

2.4 PICC Compiler Options . 5

2.4.1 -C: Compile to Object File . 7

2.4.2 -Dmacro: Define Macro . 8

2.4.3 -Efile: Redirect Compiler Errors to a File 8

2.4.4 -Gfile: Generate Source-level Symbol File 9

2.4.5 -Ipath: Include Search Path . 9

2.4.6 -Llibrary: Scan Library . 10

2.4.7 -L-option: Adjust Linker Options Directly 10

2.4.8 -Mfile: Generate Map File . 12

2.4.9 -Nsize: Identifier Length . 12

2.4.10 -Ofile: Specify Output File . 12

2.4.11 -P: Preprocess Assembly Files . 13

2.4.12 -Q: Quiet Mode . 13

2.4.13 -S: Compile to Assembler Code . 13

2.4.14 -Umacro: Undefine a Macro . 13

2.4.15 -V: Verbose Compile . 14

2.4.16 -X: Strip Local Symbols . 14

iii

CONTENTS CONTENTS

2.4.17 --ASMLIST: Generate Assembler .LST Files 14

2.4.18 --CHAR=type: Make Char Type Signed or Unsigned 14

2.4.19 --CHECKSUM=start-end@destination<,specs>: Calculate a check-

sum . 14

2.4.20 --CHIP=processor: Define Processor 15

2.4.21 --CHIPINFO: Display List of Supported Processors 15

2.4.22 --CODEOFFSET: Offset Program Code to Address 15

2.4.23 --CR=file: Generate Cross Reference Listing 15

2.4.24 --DEBUGGER=type: Select Debugger Type 16

2.4.25 --DOUBLE=type: Select kind of Double Types 16

2.4.26 --ECHO: Echo compiler command line . 16

2.4.27 --ERRFORMAT=format: Define Format for Compiler Messages 16

2.4.27.1 Using the Format Options . 17

2.4.27.2 Modifying the Standard Format 17

2.4.28 --ERRORS=number: Maximum Number of Errors 18

2.4.29 --FILL=opcode: Fill Unused Program Memory 18

2.4.30 --GETOPTION=app,file: Get Command-line Options 19

2.4.31 --HELP<=option>: Display Help . 19

2.4.32 --IDE=type: Specify the IDE being used 19

2.4.33 --LANG=language: Specify the Language for Messages 19

2.4.34 --MEMMAP=file: Display Memory Map 20

2.4.35 --MSGDISABLE=messagelist: Disable Warning Messages 20

2.4.36 --MSGFORMAT=format: Set Advisory Message Format 20

2.4.37 --NODEL: Do not remove temporary files 20

2.4.38 --NOEXEC: Don’t Execute Compiler . 20

2.4.39 --OPT<=type>: Invoke Compiler Optimizations 20

2.4.40 --OUTDIR: Specify a directory for output files 21

2.4.41 --OUTPUT=type: Specify Output File Type 21

2.4.42 --PRE: Produce Preprocessed Source Code 21

2.4.43 --PROTO: Generate Prototypes . 21

2.4.44 --RAM=lo-hi,<lo-hi,...>: Specify Additional RAM Ranges 23

2.4.45 --ROM=lo-hi,<lo-hi,...>|tag: Specify Additional ROM Ranges . . 24

2.4.46 --RUNTIME=type: Specify Runtime Environment 24

2.4.47 --SCANDEP: Scan for Dependencies . 24

2.4.48 --SERIAL=hexcode@address: Store a Value at this Program Memory

Address . 26

2.4.49 --SETOPTION=app,file: Set The Command-line Options for Application 26

2.4.50 --SETUP=dir: Setup the product . 26

2.4.51 --STRICT: Strict ANSI Conformance . 26

iv

CONTENTS CONTENTS

2.4.52 --SUMMARY=type: Select Memory Summary Output Type 27

2.4.53 --TIME: Report time taken for each phase of build process 27

2.4.54 --VER: Display The Compiler’s Version Information 27

2.4.55 --WARN=level: Set Warning Level . 28

2.4.56 --WARNFORMAT=format: Set Warning Message Format 28

3 C Language Features 29

3.1 ANSI Standard Issues . 29

3.1.1 Implementation-defined behaviour . 29

3.2 Processor-related Features . 29

3.2.1 Stack . 29

3.2.2 Configuration Fuses . 30

3.2.3 ID Locations . 30

3.2.4 Bit Instructions . 31

3.2.5 EEPROM Access . 31

3.2.5.1 The eeprom variable qualifier . 31

3.2.5.2 The __EEPROM_DATA() macro 32

3.2.5.3 EEPROM Access Functions . 33

3.2.5.4 EEPROM Access Macros . 33

3.2.6 Flash Runtime Access . 34

3.2.6.1 Flash Access Macros . 34

3.2.6.2 Flash Access Functions . 35

3.2.7 Baseline PIC special instructions . 35

3.2.7.1 The OPTION instruction . 35

3.2.7.2 The TRIS instructions . 35

3.2.7.3 Calibration Space . 36

3.2.7.4 Oscillator calibration constants 36

3.3 Files . 37

3.3.1 Source Files . 37

3.3.2 Symbol Files . 37

3.3.3 Standard Libraries . 37

3.3.4 Runtime startup Modules . 38

3.3.4.1 Initialization of Data psects . 39

3.3.4.2 Clearing the Bss Psects . 40

3.3.4.3 Linking in the C Libraries . 40

3.3.4.4 The powerup Routine . 40

3.4 Supported Data Types and Variables . 41

3.4.1 Radix Specifiers and Constants . 41

3.4.2 Bit Data Types and Variables . 42

v

CONTENTS CONTENTS

3.4.3 8-Bit Integer Data Types and Variables . 44

3.4.4 16-Bit Integer Data Types . 44

3.4.5 32-Bit Integer Data Types and Variables . 44

3.4.6 Floating Point Types and Variables . 45

3.4.7 Structures and Unions . 46

3.4.7.1 Bit-fields in Structures . 46

3.4.7.2 Structure and Union Qualifiers 47

3.4.8 Standard Type Qualifiers . 48

3.4.8.1 Const and Volatile Type Qualifiers 48

3.4.9 Special Type Qualifiers . 48

3.4.9.1 Persistent Type Qualifier . 49

3.4.9.2 Bank1, Bank2 and Bank3 Type Qualifiers 49

3.4.10 Eeprom Type Qualifier . 50

3.4.11 Pointer Types . 50

3.4.11.1 Baseline Pointers . 50

3.4.11.2 Midrange Pointers . 50

3.4.11.3 Highend Pointers . 51

3.4.11.4 Qualifiers and Pointers . 51

3.5 Storage Class and Object Placement . 52

3.5.1 Local Variables . 52

3.5.1.1 Auto Variables . 53

3.5.1.2 Static Variables . 53

3.5.2 Absolute Variables . 53

3.6 Functions . 54

3.6.1 Function Argument Passing . 54

3.6.2 Function Return Values . 55

3.6.2.1 Structure Return Values . 56

3.7 Function Calling Convention . 56

3.8 Operators . 57

3.8.1 Integral Promotion . 57

3.8.2 Shifts applied to integral types . 59

3.8.3 Division and modulus with integral types 59

3.9 Psects . 59

3.9.1 Compiler-generated Psects . 60

3.10 Interrupt Handling in C . 62

3.10.1 Interrupt Functions . 62

3.10.1.1 Midrange Interrupt Functions . 62

3.10.1.2 Highend Interrupt Functions . 63

3.10.1.3 Context Saving on Interrupts . 63

vi

CONTENTS CONTENTS

3.10.1.4 MidRange Context Saving . 63

3.10.1.5 High-End Context Saving . 64

3.10.1.6 Context Restoration . 64

3.10.1.7 Interrupt Levels . 64

3.10.1.8 Multiple Interrupts on High-End PICs 65

3.10.1.9 Enabling Interrupts . 66

3.11 Mixing C and Assembler Code . 66

3.11.1 External Assembly Language Functions . 66

3.11.2 #asm, #endasm and asm() . 68

3.11.3 Accessing C objects from within Assembly Code 69

3.11.3.1 Equivalent Assembly Symbols 69

3.11.3.2 Accessing special function register names from assembler 69

3.12 Preprocessing . 70

3.12.1 Preprocessor Directives . 70

3.12.2 Predefined Macros . 70

3.12.3 Pragma Directives . 70

3.12.3.1 The #pragma inline Directive . 70

3.12.3.2 The #pragma jis and nojis Directives 73

3.12.3.3 The #pragma pack Directive . 73

3.12.3.4 The #pragma printf_check Directive 74

3.12.3.5 The #pragma psect Directive . 74

3.12.3.6 The #pragma regsused Directive 75

3.12.3.7 The #pragma switch Directive . 76

3.13 Linking Programs . 77

3.13.1 Replacing Library Modules . 77

3.13.2 Signature Checking . 78

3.13.3 Linker-Defined Symbols . 79

3.14 Standard I/O Functions and Serial I/O . 79

4 Macro Assembler 81

4.1 Assembler Usage . 81

4.2 Assembler Options . 82

4.3 HI-TECH C Assembly Language . 84

4.3.1 Statement Formats . 84

4.3.2 Characters . 85

4.3.2.1 Delimiters . 85

4.3.2.2 Special Characters . 85

4.3.3 Comments . 85

4.3.3.1 Special Comment Strings . 85

vii

CONTENTS CONTENTS

4.3.4 Constants . 86

4.3.4.1 Numeric Constants . 86

4.3.4.2 Character Constants and Strings 86

4.3.5 Identifiers . 86

4.3.5.1 Significance of Identifiers . 87

4.3.5.2 Assembler-Generated Identifiers 87

4.3.5.3 Location Counter . 87

4.3.5.4 Register Symbols . 88

4.3.5.5 Symbolic Labels . 88

4.3.6 Expressions . 89

4.3.7 Program Sections . 89

4.3.8 Assembler Directives . 91

4.3.8.1 GLOBAL . 91

4.3.8.2 END . 91

4.3.8.3 PSECT . 93

4.3.8.4 ORG . 95

4.3.8.5 EQU . 95

4.3.8.6 SET . 95

4.3.8.7 DB . 96

4.3.8.8 DW . 96

4.3.8.9 DS . 96

4.3.8.10 FNADDR . 96

4.3.8.11 FNARG . 96

4.3.8.12 FNBREAK . 97

4.3.8.13 FNCALL . 97

4.3.8.14 FNCONF . 97

4.3.8.15 FNINDIR . 98

4.3.8.16 FNSIZE . 98

4.3.8.17 FNROOT . 98

4.3.8.18 IF, ELSIF, ELSE and ENDIF . 99

4.3.8.19 MACRO and ENDM . 99

4.3.8.20 LOCAL . 100

4.3.8.21 ALIGN . 101

4.3.8.22 REPT . 101

4.3.8.23 IRP and IRPC . 102

4.3.8.24 PROCESSOR . 103

4.3.8.25 SIGNAT . 103

4.3.9 Assembler Controls . 103

4.3.9.1 COND . 103

viii

CONTENTS CONTENTS

4.3.9.2 EXPAND . 103

4.3.9.3 INCLUDE . 104

4.3.9.4 LIST . 104

4.3.9.5 NOCOND . 104

4.3.9.6 NOEXPAND . 105

4.3.9.7 NOLIST . 105

4.3.9.8 NOXREF . 105

4.3.9.9 PAGE . 105

4.3.9.10 SPACE . 105

4.3.9.11 SUBTITLE . 105

4.3.9.12 TITLE . 106

4.3.9.13 XREF . 106

5 Linker and Utilities 107

5.1 Introduction . 107

5.2 Relocation and Psects . 107

5.3 Program Sections . 108

5.4 Local Psects . 108

5.5 Global Symbols . 108

5.6 Link and load addresses . 109

5.7 Compiled Stack Operation . 109

5.7.1 Parameters involving Function Calls . 110

5.7.2 Implicit Calls to Assembler Library Routines 112

5.8 Map Files . 112

5.8.1 Generation . 112

5.8.2 Contents . 113

5.8.2.1 General Information . 113

5.8.2.2 Call Graph Information . 115

5.8.2.3 Psect Information listed by Module 120

5.8.2.4 Psect Information listed by Class 122

5.8.2.5 Segment Listing . 123

5.8.2.6 Unused Address Ranges . 123

5.8.2.7 Symbol Table . 123

5.9 Operation . 124

5.9.1 Numbers in linker options . 126

5.9.2 -Aclass=low-high,... 126

5.9.3 -Cx . 126

5.9.4 -Cpsect=class . 126

5.9.5 -Dclass=delta . 127

ix

CONTENTS CONTENTS

5.9.6 -Dsymfile . 127

5.9.7 -Eerrfile . 127

5.9.8 -F . 127

5.9.9 -Gspec . 127

5.9.10 -Hsymfile . 128

5.9.11 -H+symfile . 128

5.9.12 -Jerrcount . 128

5.9.13 -K . 128

5.9.14 -I . 129

5.9.15 -L . 129

5.9.16 -LM . 129

5.9.17 -Mmapfile . 129

5.9.18 -N, -Ns and-Nc . 129

5.9.19 -Ooutfile . 129

5.9.20 -Pspec . 129

5.9.21 -Qprocessor . 131

5.9.22 -S . 131

5.9.23 -Sclass=limit[, bound] . 131

5.9.24 -Usymbol . 132

5.9.25 -Vavmap . 132

5.9.26 -Wnum . 132

5.9.27 -X . 132

5.9.28 -Z . 132

5.10 Invoking the Linker . 133

5.11 Map Files . 133

5.11.1 Call Graph Information . 134

5.12 Librarian . 136

5.12.1 The Library Format . 137

5.12.2 Using the Librarian . 137

5.12.3 Examples . 138

5.12.4 Supplying Arguments . 138

5.12.5 Listing Format . 139

5.12.6 Ordering of Libraries . 139

5.12.7 Error Messages . 139

5.13 Objtohex . 139

5.13.1 Checksum Specifications . 141

5.14 Cref . 141

5.14.1 -Fprefix . 142

5.14.2 -Hheading . 142

x

CONTENTS CONTENTS

5.14.3 -Llen . 142

5.14.4 -Ooutfile . 142

5.14.5 -Pwidth . 143

5.14.6 -Sstoplist . 143

5.14.7 -Xprefix . 143

5.15 Cromwell . 143

5.15.1 -Pname[,architecture] . 143

5.15.2 -N . 145

5.15.3 -D . 145

5.15.4 -C . 145

5.15.5 -F . 145

5.15.6 -Okey . 146

5.15.7 -Ikey . 146

5.15.8 -L . 146

5.15.9 -E . 146

5.15.10 -B . 146

5.15.11 -M . 146

5.15.12 -V . 146

5.16 Hexmate . 146

5.16.1 Hexmate Command Line Options . 147

5.16.1.1 specifications,filename.hex . 149

5.16.1.2 + Prefix . 149

5.16.1.3 -ADDRESSING . 150

5.16.1.4 -BREAK . 150

5.16.1.5 -CK . 150

5.16.1.6 -FILL . 151

5.16.1.7 -FIND . 152

5.16.1.8 -FIND...,DELETE . 153

5.16.1.9 -FIND...,REPLACE . 153

5.16.1.10 -FORMAT . 153

5.16.1.11 -HELP . 154

5.16.1.12 -LOGFILE . 155

5.16.1.13 -Ofile . 155

5.16.1.14 -SERIAL . 155

5.16.1.15 -SIZE . 156

5.16.1.16 -STRING . 156

5.16.1.17 -STRPACK . 156

A Library Functions 157

xi

CONTENTS CONTENTS

B Error and Warning Messages 275

C Chip Information 403

Index 409

xii

List of Tables

2.1 PICC file types . 3

2.3 Default values for filling unprogrammed code space 15

2.4 Supported Double Types . 16

2.5 Error format specifiers . 17

2.6 Supported IDEs . 19

2.7 Supported languages . 19

2.8 Optimization Options . 21

2.9 Output file formats . 22

2.10 Runtime environment suboptions . 25

2.11 Memory Summary Suboptions . 27

3.1 Basic data types . 41

3.2 Radix formats . 42

3.3 Floating-point formats . 45

3.4 Floating-point format example IEEE 754 . 46

3.5 Integral division . 59

3.6 Preprocessor directives . 71

3.7 Predefined macros . 72

3.9 Pragma directives . 73

3.10 Valid Register Names . 76

3.11 switch types . 76

3.12 Supported standard I/O functions . 79

4.1 ASPIC command-line options . 82

4.2 ASPICstatement formats . 85

4.3 ASPIC numbers and bases . 86

4.4 ASPIC operators . 90

xiii

LIST OF TABLES LIST OF TABLES

4.5 ASPIC assembler directives . 92

4.6 PSECT flags . 93

4.7 ASPIC assembler controls . 104

4.8 LIST control options . 105

5.1 Linker command-line options . 125

5.2 Librarian command-line options . 137

5.3 Librarian key letter commands . 137

5.4 OBJTOHEX command-line options . 140

5.5 CREF command-line options . 142

5.6 CROMWELL format types . 144

5.7 CROMWELL command-line options . 144

5.8 -P option architecture arguments for COFF file output. 145

5.9 Hexmate command-line options . 148

5.10 Hexmate Checksum Algorithm Selection . 151

5.11 INHX types used in -FORMAT option . 154

C.1 Devices supported by HI-TECH PICC STD . 403

C.1 Devices supported by HI-TECH PICC STD . 404

C.1 Devices supported by HI-TECH PICC STD . 405

C.1 Devices supported by HI-TECH PICC STD . 406

C.1 Devices supported by HI-TECH PICC STD . 407

C.1 Devices supported by HI-TECH PICC STD . 408

xiv

Chapter 1

Introduction

1.1 Typographic conventions

Different fonts and styles are used throughout this manual to indicate special words or text. Com-

puter prompts, responses and filenames will be printed in constant-spaced type. When the

filename is the name of a standard header file, the name will be enclosed in angle brackets, e.g.

<stdio.h>. These header files can be found in the INCLUDE directory of your distribution.

Samples of code, C keywords or types, assembler instructions and labels will also be printed in

a constant-space type. Assembler code is printed in a font similar to that used by C code.

Particularly useful points and new terms will be emphasized using italicized type. When part of

a term requires substitution, that part should be printed in the appropriate font, but in italics. For

example: #include <filename.h>.

1

Typographic conventions Introduction

2

Chapter 2

PICC Command-line Driver

PICC is the driver invoked from the command line to compile and/or link C programs. PICC has the

following basic command format:

PICC [options] files [libraries]

It is conventional to supply the options (identified by a leading dash “-” or double dash “–”) before

the filenames.

The options are discussed below. The files may be a mixture of source files (C or assembler)

and object files. The order of the files is not important, except that it will affect the order in which

code or data appears in memory. Libraries are a list of library names, or -L options, see Section

2.4.6. Source files, object files and library files are distinguished by PICC solely by the file type or

extension. Recognized file types are listed in Table 2.1. This means, for example, that an assembler

file must always have a .as extension (alphabetic case is not important).

PICC will check each file argument and perform appropriate actions. C files will be compiled;

assembler files will be assembled. At the end, unless suppressed by one of the options discussed later,

Table 2.1: PICC file types

File Type Meaning

.c C source file

.as Assembler source file

.obj Relocatable object code file

.lib Relocatable object library file

.hex Intel HEX file

3

Long Command Lines PICC Command-line Driver

all object files resulting from compilation or assembly, or those listed explicitly on the command line,

will be linked together with the standard runtime code and libraries and any user-specified libraries.

Functions in libraries will be linked into the resulting output file only if referenced in the source

code.

Invoking PICC with only object files specified as the file arguments (i.e. no source files) will

mean only the link stage is performed. It is typical in Makefiles to use PICC with a -C option to

compile several source files to object files, then to create the final program by invoking PICC again

with only the generated object files and appropriate libraries (and appropriate options). If a .lib

output file type is selected, the object files will be stored in a library instead of going through to the

final link.

When a HEX file is given on the command line, PICC will invoke the HEXMATE utility and

will merge the named hex file with the hex file currently being generated. This feature can be useful

when, for example, a single hex file is desired which contains a bootloader and application program.

2.1 Long Command Lines

The PICC driver is capable of processing command lines exceeding any operating system limitation.

To do this, the driver may be passed options via a command file. The command file is read by using

the @ symbol. For example:

PICC @xyz.cmd

2.2 Default Libraries

PICC will search the appropriate standard C library by default for symbol definitions. This will

always be done last, after any user-specified libraries. The particular library used will be dependent

on the processor selected.

2.3 Standard Runtime Code

PICC will automatically generate standard runtime start-up code appropriate for the processor and

options selected unless you have specified the to disable this via the --RUNTIME option. If you

require any special powerup initialization, you should use the powerup routine feature (see Section

3.3.4.4).

4

PICC Command-line Driver PICC Compiler Options

2.4 PICC Compiler Options

Most aspects of the compilation can be controlled using the command-line driver, PICC. The driver

will configure and execute all required applications, such as the code generator, assembler and linker.

PICC recognizes the compiler options listed in the table below. The case of the options is not

important, however command shells in UNIX based operating systems are case sensitive when it

comes to names of files.

PICC Command-line Options

Option Meaning

-C Compile to object files only

-Dmacro Define preprocessor macro

-E+file Redirect and optionally append errors to a file

-Gfile Generate source-level debugging information

-Ipath Specify a directory pathname for include files

-Llibrary Specify a library to be scanned by the linker

-L-option Specify -option to be passed directly to the linker

-Mfile Request generation of a MAP file

-Nsize Specify identifier length

-Ofile Set basename for output files

-P Preprocess assembler files

-Q Specify quiet mode

-S Compile to assembler source files only

-Usymbol Undefine a predefined preprocessor symbol

-V Verbose: display compiler pass command lines

-X Eliminate local symbols from symbol table

--ASMLIST Generate assembler .LST file for each compilation

--CHAR=type Make the default char signed or unsigned

--CHECKSUM=start-end@dest Calculate a checksum over an address range

--CHIP=processor Selects which processor to compile for

--CHIPINFO Displays a list of supported processors

--CODEOFFSET=address Offset program code to address

--CR=file Generate cross-reference listing

--DEBUGGER=type Select the debugger that will be used

--DOUBLE=type Selects size/kind of double types

--ECHO Echo the PICC command line

--ERRFORMAT<=format> Format error message strings to the given style

continued. . .

5

PICC Compiler Options PICC Command-line Driver

PICC Command-line Options

Option Meaning

--ERRORS=number Sets the maximun number of errors displayed

--FILL=opcode Fill unused program locations with this hexadecimal

code

--GETOPTION=app,file Get the command line options for the named applica-

tion

--HELP<=option> Display the compiler’s command line options

--IDE=ide Configure the compiler for use by the named IDE

--LANG=language Specify language for compiler messages

--MEMMAP=file Display memory summary information for the map

file

--MSGFORMAT<=format> Format general message strings to the given style

--MSGDISABLE<=numbers> Disable these warning or advisory messages

--NODEL Do not remove temporary files generated by the com-

piler

--NOEXEC Go through the motions of compiling without actually

compiling

--OPT<=type> Enable general compiler optimizations

--OUTDIR Specify output files directory

--OUTPUT=type Generate output file type

--PRE Produce preprocessed source files

--PROTO Generate function prototype information

--RAM=lo-hi<,lo-hi,...> Specify and/or reserve RAM ranges

--ROM=lo-hi<,lo-hi,...> Specify and/or reserve ROM ranges

--RUNTIME=type Configure the C runtime libraries to the specified type

--SCANDEP Generate file dependency “.DEP files”

--SERIAL=code@address Store this hexadecimal code at an address in program

memory

--SETOPTION=app,file Set the command line options for the named applica-

tion

--SETUP=argument Setup the product

--STRICT Enable strict ANSI keyword conformance

--SUMMARY=type Selects the type of memory summary output

--TIME Show execution time in each stage of build process

--VER Display the compiler’s version number

--WARN=level Set the compiler’s warning level

continued. . .

6

PICC Command-line Driver PICC Compiler Options

PICC Command-line Options

Option Meaning

--WARNFORMAT=format Format warning message strings to given style

All single letter options are identified by a leading dash character, “-”, e.g. -C. Some single letter

options specify an additional data field which follows the option name immediately and without any

whitespace, e.g. -Ddebug.

Multi-letter, or word, options have two leading dash characters, e.g. --ASMLIST. (Because of

the double dash, you can determine that the option --ASMLIST, for example, is not a -A option

followed by the argument SMLIST.) Some of these options define suboptions which typically appear

as a comma-separated list following an equal character, =, e.g. --OUTPUT=intel,cof. The exact

format of the options varies and are described in detail in the following sections.

Some commonly used suboptions include default, which represent the default specification

that would be used if this option was absent altogether; all, which indicates that all the available

suboptions should be enabled as if they had each been listed; and none, which indicates that all

suboptions should be disabled. Some suboptions may be prefixed with a plus character, +, to indicate

that they are in addition to the other suboptions present, or a minus character “-”, to indicate that

they should be excluded. In the following sections, angle brackets, < >, are used to indicate optional

parts of the command.

2.4.1 -C: Compile to Object File

The -C option is used to halt compilation after generating a relocatable object file. This option is

frequently used when compiling multiple source files using a “make” utility. If multiple source files

are specified to the compiler each will be compiled to a separate .obj file. The object files will

be placed in the directory in which PICC was invoked, to handle situations where source files are

located in read-only directories. To compile three source files main.c, module1.c and asmcode.as

to object files you could use a command similar to:

PICC --CHIP=16F877A -C main.c module1.c asmcode.as

The compiler will produce three object files main.obj, module1.obj and asmcode.obj which

could then be linked to produce an Intel HEX file using the command:

PICC --CHIP=16F877A main.obj module1.obj asmcode.obj

7

PICC Compiler Options PICC Command-line Driver

2.4.2 -Dmacro: Define Macro

The -D option is used to define a preprocessor macro on the command line, exactly as if it had

been defined using a #define directive in the source code. This option may take one of two forms,

-Dmacro which is equivalent to:

#define macro 1

placed at the top of each module compiled using this option, or -Dmacro=text which is equivalent

to:

#define macro text

where text is the textual substitution required. Thus, the command:

PICC --CHIP=16F877A -Ddebug -Dbuffers=10 test.c

will compile test.c with macros defined exactly as if the C source code had included the directives:

#define debug 1

#define buffers 10

2.4.3 -Efile: Redirect Compiler Errors to a File

This option has two purposes. The first is to change the format of displayed messages. The second

is to optionally allow messages to be directed to a file as some editors do not allow the standard

command line redirection facilities to be used when invoking the compiler.

The gernal form of messages produced with the -E option in force is:

filename line_number: (message number) message string (message type)

If a filename is specified immediately after -E, it is treated as the name of a file to which all

messages (errors, warnings etc) will be printed. For example, to compile x.c and redirect all errors

to x.err, use the command:

PICC --CHIP=16F877A -Ex.err x.c

The -E option also allows errors to be appended to an existing file by specifying an addition charac-

ter, +, at the start of the error filename, for example:

PICC --CHIP=16F877A -E+x.err y.c

8

PICC Command-line Driver PICC Compiler Options

If you wish to compile several files and combine all of the errors generated into a single text file, use

the -E option to create the file then use -E+ when compiling all the other source files. For example,

to compile a number of files with all errors combined into a file called project.err, you could use

the -E option as follows:

PICC --CHIP=16F877A -Eproject.err -O -C main.c

PICC --CHIP=16F877A -E+project.err -O -C part1.c

PICC --CHIP=16F877A -E+project.err -C asmcode.as

Section 2.4.27.1 has more information regarding this option as well as an overview of the messaging

system and other related driver options.

2.4.4 -Gfile: Generate Source-level Symbol File

The -G option generates a source-level symbol file (i.e. a file which allows tools to determine which

line of source code is associated with machine code instructions, and determine which source-level

variable names correspond with areas of memory, etc.) for use with supported debuggers and sim-

ulators such as HI-TIDE
TM

and MPLAB R©. If no filename is given, the symbol file will have the

same base name as the project name, and an extension of .sym. For example the option -Gtest.sym

generates a symbol file called test.sym. Symbol files generated using the -G option include source-

level information for use with source-level debuggers.

Note that all source files for which source-level debugging is required should be compiled with

the -G option. The option is also required at the link stage, if this is performed separately. For

example:

PICC --CHIP=16F877A -G -C test.c modules1.c

PICC --CHIP=16F877A -Gtest.sym test.p1 module1.p1

The --IDE option, see Section 2.4.32 will typically enable the -G option.

2.4.5 -Ipath: Include Search Path

Use -I to specify an additional directory to use when searching for header files which have been

included using the #include directive. The -I option can be used more than once if multiple

directories are to be searched.

The default include directory containing all standard header files are always searched even if no

-I option is present. The default search path is searched after any user-specified directories have

been searched. For example:

PICC --CHIP=16F877A -C -Ic:\include -Id:\myapp\include test.c

9

PICC Compiler Options PICC Command-line Driver

will search the directories c:\include and d:\myapp\include for any header files included into

the source code, then search the default include directory (the include directory where the compiler

was installed).

This option has no effect for files that are included into assembly source using the INCLUDE

directive. See Section 4.3.9.3.

2.4.6 -Llibrary: Scan Library

The -L option is used to specify additional libraries which are to be scanned by the linker. Libraries

specified using the -L option are scanned before the standard C library, allowing additional versions

of standard library functions to be accessed.

The argument to -L is a library keyword to which the prefix pic; numbers representing the pro-

cessor range, number of ROM pages and the number of RAM banks; and the suffix .lib are added.

Thus the option -LL when compiling for a 16F877 will, for example, scan the library pic42c-l.lib

and the option -Lxx will scan a library called pic42c-xx.lib. All libraries must be located in the

LIB subdirectory of the compiler installation directory. As indicated, the argument to the -L option

is not a complete library filename.

If you wish the linker to scan libraries whose names do not follow the above naming convention

or whose locations are not in the LIB subdirectory, simply include the libraries’ names on the com-

mand line along with your source files. Alternatively, the linker may be invoked directly allowing

the user to manually specify all the libraries to be scanned.

2.4.7 -L-option: Adjust Linker Options Directly

The -L driver option can also be used to specify an option which will be passed directly to the

linker. If -L is followed immediately by text starting with a dash character “-”, the text will be

passed directly to the linker without being interpreted by PICC. For example, if the option -L-FOO

is specified, the -FOO option will be passed on to the linker. The linker will then process this option,

when, and if, it is invoked, and perform the appropriate function, or issue an error if the option is

invalid.

•

Take care with command-line options. The linker cannot interpret driver options; sim-

ilarly the command-line driver cannot interpret linker options. In most situations, it is

always the command-line driver, PICC, that is being executed. If you need to add al-

ternate settings in the linker tab in an MPLAB Build options... dialogue, these are

the driver options (not linker options), but which are used by the driver to generate the

appropriate linker options during the linking process.

10

PICC Command-line Driver PICC Compiler Options

The -L option is especially useful when linking code which contains non-standard program sections

(or psects), as may be the case if the program contains C code which makes use of the #pragma

psect directive or assembly code which contains user-defined psects. See Section 3.12.3.5 for more

information. Without this -L option, it would be necessary to invoke the linker manually to allow

the linker options to be adjusted.

One commonly used linker option is -N, which sorts the symbol table in the map file by address,

rather than by name. This would be passed to PICC as the option -L-N.

This option can also be used to replace default linker options: If the string starting from the first

character after the -L up to the first = character matches first part of a default linker option, then that

default linker option is replaced by the option specified by the -L.

TUT•RIAL

REPLACING DEFAULT LINKER OPTIONS In a particular project, the psect entry is

used, but the programmer needs to ensure that this psect is positioned above the address

800h. This can be achieved by adjusting the default linker option that positions this

psect. First, a map file is generated to determine how this psect is normally allocated

memory. The Linker command line: in the map file indicates that this psect is nor-

mally linked using the linker option:

-pentry=CODE

Which places entry anywhere in the memory defined by the CODE class. The program-

mer then re-links the project, but now using the driver option:

-L-pentry=CODE+800h

to ensure that the psect is placed above 800h. Another map file is generated and the

Linker command line: section is checked to ensure that the option was recieved and

executed by the linker. Next, the address of the psect entry is noted in the psect lists

that appear later in the map file. See Section 5.11 for more information on the contents

of the map file.

If there are no characters following the first = character in the -L option, then any matching default

linker option will be deleted. For example: -L-pfirst= will remove any default linker option that

begins with the string -pfirst=. No warning is generated if such a default linker option cannot be

found.

TUT•RIAL

ADDING AND DELETING DEFAULT LINKER OPTIONS The default linker options for

for a project links several psects in the following fashion.

-pone=600h,two,three

which links one at 600h, then follows this with two, then three. It has been decided

11

PICC Compiler Options PICC Command-line Driver

that the psects should be linked so that one follows two, which follows three, and

that the highest address of one should be located at 5FFh. This new arragement can be

specified issuing the following driver option:

-L-pthree=-600h,two,one

which creates passes the required linker options to the linker. The existing default option

is still present, so this must be removed by use the driver option:

-L-pone=

which will remove the existing option.

The default option that you are deleting or replacing must contain an equal character.

2.4.8 -Mfile: Generate Map File

The -M option is used to request the generation of a map file. The map is generated by the linker

an includes detailed information about where objects are located in memory, see Section 5.11 for

information regarding the content of map files.

If no filename is specified with the option, then the name of the map file will have the project

name, with the extension .map.

2.4.9 -Nsize: Identifier Length

This option allows the C identifier length to be increased from the default value of 31. Valid sizes

for this option are from 32 to 255. The option has no effect for all other values.

2.4.10 -Ofile: Specify Output File

This option allows the basename of the output file(s) to be specified. If no -O option is given, the

output file(s) will be named after the first source or object file on the command line. The files

controlled are any produced by the linker or applications run subsequent to that, e.g. CROMWELL. So

for instance the HEX file, map file and SYM file are all controlled by the -O option.

The -O option can also change the directory in which the output file is located by including the

required path before the filename, e.g. -Oc:\project\output\first.hex. This will then also

specify the output directory for any files produced by the linker or subsequently run applications.

Any relative paths specified are with respect to the current working directory.

Any extension supplied with the filename will be ignored. The name and path specified by the

-O option will apply to all output files.

The options that specify MAP file creation (-M, see 2.4.8), and SYM file creation (-G, see 2.4.4)

override any name or path information provided by -O relevant to the MAP and SYM file.

12

PICC Command-line Driver PICC Compiler Options

To change the directory in which all output and intermediate files are written, use the --OUTDIR

option, see Section 2.4.40. Note that if -O specifies a path which is inconsistent with the path

specified in the --OUTDIR option, this will result in an error.

2.4.11 -P: Preprocess Assembly Files

The -P option causes the assembler files to be preprocessed before they are assembled thus allowing

the use of preprocessor directives, such as #include, with assembler code. By default, assembler

files are not preprocessed.

2.4.12 -Q: Quiet Mode

This option places the compiler in a quiet mode which suppresses the HI-TECH Software copyright

notice from being displayed.

2.4.13 -S: Compile to Assembler Code

The -S option stops compilation after generating an assembler source file. An assembler file will be

generated for each C source file passed on the command line. The command:

PICC --CHIP=16F877A -S test.c

will produce an assembler file called test.as which contains the code generated from test.c.

This option is particularly useful for checking function calling conventions and signature values

when attempting to write external assembly language routines.

The file produced by this option differs to that produced by the --ASMLIST option in that it does

not contain op-codes or addresses and it may be used as a source file and subsequently passed to the

assembler to be assembled.

2.4.14 -Umacro: Undefine a Macro

The -U option, the inverse of the -D option, is used to undefine predefined macros. This option takes

the form -Umacro. The option, -Udraft, for example, is equivalent to:

#undef draft

placed at the top of each module compiled using this option.

13

PICC Compiler Options PICC Command-line Driver

2.4.15 -V: Verbose Compile

The -V is the verbose option. The compiler will display the full command lines used to invoke each

of the compiler applications or compiler passes. This option may be useful for determining the exact

linker options if you need to directly invoke the HLINK command.

2.4.16 -X: Strip Local Symbols

The option -X strips local symbols from any files compiled, assembled or linked. Only global sym-

bols will remain in any object files or symbol files produced.

2.4.17 --ASMLIST: Generate Assembler .LST Files

The --ASMLIST option tells PICC to generate an assembler listing file for each module being com-

piled. The list file shows both the original C code, and the generated assembler code and the cor-

responding binary op-codes. The listing file will have the same name as the source file, and a file

type (extension) of .lst. Provided the link stage has successfully concluded, the listing file will be

updated by the linker so that it contains absolute addresses and symbol values. Thus you may use the

assembler listing file to determine the position of, and exact op codes corresponding to, instructions.

2.4.18 --CHAR=type: Make Char Type Signed or Unsigned

Unless this option is used, the default behaviour of the compiler is to make all undesignated character

types, unsigned char, unless explicitly declared or cast to signed char. If --CHAR=signed is

used, the default char type will become signed char.

The range of a signed character type is -128 to +127 and the range of similar unsigned objects

is 0 to 255.

2.4.19 --CHECKSUM=start-end@destination<,specs>: Calculate a

checksum

This option will perform a checksum over the address range specified and store the result at the

destination address specified. Additional specifications can be appended as a comma separated list

to this option. Such specifications are:

,width=n select the byte-width of the checksum result. A negative width will store the result in

little-endian byte order. Result widths from one to four bytes are permitted.

,offset=nnnn An initial value or offset to be added to this checksum.

14

PICC Command-line Driver PICC Compiler Options

Table 2.3: Default values for filling unprogrammed code space

Architecture Default value

Baseline PIC FFFh

Midrange PIC 3FFFh

High-end PIC FFFFh

,algorithm=n Select one of the checksum algorithms implemented in hexmate. The selectable al-

gorithms are described in Table 5.10.

The start, end and destination attributes can be entered as word addresses as this is the native

format for PICC program space. If an accompanying --FILL option has not been specified, unused

locations within the specified address range will be filled with a default value for the selected device

based on the values in table 2.3. This is to remove any unknown values from the equation and ensure

the accuracy of the checksum result.

2.4.20 --CHIP=processor: Define Processor

This option defines the processor which is being used. To see a list of supported processors that can

be used with this option, use the --CHIPINFO option.

The full list of supported devices is also included in Appendix C of this manual.

2.4.21 --CHIPINFO: Display List of Supported Processors

The --CHIPINFO option simply displays a list of processors the compiler supports. The names listed

are those chips defined in the chipinfo file and which may be used with the --chip option.

2.4.22 --CODEOFFSET: Offset Program Code to Address

In some circumstances, such as bootloaders, it is necessary to shift the program image to an alter-

native address. This option is used to specify a base address for the program code image. With this

option, all code psects (including interrupt vectors and constant data) that the linker would ordinarily

control the location of, will be adjusted.

2.4.23 --CR=file: Generate Cross Reference Listing

The --CR option will produce a cross reference listing. If the file argument is omitted, the “raw”

cross reference information will be left in a temporary file, leaving the user to run the CREF utility.

If a filename is supplied, for example --CR=test.crf, PICC will invoke CREF to process the cross

15

PICC Compiler Options PICC Command-line Driver

Table 2.4: Supported Double Types

Suboption Type

24 Truncated IEEE754 24-bit doubles

32 IEEE754 32-bit doubles

fast32 Faster implementation of 32-bit doubles

reference information into the listing file, in this case test.crf. If multiple source files are to be

included in the cross reference listing, all must be compiled and linked with the one PICC com-

mand. For example, to generate a cross reference listing which includes the source modules main.c,

module1.c and nvram.c, compile and link using the command:

PICC --CHIP=16F877A --CR=main.crf main.c module1.c nvram.c

2.4.24 --DEBUGGER=type: Select Debugger Type

This option is intended for use for compatibility with debuggers. PICC supports the Microchip ICD1

and ICD2 debuggers and using this option will configure the compiler to conform to the requirements

of the ICD (reserving memory addresses, etc.). For example:

PICC --CHIP=16F877A --DEBUGGER=icd2 main.c

2.4.25 --DOUBLE=type: Select kind of Double Types

This option allows the kind of double types to be selected. By default the compiler will choose the

truncated IEEE754 24-bit implementation for double types. With this option, this can be changed

to 32-bits. For high-end processors (PIC17Cxxx) a fast implementation, at the cost of code size, is

available.

2.4.26 --ECHO: Echo compiler command line

The option --ECHO will cause the command given to PICC to be echoed to standard output. This can

be useful if the actual invocation of the compiler is concealed or hidden inside a makefile or IDE.

2.4.27 --ERRFORMAT=format: Define Format for Compiler Messages

If the --ERRFORMAT option is not used, the default behaviour of the compiler is to display any

errors in a “human readable” format line. This standard format is perfectly acceptable to a person

16

PICC Command-line Driver PICC Compiler Options

Table 2.5: Error format specifiers

Specifier Expands To

%f Filename

%l Line number

%c Column number

%s Error string

%a Application name

%n Message number

reading the error output, but is not generally usable with environments which support compiler error

handling. The following sections indicate how this option may be used in such situations.

This option allows the exact format of printed error messages to be specified using special place-

holders embedded within a message template. See Section 2.4.27.1 for full details of the messaging

system employed by PICC.

This section is also applicable to the --WARNFORMAT and --MSGFORMAT options which adjust the

format of warning and advisory messages, respectively.

2.4.27.1 Using the Format Options

Using the these option instructs the compiler to generate error, warning and advisory messages in a

format which is acceptable to some text editors and development environments.

If the same source code as used in the example above were compiled using the --ERRFORMAT

option, the error output would be:

x.c 4: (192) undefined identifier: xFF

indicating that the error number 192 occurred in file x.c at line 4, offset 9 characters into the state-

ment. The second numeric value - the column number - is relative to the left-most non-space charac-

ter on the source line. If an extra space or tab character were inserted at the start of the source line,

the compiler would still report an error at line 4, column 9.

2.4.27.2 Modifying the Standard Format

If the message format does not meet your editor’s requirement, you can redefine its format by either

using the --ERRFORMAT=format, --WARNFORMAT=format or --MSGFORMAT=format option or

by setting the environment variables: HTC_ERR_FORMAT, HTC_WARN_FORMAT or HTC_MSG_FORMAT.

These options are in the form of a printf-style string in which you can use the specifiers shown in

Table 2.5. For example:

17

PICC Compiler Options PICC Command-line Driver

--ERRFORMAT=”file %f; line %l; column %c; %s”

The column number is relative to the left-most non-space character on the source line.

To instruct the compiler to use an environment variable to determine the message format, use

the option without specifying format. The environment variables can be set in a similar way, for

example setting the environment variables from within DOS can be done with the following DOS

commands:

set HTC_WARN_FORMAT=WARNING: file %f; line %l; column %c; %s

set HTC_ERR_FORMAT=ERROR: %a: file %f; line %l; column %c; %n %s

Using the previous source code, the output from the compiler when using the above environment

variables would be:

ERROR: parser: file x.c; line 4; column 6; (192) undefined identifier: xFF

Remember that if these environment variables are set in a batch file, you must prepend the specifiers

with an additional percent character to stop the specifiers being interpreted immediately by DOS,

e.g. the filename specifier would become %%f.

2.4.28 --ERRORS=number: Maximum Number of Errors

This option sets the maximum number of errors each compiler application, as well as the driver, will

display before stopping. By default, up to 20 error messages will be displayed. See Section 2.4.27.1

for full details of the messaging system employed by PICC.

2.4.29 --FILL=opcode: Fill Unused Program Memory

This option allows specification of a hexadecimal opcode that can be used to fill all unused program

memory locations with a known code sequence. Multi-byte codes should be entered in little endian

byte order.

If the fill value is only to be applied to a restricted address range, the restriction can be specified by

using --FILL=opcode@start_address-end_address. This facility also makes it possible

to allow a fill value to be applied to address ranges outside of program memory (as addressed in

the hex file), for example EEPROM. If an address restriction is not specified, the fill value will be

applied to all of the device’s program memory. Optionally the ,data flag can be added to this option

to specify to only use this fill value to pad out data records within this address range to the default

length.

18

PICC Command-line Driver PICC Compiler Options

Table 2.6: Supported IDEs

Suboption IDE

hitide HI-TECH Software’s HI-TIDE

mplab Microchip’s MPLAB

Table 2.7: Supported languages

Suboption Language

en, english English

fr, french,francais French

de, german, deutsch German

2.4.30 --GETOPTION=app,file: Get Command-line Options

This option is used to retrieve the command line options which are used for named compiler appli-

cation. The options are then saved into the given file. This option is not required for most projects.

2.4.31 --HELP<=option>: Display Help

The --HELP option displays information on the PICC compiler options. To find out more about a

particular option, use the option’s name as a parameter. For example:

PICC --help=warn

This will display more detailed information about the --WARN option.

2.4.32 --IDE=type: Specify the IDE being used

This option is used to automatically configure the compiler for use by the named Integrated Devel-

opment Environment (IDE). The supported IDE’s are shown in Table 2.6.

2.4.33 --LANG=language: Specify the Language for Messages

This option allows the compiler to be configured to produce error, warning and some advisory mes-

sages in languages other than English. English is the default language and some messages are only

ever printed in English regardless of the language specified with this option.

Table 2.7 shows those langauges currently supported.

See Section 2.4.27.1 for full details of the messaging system employed by PICC.

19

PICC Compiler Options PICC Command-line Driver

2.4.34 --MEMMAP=file: Display Memory Map

This option will display a memory map for the specified map file. This option is seldom required,

but would be useful if the linker is being driven explicitly, i.e. instead of in the normal way through

the driver. This command would display the memory summary which is normally produced at the

end of compilation by the driver.

2.4.35 --MSGDISABLE=messagelist: Disable Warning Messages

This option allows warning or advisory messages to be disabled during compilation of all modules

within the project, and during all stages of compilation. Warning mesasges can also be disabled using

pragma directives. For full information on the compiler’s messaging system, see Section 2.4.27.

The messagelist is a comma-separated list of warning numbers that are to be disabled. If the

number of an error is specified, it will be ignored by this option. If the message list is specified as 0,

then all warnings are disabled.

2.4.36 --MSGFORMAT=format: Set Advisory Message Format

This option sets the format of advisory messages produced by the compiler. See Section 2.4.27 for

full information.

2.4.37 --NODEL: Do not remove temporary files

Specifying --NODEL when building will instruct PICC not to remove the intermediate and temporary

files that were created during the build process.

2.4.38 --NOEXEC: Don’t Execute Compiler

The --NOEXEC option causes the compiler to go through all the compilation steps, but without ac-

tually performing any compilation or producing any output. This may be useful when used in con-

junction with the -V (verbose) option in order to see all of the command lines the compiler uses to

drive the compiler applications.

2.4.39 --OPT<=type>: Invoke Compiler Optimizations

The --OPT option allows control of all the compiler optimizers. By default, without this option, all

optimizations are enabled with a preference for space optimization over speed. All optimizations

may be disabled by using --OPT=none, or individual optimizers may be controlled, e.g. --OPT=asm

will only enable the assembler optimizer. Table 2.8 lists the available optimization types.

20

PICC Command-line Driver PICC Compiler Options

Table 2.8: Optimization Options

Option name File format

1..9 Select code generation level 1 through 9

asm Select assembler optimizations

speed Favor code generation for speed over space

space Favor code generation for space over speed

debug Favor accurate debugging over optimization

none Do not use any compiler optimizations

2.4.40 --OUTDIR: Specify a directory for output files

This option allows a directory to be nominated in for PICC to locate its output files. If this option

is omitted, output files will be created in the current working directory. This option will not set the

location of intermediate files.

2.4.41 --OUTPUT=type: Specify Output File Type

This option allows the type of the output file(s) to be specified. If no --OUTPUT option is specified,

the output file’s name will be derived from the first source or object file specified on the command

line.

The available output file format are shown in Table 2.9. More than one output format may be

specified by supplying a comma-separated list of tags. Those output file types which specify library

formats stop the compilation process before the final stages of compilation are executed. Hence

specifying an output file format list containing, e.g. lib or all will over-ride the non-library output

types, and only the library file will be created.

2.4.42 --PRE: Produce Preprocessed Source Code

The --PRE option is used to generate preprocessed C source files with an extension .pre. This may

be useful to ensure that preprocessor macros have expanded to what you think they should. Use

of this option can also create C source files which do not require any separate header files. This is

useful when sending files for technical support.

2.4.43 --PROTO: Generate Prototypes

The --PROTO option is used to generate .pro files containing both ANSI and K&R style function

declarations for all functions within the specified source files. Each .pro file produced will have

21

PICC Compiler Options PICC Command-line Driver

Table 2.9: Output file formats

Option name File format

lib Library File

intel Intel HEX

tek Tektronic

aahex American Automation symbolic HEX file

mot Motorola S19 HEX file

ubrof UBROF format

bin Binary file

mcof Microchip PIC COFF

cof Common Object File Format

cod Bytecraft COD file format

elf ELF/DWARF file format

the same base name as the corresponding source file. Prototype files contain both ANSI C-style

prototypes and old-style C function declarations within conditional compilation blocks.

The extern declarations from each .pro file should be edited into a global header file which is

included in all the source files comprising a project. The .pro files may also contain static decla-

rations for functions which are local to a source file. These static declarations should be edited into

the start of the source file. To demonstrate the operation of the --PROTO option, enter the following

source code as file test.c:

#include <stdio.h>

add(arg1, arg2)

int * arg1;

int * arg2;

{

return *arg1 + *arg2;

}

void printlist(int * list, int count)

{

while (count--)

printf("%d ", *list++);

putchar(’\n’);

}

If compiled with the command:

22

PICC Command-line Driver PICC Compiler Options

PICC --CHIP=16F877A --PROTO test.c

PICC will produce test.pro containing the following declarations which may then be edited as

necessary:

/* Prototypes from test.c */

/* extern functions - include these in a header file */

#if PROTOTYPES

extern int add(int *, int *);

extern void printlist(int *, int);

#else /* PROTOTYPES */

extern int add();

extern void printlist();

#endif /* PROTOTYPES */

2.4.44 --RAM=lo-hi,<lo-hi,...>: Specify Additional RAM Ranges

This option is used to specify memory, in addition to any RAM specified in the chipinfo file, which

should be treated as available RAM space. Strictly speaking, this option specifies the areas of mem-

ory that may be used by writable (RAM-based) objects, and not necessarily those areas of memory

which contain physical RAM. The output that will be placed in the ranges specified by this option

are typically variables that a program defines.

Some chips have an area of RAM that can be remapped in terms of its location in the memory

space. This, along with any fixed RAM memory defined in the chipinfo file, are grouped an made

available for RAM-based objects.

For example, to specify an additional range of memory to that present on-chip, use:

--RAM=default,+100-1ff

for example. To only use an external range and ignore any on-chip memory, use:

--RAM=0-ff

This option may also be used to reserve memory ranges already defined as on-chip memory in the

chipinfo file. To do this supply a range prefixed with a minus character, -, for example:

--RAM=default,-100-103

will use all the defined on-chip memory, but not use the addresses in the range from 100h to 103h

for allocation of RAM objects.

23

PICC Compiler Options PICC Command-line Driver

2.4.45 --ROM=lo-hi,<lo-hi,...>|tag: Specify Additional ROM Ran-

ges

This option is used to specify memory, in addition to any ROM specified in the chip configuration

file, which should be treated as available ROM space. Strictly speaking, this option specifies the

areas of memory that may be used by read-only (ROM-based) objects, and not necessarily those

areas of memory which contain physical ROM. The output that will be placed in the ranges specified

by this option are typically executable code and any data variables that are qualified as const.

When producing code that may be downloaded into a system via a bootloader the destination

memory may indeed be some sort of (volatile) RAM. To only use on-chip ROM memory, this option

is not required. For example, to specify an additional range of memory to that on-chip, use:

--ROM=default,+100-2ff

for example. To only use an external range and ignore any on-chip memory, use:

--ROM=100-2ff

This option may also be used to reserve memory ranges already defined as on-chip memory in the

chip configuration file. To do this supply a range prefixed with a minus character, -, for example:

--ROM=default,-100-1ff

will use all the defined on-chip memory, but not use the addresses in the range from 100h to 1ffh for

allocation of ROM objects.

2.4.46 --RUNTIME=type: Specify Runtime Environment

The --RUNTIME option is used to control what is included as part of the runtime environment. The

runtime environment encapsulates any code that is present at runtime which has not been defined by

the user, instead supplied by the compiler, typically as library code.

This option is not required for normal compilation. The usable suboptions include those shown

in Table 2.10.

2.4.47 --SCANDEP: Scan for Dependencies

When this option is used, a .dep (dependency) file is generated. The dependency file lists those

files on which the source file is dependant. Dependencies result when one file is #included into

another.

24

PICC Command-line Driver PICC Compiler Options

Table 2.10: Runtime environment suboptions

Suboption Controls On (+) implies

clear The code present in the startup module that

clears the rbss psects.

The rbss psects are cleared.

clib The inclusion of library files into the output

code by the linker.

Library files are linked into the

output.

download Conditions the application and the gener-

ated hex file for download via a bootloader.

The first four program words only

contain code to jump to the next

part of the program and will end

in a GOTO (this may take less

than 4 instructions). Data records

in the hex file will align on 16

byte address boundaries. Short

data records will be padded to 16

bytes in length with default val-

ues from table 2.3.

init The code present in the startup module that

copies the idata psect’s ROM-image to

RAM.

The idata psect’s ROM image is

copied into RAM.

keep Whether the start-up module source file is

deleted after compilation.

The start-up module is not

deleted.

osccal Oscillator initialization. For chips that have an oscillator

constant, initialize the oscillator

with the constant at start-up.

ramtest Perform a RAM integrity test before clear-

ing/initializing memory.

Generated start up code will loop

through every location of general

purpose RAM and call library

routine, __ram_cell_test.

Variables qualified as persistent

are backed up during cell testing.

resetbits Power-down and time-out status bits

preservation.

At start-up, the power-down and

time-out status bits are copied

into the variables __powerdown

and __timeout respectively.

25

PICC Compiler Options PICC Command-line Driver

2.4.48 --SERIAL=hexcode@address: Store a Value at this Program Mem-

ory Address

This option allows a hexadecimal code to be stored at a particular address in program memory. A

typical application for this option might be to position a serial number in program memory. The byte-

width of data to store is determined by the byte-width of the hexcode parameter in the option. For ex-

ample to store a one byte value, zero, at program memory address 1000h, use --SERIAL=00@1000.

To store the same value as a four byte quantity use --SERIAL=00000000@1000. This option is

functionally identical to the corresponding hexmate option. For more detailed information and ad-

vanced controls that can be used with this option, refer to Section 5.16.1.14 of this manual.

If this value is expected to be read from program memory at runtime and the selected device

cannot read from its own program memory, each byte value within the serial number should be

encoded within a retlw instruction so that the serial number can be retrieved using call instructions

instead.

2.4.49 --SETOPTION=app,file: Set The Command-line Options for Ap-

plication

This option is used to supply alternative command line options for the named application when com-

piling. The app component specifies the application that will recieve the new options. The file

component specifies the name of the file that contains the additional options that will be passed to

the application. This option is not required for most projects. If specifying more than one option to

a component, each option must be entered on a new line in the option file.

This option can also be used to remove an application from the build sequence. If the file param-

eter is specified as off, execution of the named application will be skipped. In most cases this is

not desirable as almost all applications are critical to the success of the build process. Disabling a

critical application will result in catastrophic failure. However it is permissible to skip a non-critical

application such as clist or hexmate if the final results are not reliant on their function.

2.4.50 --SETUP=dir: Setup the product

This option sets up the compiler after installation. Parameter, dir identifies the directory where the

compiler has been installed.

2.4.51 --STRICT: Strict ANSI Conformance

The --STRICT option is used to enable strict ANSI conformance of all special keywords. HI-

TECH C supports various special keywords (for example the persistent type qualifier). If the

--STRICT option is used, these keywords are changed to include two underscore characters at

26

PICC Command-line Driver PICC Compiler Options

Table 2.11: Memory Summary Suboptions

Suboption Controls On (+) implies

psect Summary of psect usage. A summary of psect names and

the addresses they were linked at

will be shown.

class Summary of class usage. A summary of used address

ranges within each memory class.

mem General summary of memory used. A general summary of memories

used will be shown.

hex Summary of address used within the hex

file.

A summary of addresses and hex

files which make up the final out-

put file will be shown.

file Whether summary information is shown

on the screen or shown and saved to a file.

Summary information will be

shown on screen and saved to a

file.

the beginning of the keyword (e.g. __persistent) so as to strictly conform to the ANSI stan-

dard. Be warned that use of this option may cause problems with some standard header files (e.g.

<intrpt.h>).

2.4.52 --SUMMARY=type: Select Memory Summary Output Type

Use this option to select the type of memory summary that is displayed after compilation. By default,

or if the mem suboption is selected, a memory summary is shown. This shows the memory usage for

all available linker classes.

A psect summary may be shown by enabling the psect suboption. This shows individual psects,

after they have been grouped by the linker, and the memory ranges they cover. Table 2.11 shows

what summary types are available.

2.4.53 --TIME: Report time taken for each phase of build process

Adding --TIME when building generate a summary which shows how much time each stage of the

build process took to complete.

2.4.54 --VER: Display The Compiler’s Version Information

The --VER option will display what version of the compiler is running.

27

PICC Compiler Options PICC Command-line Driver

2.4.55 --WARN=level: Set Warning Level

The --WARN option is used to set the compiler warning level. Allowable warning levels range from

-9 to 9. The warning level determines how pedantic the compiler is about dubious type conversions

and constructs. The higher the warning level, the more important the warning message. The default

warning level is 0 and will allow all normal warning messages.

Use this option with care as some warning messages indicate code that is likely to fail during

execution, or compromise portability.

Warning message can be individually disabled with the --MSGDISABLE option, see 2.4.35. See

also Section 2.4.27.1 for full information on the compiler’s messaging system.

2.4.56 --WARNFORMAT=format: Set Warning Message Format

This option sets the format of warning messages produced by the compiler. See Section 2.4.27 for

more information on this option.

28

Chapter 3

C Language Features

HI-TECH PICC STD supports a number of special features and extensions to the C language which

are designed to ease the task of producing ROM-based applications. This chapter documents the

compiler options and special language features which are specific to these devices.

3.1 ANSI Standard Issues

3.1.1 Implementation-defined behaviour

Certain sections of the ANSI standard have implementation-defined behaviour. This means that the

exact behaviour of some C code can vary from compiler to compiler. Throughout this manual are

sections describing how the HI-TECH C compiler behaves in such situations.

3.2 Processor-related Features

HI-TECH C has several features which relate directly to the PIC architecture and instruction set.

These detailed in the following sections.

3.2.1 Stack

The stack on PIC processors is limited in depth and cannot be manipulated directly. It is left up to

the programmer to ensure that the maximum stack dept is not exceeded. A call graph is provided by

the linker when generating a MAP file. This will indicate the stack levels at each function call.

29

Processor-related Features C Language Features

3.2.2 Configuration Fuses

The PIC processor’s configuration fuses (or configuration bits) may be set using the __CONFIGmacro

as follows:

__CONFIG(x);

Note there are two leading underscore characters and x is the value that is to be in the configuration

word. The macro is defined in <htc.h>, so be sure to include this into the module that uses this

macro.

Specially named quantities are defined in the header file appropriate for the processor you are

using to help you set the required features. These names usually follow the same names as used

in the datasheet. Refer to your processor’s header file for details. For devices that have more than

one configuration word, each subsequent invocation of __CONFIG will modify the next configuration

word in sequence.

3.2.3 ID Locations

Some PIC devices have location outside the addressable memory area that can be used for storing

program information, such as an ID number. The __IDLOC macro may be used to place data into

these locations. The macro is used in a manner similar to:

#include <htc.h>

__IDLOC(x);

where x is a list of nibbles which are to be positioned into the ID locations. Only the lower four bits

of each ID location is programmed, so the following:

__IDLOC(15F0);

will attempt to fill ID locations which the values: 1, 5, F, 0. The base address of the ID locations

is specified by the idloc psect which will be automatically assigned as appropriate address based on

the type of processor selected. Some devices will permit programming up to seven bits within each

ID location. To program the full seven bits, the regular __IDLOC macro is not suitable. For this

situation the __IDLOC7(a,b,c,d) macro is available. The parameters a to d are a comma separated

list of values. The values can be entered as either decimal or hexadecimal format such as:

__IDLOC7(0x7f,1,70,0x5a);

It is not appropriate to use the __IDLOC7 macro on a device that does not permit seven bit program-

ming of ID locations.

30

C Language Features Processor-related Features

3.2.4 Bit Instructions

Wherever possible, HI-TECH C will attempt to use the PIC bit instructions. For example, when

using a bitwise operator and a mask to alter a bit within an integral type, the compiler will check the

mask value to determine if a bit instruction can achieve the same functionality.

unsigned int foo;

foo |= 0x40;

will produce the instruction:

bsf _foo,6

To set or clear individual bits within integral type, the following macros could be used:

#define bitset(var,bitno) ((var) |= 1UL < < (bitno))

#define bitclr(var,bitno) ((var) &= ~(1UL < < (bitno)))

To perform the same operation as above, the bitset macro could be employed as follows:

bitset(foo,6);

3.2.5 EEPROM Access

For most devices that come with on-chip EEPROM, the compiler offers several methods of accessing

this memory. The EEPROM access methods are described in the following sections.

3.2.5.1 The eeprom variable qualifier

The compiler provides the eeprom qualifier as a very simple and efficient method to configure and

access EEPROM. This feature allows initialization of EEPROM memory and allows the simplest

mechanism for runtime access. The eeprom qualifier may only be applied to global and/or static

variables and this indicates to the compiler that the object should reside in EEPROM memory. For

example:

eeprom unsigned int serial_number = 0x1234;

This will create an eeprom “variable” which is predefined with the value 0x1234. This would be

equivalent to using the __EEPROM_DATA macro with 0x12 and 0x34 as two of its parameters.

This variable may be read or written to at runtime:

serial_number = 0xAA55;

31

Processor-related Features C Language Features

The compiler will produce the appropriate code to access EEPROM and is particularly efficient

when accessing multi-byte variables. Unlike conventional RAM variables, if an initialized EEPROM

variable is modified during runtime, next time the processor is reset the variable will contain the

updated value, not the original initialization value. So in the above example, the first time the

processor starts up, serial_number will contain 0x1234, however after this is changed to 0xAA55,

serial_number will never revert back to the original 0x1234 value, even after reset, unless explicitly

programmed to do so.

Note the compiler only support basic assignment operations on eeprom qualified objects. If

a complex expression involving an eeprom qualified object is used, the compiler will generated a

“can’t generate code” error. In this case you should try and simplify the expression, perhaps by

using a temporary variable.

•

As the location of eeprom qualified variables is managed by the toolsuite, it is not nec-

essary to access EEPROM by specific address, in fact this should be avoided. For this

reason it is not recommended to combine the use of eeprom qualified variables with any

other EEPROM access method.

3.2.5.2 The __EEPROM_DATA() macro

For those PIC devices that support external programming of their EEPROM data area, the __EEP-

ROM_DATA() macro can be used to place the initial EEPROM data values into the HEX file ready

for programming. The macro is used as follows.

#include <htc.h>

__EEPROM_DATA(0, 1, 2, 3, 4, 5, 6, 7);

The macro accepts eight parameters, being eight data values. Each value should be a byte in size.

Unused values should be specified as a parameter of zero. The macro may be called multiple times

to define the required amount of EEPROM data. It is recommended that the macro be placed outside

any function definitions.

The macro defines, and places the data within, a psect called eeprom_data. This psect is posi-

tioned by a linker option in the usual way.

This macro is not used to write to EEPROM locations during run-time, it is to be used for pre-

loading EEPROM contents at program time only. Using eeprom qualified variables provides a more

flexible approach to pre-loading of EEPROM as they do not require initialization of eight bytes at a

time and they also come with built-in runtime access as discussed in section 3.2.5.1.

32

C Language Features Processor-related Features

3.2.5.3 EEPROM Access Functions

The library functions eeprom_read() and eeprom_write(), can be called to read from, and write to

the EEPROM during program execution. For example, to write a byte-size value to an address in

EEPROM and retrieve it using these fuctions would be:

#include <htc.h>

void eetest(void){

unsigned char value = 1;

unsigned char address = 0;

eeprom_write(address,value); // Initiate writing value to address

value = eeprom_read(address); // read from EEPROM at address

}

These functions test and wait for any concurrent writes to EEPROM to conclude before performing

their required operation. The eeprom_write() function will initiate the process of writing to EEP-

ROM and this process will not have completed by the time that eeprom_write() returns. The new data

written to EEPROM will become valid approximately four milliseconds later. In the above example,

the new value will not yet be ready at the time when eeprom_read() is called, however because this

function waits for any concurrent writes to complete before initiating the read, the correct value will

be read.

•

It may also be convenient to use the preprocessor symbol, _EEPROMSIZE in conjunction

with some of these access methods. This symbol defines the number of EEPROM bytes

available for the selected chip.

3.2.5.4 EEPROM Access Macros

Although these macros perform much the same service as their library function conterparts, these

should only be employed in specific circumstances. It is appropriate to select EEPROM_READ or

EEPROM_WRITE in favour of the library equivalents if any of the following conditions are true:

• You cannot afford the extra level of stack depth required to make a function call

• You cannot afford the added code overhead to pass parameters and perform a call/return

• You cannot afford the added processor cycles to execute the function call overhead

33

Processor-related Features C Language Features

Be aware that if a program contains multiple instances of either macro, any code space saving will

be negated as the full content of the macro is now duplicated in code space.

In the case of EEPROM_READ(), there is another very important detail to note. Unlike eep-

rom_read(), this macro does not wait for any concurrent EEPROM writes to complete before pro-

ceeding to select and read EEPROM. Had the previous example used the EEPROM_READ() macro

in place of eeprom_read() the operation would have failed. If it cannot be guarenteed that all writes

to EEPROM have completed at the time of calling EEPROM_READ(), the appropriate flag should

be polled prior to executing EEPROM_READ(). For example:

#include <htc.h>

void eetest(void){

unsigned char value = 1;

unsigned char address = 0;

EEPROM_WRITE(address,value); // Initiate writing value to address

while(WR) continue; // wait for end-of-write before EEPROM_READ

value = EEPROM_READ(address); // read from EEPROM at address

}

3.2.6 Flash Runtime Access

HI-TECH PICC STD provides a number of methods to access the contents of program memory at

runtime. Particular care must be taken when modifying the contents of program memory. If the

location being modified is that which is currently being executed or you’ve accidentally selected a

region of your executable code for use as non-volatile storage, the result could be disaterous so take

care.

For those devices requiring a flash erasure operation be performed prior to writing to flash, this

step will be performed internally by the compiler within the access routine and does not need to be

implemented as a separate stage. Data within the same flash erasure block that is unrelated to the

write operation will be backed up before the block is erased and restored after the erasure.

3.2.6.1 Flash Access Macros

Similar to the EEPROM read/write routines described above, there are equivalent Flash memory

routines. For example, to write a byte-sized value to an address in flash memory:

FLASH_WRITE(address,value);

To read a byte of data from an address in flash memory, and store it in a variable:

variable=FLASH_READ(address);

34

C Language Features Processor-related Features

3.2.6.2 Flash Access Functions

The flash_read() function provides the same functionality as the FLASH_READ() macro but will

potentially cost less in code space if multiple invocations are required.

The flash_copy() function allows duplication of a block of memory at a location in flash memory.

The block of data being duplicated can be sourced from either RAM or program memory. This

routine is only available for those devices which support writing to flash memory in sizes greater

than one word at a time.

For the small subset of devices which allow independant control over a flash block erasure pro-

cess, the flash_erase() function provides this service if required.

3.2.7 Baseline PIC special instructions

The PIC baseline (12-bit instruction word) devices have some registers which are not in the normal

SFR area and cannot be accessed using an ordinary move instruction. The HI-TECH C compiler can

be instructed to automatically use the special instructions intended for such cases when pre-defined

symbols are accessed.

The definition of the special symbols make use of the control keyword. This keyword informs

the compiler that the registers are outside of the normal address space and that a different access

method is required.

3.2.7.1 The OPTION instruction

Some baseline PIC devices use an option instruction to load the OPTION register. The appropriate

header files contain a special definition for a C object called OPTION and macros for the bit sym-

bols which are stored in this register. PICC will automatically use the option instruction when an

appropriate processor is selected and the OPTION object is accessed.

For example, to set the prescaler assignment bit so that prescaler is assigned to the watch dog

timer, the following code can be used after including pic.h.

OPTION = PSA;

This will load the appropriate value into the W register and then call the option instruction.

3.2.7.2 The TRIS instructions

Some PIC devices use a tris instruction to load the TRIS register. The appropriate header files contain

a special definition for a C object called TRIS. PICC will automatically use the tris instruction when

an appropriate processor is selected and the TRIS object is accessed.

For example, to make all the bits on the output port high impedance, the following code can be

used after including pic.h.

35

Processor-related Features C Language Features

TRIS = 0xFF;

This will load the appropriate value into the W register and then call the tris instruction.

Those PIC devices which have more than one output port may have definitions for objects:

TRISA, TRISB and TRISC, depending on the exact number of ports available. This objects are

used in the same manner as described above.

3.2.7.3 Calibration Space

The Microchip-modified IEEE754 32-bit floating point format parameters in the calibration space

in the PIC14000 processor may be accessed using the get_cal_data() function. The byte parameters

may be accessed directly using the identifiers defined in the header file.

3.2.7.4 Oscillator calibration constants

Some PIC devices come with an oscillator calibration constant which is pre-programmed into the

devices program memory. This constant can be read and written to the OSCCAL register to calibrate

the internal RC oscillator. On some baseline PIC devices the calibration constant is stored as a movlw

instruction at the top of program memory, e.g. the 12C50X and 16C505 parts. On reset the program

counter is made to point to this instruction and it is executed first before the program counter wraps

around to 0x0000 which is the effective reset vector for the device. The PICC compiler default

startup routine will automatically include code to load the OSCCAL register with the value contained

in the W register after reset on such devices. No other code is required by the programmer.

For other chips, such as 12C67X chips, the oscillator constant is also stored at the top of program

memory, but as a retlw instruction. The compiler’s startup code will automatically generate code to

retrieve this value and do the configuration. This feature can be turned off via the –RUNTIME

option.

At runtime this value may be read using the macro _READ_OSCCAL_DATA(). To be able to use this

macro, make sure that <htc.h> is included into the relevant modules of your program. This macro

returns the calibration constant which can then be stored into the OSCCAL register, as follows:

OSCCAL = _READ_OSCCAL_DATA();

The location which stores the calibration constant is never code protected and will be lost if you

reprogram the device. Thus, if you are using a windowed or flash device, the calibration constant

must be saved from the last ROM location before it is erased. The constant must then be repro-

grammed at the same location along with the new program and data.

If you are using an in-circuit emulator (ICE), the location used by the calibration retlw in-

struction may not be programmed and would be executed as some other instruction. Calling the

_READ_OSCCAL_DATA() macro will not work and will almost certainly not return correctly. If you

wish to test code that includes this macro on an ICE, you will have to program a retlw instruction at

36

C Language Features Files

the appropriate location in program memory. Remember to remove this instruction when program-

ming the actual part so you do not destroy the calibration value.

3.3 Files

3.3.1 Source Files

The extension used with source files is important as it is used by the compiler drivers to determine

their content. Source files containing C code should have the extension .c, assembler files should

have extensions of .as, relocatable object files require the .obj extension, and library files should

be named with a .lib extension.

3.3.2 Symbol Files

The PICC -G option tells the compiler to produce several symbol files which can be used by debug-

gers and simulators to perform symbolic and source-level debugging. Using the --IDE option may

also enable symbol file generation as well.

The -G option produces an absolute symbol files which contain both assembler- and C-level

information. This file is produced by the linker after the linking process has been completed. If

no symbol filename is specified, a default filename of file.sym will be used, where file is the

basename of the first source file specified on the command line. For example, to produce a symbol

file called test.sym which includes C source-level information:

PICC –CHIP=16F877A -Gtest.sym test.c init.c

This option will also generate other symbol files for each module compiled. These files are

produced by the code generator and do not contain absolute address. These files have the extension

.sdb. The base name will be the same as the base name of the module being compiled. Thus the

above command line would also generate symbols files with the names test.sdb and init.sdb.

3.3.3 Standard Libraries

HI-TECH C includes a number of standard libraries, each with the range of functions described in

Appendix A. Figure 3.1 illustrates the naming convention used for standard libraries. The meaning

of each field is described here:

• Processor Type is always pic

• Processor Range is 2 for Baseline PICs, 4 for Midrange PICs and 7 for High-End PIC micro-

processors.

• # of ROM Pages is 2n.

37

Files C Language Features

Figure 3.1: Library Naming Convention

• # if RAM Banks is 2m. For Midrange processors that have common memory, a letter is used

rather than a number. For example, where ’0’, ’1’ or ’2’ might have been used for processors

with no common memory, ’a’, ’b’, and ’c’ would be used for processors that do have common

memory.

• Double Type is - for 24-bit doubles, and d for 32-bit doubles.

• Library Type is c for the standard library, l for the library which contains only printf-related

functions with additional support for longs, and f for the library which contains onlyConven-

tion printf-related functions with additional support for longs and floats.

Library files have the extensions .lib. Some compiler options affect the name and number of

library files which are required, however the appropriate libraries are automatically linked when

using the command-line driver, PICC.

3.3.4 Runtime startup Modules

A C program requires certain objects to be initialised and the processor to be in a particular state

before it can begin execution of its function main(). It is the job of the runtime startup code to

perform these tasks.

Traditionally, runtime startup code is a generic, precompiled routine which is always linked into

a user’s program. Even if a user’s program does not need all aspects of the runtime startup code,

redundant code is linked in which, albeit not harmful, takes up memory and slows execution. For

example, if a program does not use any uninitialized variables, then no routine is required to clear

the bss psects.

HI-TECH PICC STD differs from other compilers by using a novel method to determine exactly

what runtime startup code is required and links this into the program automatically. It does this

by performing an additional link step which does not produce any usable output, but which can be

used to determine the requirements of the program. From this information PICC then “writes” the

assembler code which will perform the runtime startup. This code is stored into a file which can then

be assembled and linked into the remainder of the program in the usual way.

38

C Language Features Files

Since the runtime startup code is generated automatically on every compilation, the generated

files associated with this process are deleted after they have been used. If required, the assembler

file which contains the runtime startup code can be kept after compilation and linking by using the

driver option --RUNTIME=default,+keep. The residual file will be called startup.as and will be

located in the current working directory. If you are using an IDE to perform the compilation the

destination directory is dictated by the IDE itself, however you may use the --OUTDIR option to

specify an explicit output directory to the compiler.

This is an automatic process which does not require any user interaction, however some aspects

of the runtime code can be controlled, if required, using the --RUNTIME option. These are described

in the sections below.

3.3.4.1 Initialization of Data psects

One job of the runtime startup code is ensure that any initialized variables contain their initial value

before the program begins execution. Initialized variables are those which are not auto objects and

which are assigned an initial value in their definition, for example input in the following example.

int input = 88;

void main(void) {

...

Since auto objects are dynamically created, they require code to be positioned in the function in

which they are defined to perform their initialization. It is also possible that their initial value changes

on each instance of the function. As a result, initialized auto objects do not use the data psects.

Such initialized objects have two components and are placed within the data psects.

The actual initial values are placed in a psect called idata. The other component is where the

variables will reside, and be accessed, at runtime. Space is reserved for the runtime location of

initialized variables in a psect called rdata. This psect does not contribute to the output file.

The runtime startup code performs a block copy of the values from the idata to the rdata psect

so that the RAM variables will contain their initial values before main() is executed. Each location

in the idata psect is copied to appropriate placed in the rdata psect.

The block copy of the data psects may be omitted by disabling the init suboption of --RUNTIME.

For example:

–RUNTIME=default,-init

With this part of the runtime startup code absent, the contents of initialized variables will be

unpredictable when the program begins execution. Code relying on variables containing their initial

value will fail.

Variables whose contents should be preserved over a reset, or even power off, should be qualified

with persistent, see Section 3.4.9.1. Such variables are linked at a different area of memory and are

not altered by the runtime startup code in any way.

39

Files C Language Features

3.3.4.2 Clearing the Bss Psects

The ANSI standard dictates that those non-auto objects which are not initialized must be cleared

before execution of the program begins. The compiler does this by grouping all such uninitialized

objects into a bss psect. This psect is then cleared as a block by the runtime startup code.

The abbreviation "bss" stands for Block Started by Symbol and was an assembler pseudo-op

used in IBM systems back in the days when computers were coal-fired. The continued usage of this

term is still appropriate.

The name of the bss psect is rbss.

The block clear of the bss psect may be omitted by disabling the clear suboption of --RUNTIME.

For example:

–RUNTIME=default,-clear

With this part of the runtime startup code absent, the contents of uninitialized variables will be

unpredictable when the program begins execution.

Variables whose contents should be preserved over a reset, or even power off, should be qualified

with persistent, see Section 3.4.9.1. Such variables are linked at a different area of memory and are

not altered by the runtime startup code in anyway.

3.3.4.3 Linking in the C Libraries

By default, a set of libraries are automatically passed to the linker to be linked in with user’s program.

The libraries can be omitted by disabling the clib suboption of --RUNTIME. For example:

–RUNTIME=default,-clib

With this part of the runtime startup code absent, the user must provide alternative library or

source files to allow calls to library routines. This suboption may be useful if alternative library or

source files are available and you wish to ensure that no HI-TECH C library routines are present in

the final output.

Some C statements produce assembler code that call library routines even though no library

function was called by the C code. These calls perform such operations as division or floating-point

arithmetic. If the C libraries have been excluded from the code output, these implicit library calls

will also require substitutes.

3.3.4.4 The powerup Routine

Some hardware configurations require special initialization, often within the first few cycles of ex-

ecution after reset. To achieve this there is a hook to the reset vector provided via the powerup

routine. This is a user-supplied assembler module that will be executed immediately on reset. Often

this can be embedded in a C module as embedded assembler code. A “dummy” powerup routine is

included in the file powerup.as. The file can be copied, modified and included into your project.

No special linking options or jumps to the powerup routine are required, the compiler will detect if

40

C Language Features Supported Data Types and Variables

Table 3.1: Basic data types

Type Size (bits) Arithmetic Type

bit 1 unsigned integer

char 8 signed or unsigned integer1

unsigned char 8 unsigned integer

short 16 signed integer

unsigned short 16 unsigned integer

int 16 signed integer

unsigned int 16 unsigned integer

long 32 signed integer

unsigned long 32 unsigned integer

float 24 real

double 24 or 32 real

you are using a powerup routine and will automatically generate code to jump to it after reset. If you

use a powerup routine, you will, however, need to add a jump to start after your initializations.

Refer to comments in the powerup source file for details about this. The powerup.as source file can

be found in the compilers SOURCES directory.

3.4 Supported Data Types and Variables

The HI-TECH PICC STD compiler supports basic data types with 1, 2, 3 and 4 byte sizes. Table 3.1

shows the data types and their corresponding size and arithmetic type.

3.4.1 Radix Specifiers and Constants

The format of integral constants specifies their radix. HI-TECH C supports the ANSI standard radix

specifiers as well as ones which enables binary constants to specified in C code. The format used to

specify the radices are given in Table 3.2. The letters used to specify binary or hexadecimal radices

are case insensitive, as are the letters used to specify the hexadecimal digits.

Any integral constant will have a type which is the smallest type that can hold the value without

overflow. The suffix l or L may be used with the constant to indicate that it must be assigned either

a signed long or unsigned long type, and the suffix u or U may be used with the constant to

indicate that it must be assigned an unsigned type, and both l or L and u or U may be used to indicate

unsigned long int type.

Floating-point constants have double type unless suffixed by f or F, in which case it is a float

constant. The suffixes l or L specify a long double type which is considered an identical type to

41

Supported Data Types and Variables C Language Features

Table 3.2: Radix formats
Radix Format Example

binary 0bnumber or 0Bnumber 0b10011010

octal 0number 0763

decimal number 129

hexadecimal 0xnumber or 0Xnumber 0x2F

double by HI-TECH C.

Character constants are enclosed by single quote characters ’, for example ’a’. A character

constant has char type. Multi-byte character constants are not supported.

String constants or string literals are enclosed by double quote characters ", for example "hello

world". The type of string constants is const char * and the strings are stored in the program

memory. Assigning a string constant to a non-const char pointer will generate a warning from the

compiler. For example:

char * cp= "one"; // "one" in ROM, produces warning

const char * ccp= "two"; // "two" in ROM, correct

Defining and initializing a non-const array (i.e. not a pointer definition) with a string, for example:

char ca[]= "two"; // "two" different to the above

produces an array in data space which is initialised at startup with the string "two" (copied from

program space), whereas a constant string used in other contexts represents an unnamed const-

qualified array, accessed directly in program space.

HI-TECH C will use the same storage location and label for strings that have identical character

sequences, except where the strings are used to initialise an array residing in the data space as shown

in the last statement in the previous example.

Two adjacent string constants (i.e. two strings separated only by white space) are concatenated

by the compiler. Thus:

const char * cp = "hello " "world";

assigned the pointer with the string "hello world".

3.4.2 Bit Data Types and Variables

HI-TECH PICC STDsupports bit integral types which can hold the values 0 or 1. Single bit vari-

ables may be declared using the keyword bit. bit objects declared within a function, for example:

42

C Language Features Supported Data Types and Variables

static bit init_flag;

will be allocated in the bit-addressable psect rbit, and will be visible only in that function. When

the following declaration is used outside any function:

bit init_flag;

init_flag will be globally visible, but located within the same psect.

Bit variables cannot be auto or parameters to a function. A function may return a bit object

by using the bit keyword in the functions prototype in the usual way. The bit return value will be

returning in the carry flag in the status register.

Bit variables behave in most respects like normal unsigned char variables, but they may only

contain the values 0 and 1, and therefore provide a convenient and efficient method of storing boolean

flags without consuming large amounts of internal RAM. It is, however, not possible to declared

pointers to bit variables or statically initialise bit variables.

Operations on bit objects are performed using the single bit instructions (bsf and bcf) wherever

possible, thus the generated code to access bit objects is very efficient.

Note that when assigning a larger integral type to a bit variable, only the least-significant bit is

used. For example, if the bit variable bitvar was assigned as in the following:

int data = 0x54;

bit bitvar;

bitvar = data;

it will be cleared by the assignment since the least significant bit of data is zero. If you want to set

a bit variable to be 0 or 1 depending on whether the larger integral type is zero (false) or non-zero

(true), use the form:

bitvar = data != 0;

The psects in which bit objects are allocated storage are declared using the bit PSECT directive

flag. Eight bit objects will take up one byte of storage space which is indicated by the psect’s scale

value of 8 in the map file. The length given in the map file for bit psects is in units of bits, not bytes.

All addresses specified for bit objects are also bit addresses.

The bit psects are cleared on startup, but are not initialised. To create a bit object which has a

non-zero initial value, explicitly initialise it at the beginning of your code.

If the PICC flag --STRICT is used, the bit keyword becomes unavailable.

43

Supported Data Types and Variables C Language Features

3.4.3 8-Bit Integer Data Types and Variables

HI-TECH PICC STD supports both signed char and unsigned char 8-bit integral types. If the

signed or unsigned keyword is absent from the variable’s definition, the default type is unsigned

char unless the PICC --CHAR=signed option is used, in which case the default type is signed

char. The signed char type is an 8-bit two’s complement signed integer type, representing in-

tegral values from -128 to +127 inclusive. The unsigned char is an 8-bit unsigned integer type,

representing integral values from 0 to 255 inclusive. It is a common misconception that the C char

types are intended purely for ASCII character manipulation. This is not true, indeed the C language

makes no guarantee that the default character representation is even ASCII. The char types are

simply the smallest of up to four possible integer sizes, and behave in all respects like integers.

The reason for the name “char” is historical and does not mean that char can only be used to

represent characters. It is possible to freely mix char values with short, int and long values in C

expressions. With HI-TECH C the char types will commonly be used for a number of purposes, as

8-bit integers, as storage for ASCII characters, and for access to I/O locations.

Variables may be declared using the signed char and unsigned char keywords, respectively,

to hold values of these types. Where only char is used in the declaration, the type will be signed

char unless the option, mentioned above, to specify unsigned char as default is used.

3.4.4 16-Bit Integer Data Types

HI-TECH PICC STD supports four 16-bit integer types. short and int are 16-bit two’s complement

signed integer types, representing integral values from -32,768 to +32,767 inclusive. Unsigned

short and unsigned int are 16-bit unsigned integer types, representing integral values from 0

to 65,535 inclusive. All 16-bit integer values are represented in little endian format with the least

significant byte at the lower address.

Variables may be declared using the signed short int and unsigned short int keyword

sequences, respectively, to hold values of these types. When specifying a short int type, the

keyword int may be omitted. Thus a variable declared as short will contain a signed short int

and a variable declared as unsigned short will contain an unsigned short int.

3.4.5 32-Bit Integer Data Types and Variables

HI-TECH PICC STDsupports two 32-bit integer types. Long is a 32-bit two’s complement signed in-

teger type, representing integral values from -2,147,483,648 to +2,147,483,647 inclusive. Unsigned

long is a 32-bit unsigned integer type, representing integral values from 0 to 4,294,967,295 inclu-

sive. All 32-bit integer values are represented in little endian format with the least significant word

and least significant byte at the lowest address. Long and unsigned long occupy 32 bits as this is

the smallest long integer size allowed by the ANSI standard for C.

44

C Language Features Supported Data Types and Variables

Table 3.3: Floating-point formats

Format Sign biased exponent mantissa

IEEE 754 32-bit x xxxx xxxx xxx xxxx xxxx xxxx xxxx xxxx

modified IEEE 754 24-bit x xxxx xxxx xxx xxxx xxxx xxxx

Variables may be declared using the signed long int and unsigned long int keyword se-

quences, respectively, to hold values of these types. Where only long int is used in the declaration,

the type will be signed long. When specifying this type, the keyword int may be omitted. Thus

a variable declared as long will contain a signed long int and a variable declared as unsigned

long will contain an unsigned long int.

3.4.6 Floating Point Types and Variables

Floating point is implemented using either a IEEE 754 32-bit format or a modified (truncated) 24-bit

form of this.

The 24-bit format is used for all float values. For double values, the 24-bit format is the

default, or if the --double=24 option is used. The 32-bit format is used for double values if the

--double=32 option is used.

This format is described in 3.3, where:

• sign is the sign bit

• The exponent is 8-bits which is stored as excess 127 (i.e. an exponent of 0 is stored as 127).

• mantissa is the mantissa, which is to the right of the radix point. There is an implied bit to the

left of the radix point which is always 1 except for a zero value, where the implied bit is zero.

A zero value is indicated by a zero exponent.

The value of this number is (-1)sign x 2(exponent−127) x 1.mantissa.

Here are some examples of the IEEE 754 32-bit formats:

Note that the most significant bit of the mantissa column in 3.4 (that is the bit to the left of the

radix point) is the implied bit, which is assumed to be 1 unless the exponent is zero (in which case

the float is zero).

The 32-bit example in 3.4 can be calculated manually as follows.

The sign bit is zero; the biased exponent is 251, so the exponent is 251-127=124. Take the binary

number to the right of the decimal point in the mantissa. Convert this to decimal and divide it by 223

where 23 is the number of bits taken up by the mantissa, to give 0.302447676659. Add one to this

fraction. The floating-point number is then given by:

−10×2124×1.302447676659 = 1×2.126764793256e+37×1.302447676659≈ 2.77000e+37

45

Supported Data Types and Variables C Language Features

Table 3.4: Floating-point format example IEEE 754

Format Number biased expo-

nent

1.mantissa decimal

32-bit 7DA6B69Bh 11111011b 1.01001101011011010011011b 2.77000e+37

(251) (1.302447676659)

24-bit 42123Ah 10000100b 1.001001000111010b 36.557

(132) (1.142395019531)

Variables may be declared using the float and double keywords, respectively, to hold values

of these types. Floating point types are always signed and the unsigned keyword is illegal when

specifying a floating point type. Types declared as long double will use the same format as types

declared as double.

For High-End processors there is a fast implementation available for 32-bit doubles. Fast 32-bit

doubles can be selected via the –double=fast32 command line option. Although selecting this offers

an improvement in speed when doing calculations on 32-bit doubles, this comes at a cost of code

size.

3.4.7 Structures and Unions

HI-TECH PICC STD supports struct and union types of any size from one byte upwards. Struc-

tures and unions only differ in the memory offset applied for each member. The members of struc-

tures and unions may not be objects of type bit, but bit-fields are fully supported.

Structures and unions may be passed freely as function arguments and return values. Pointers to

structures and unions are fully supported.

3.4.7.1 Bit-fields in Structures

HI-TECH PICC STD fully supports bit-fields in structures.

Bit-fields are always allocated within 8-bit words. The first bit defined will be the least significant

bit of the word in which it will be stored. When a bit-field is declared, it is allocated within the

current 8-bit unit if it will fit, otherwise a new byte is allocated within the structure. Bit-fields can

never cross the boundary between 8-bit allocation units. For example, the declaration:

struct {

unsigned lo : 1;

unsigned dummy : 6;

unsigned hi : 1;

} foo;

46

C Language Features Supported Data Types and Variables

will produce a structure occupying 1 bytes. If foo was ultimately linked at address 10H, the field lo

will be bit 0 of address 10H, hi will be bit 7 of address 10H. The least significant bit of dummy will

be bit 1 of address 10H and the most significant bit of dummy will be bit 6 of address 10h.

Unnamed bit-fields may be declared to pad out unused space between active bits in control

registers. For example, if dummy is never used the structure above could have been declared as:

struct {

unsigned lo : 1;

unsigned : 6;

unsigned hi : 1;

} foo;

If a bit-field is declared in a structure that is assigned an absolute address, no storage will be allocated

for the structure. Absolute structures would be used when mapping a structure over a register to allow

a portable method of accessing individual bits within the register.

A structure with bit-fields may be initialised by supplying a comma-separated list of initial values

for each field. For example:

struct {

unsigned lo : 1;

unsigned mid : 6;

unsigned hi : 1;

} foo = {1, 8, 0};

3.4.7.2 Structure and Union Qualifiers

HI-TECH C supports the use of type qualifiers on structures. When a qualifier is applied to a struc-

ture, all of its members will inherit this qualification. In the following example the structure is

qualified const.

const struct {

int number;

int *ptr;

} record = { 0x55, &i};

In this case, the structure will be placed into the program space and each member will, obviously, be

read-only. Remember that all members must be initialized if a structure is const as they cannot be

initialized at runtime.

If the members of the structure were individually qualified const but the structure was not, then

the structure would be positioned into RAM, but each member would be read-only. Compare the

following structure with the above.

47

Supported Data Types and Variables C Language Features

struct {

const int number;

int * const ptr;

} record = { 0x55, &i};

3.4.8 Standard Type Qualifiers

Type qualifiers provide information regarding how an object may be used, in addition to its type

which defines it storage size and format. HI-TECH C supports both ANSI qualifiers and additional

special qualifiers which are useful for embedded applications and which take advantage of the PIC

architecture.

3.4.8.1 Const and Volatile Type Qualifiers

HI-TECH C supports the use of the ANSI type qualifiers const and volatile.

The const type qualifier is used to tell the compiler that an object is read only and will not be

modified. If any attempt is made to modify an object declared const, the compiler will issue a

warning. User-defined objects declared const are placed in a special psects in the program space.

Obviously, a const object must be initialised when it is declared as it cannot be assigned a value at

any point at runtime. For example:

const int version = 3;

The volatile type qualifier is used to tell the compiler that an object cannot be guaranteed to retain

its value between successive accesses. This prevents the optimizer from eliminating apparently

redundant references to objects declared volatile because it may alter the behaviour of the program

to do so. All Input/Output ports and any variables which may be modified by interrupt routines

should be declared volatile, for example:

volatile static unsigned int TACTL @ 0x160;

Volatile objects may be accessed using different generated code to non-volatile objects.

3.4.9 Special Type Qualifiers

HI-TECH PICC STDsupports the special type qualifiers to allow the user to control placement of

static and extern class variables into particular address spaces.

48

C Language Features Supported Data Types and Variables

3.4.9.1 Persistent Type Qualifier

By default, any C variables that are not explicitly initialised are cleared to zero on startup. This is

consistent with the definition of the C language. However, there are occasions where it is desired for

some data to be preserved across resets or even power cycles (on-off-on).

The persistent type qualifier is used to qualify variables that should not be cleared on startup.

In addition, any persistent variables will be stored in a different area of memory to other variables.

persistent objects are placed within the psect nvram.

This type qualifier may not be used on variables of class auto; if used on variables local to a

function they must be combined with the static keyword. For example, you may not write:

void test(void)

{

persistent int intvar; /* WRONG! */

.. other code ..

}

because intvar is of class auto. To declare intvar as a persistent variable local to function

test(), write:

static persistent int intvar;

If the PICC option, --STRICT is used, this type qualifier is changed to __persistent.

There are some library routines provided to check and initialise persistent data - see A for

more information, and for an example of using persistent data.

3.4.9.2 Bank1, Bank2 and Bank3 Type Qualifiers

The bank1, bank2 and bank3 type qualifiers are used to place static variables in RAM bank 1,

RAM bank2 and RAM bank 3 respectively. Note that there is no bank0 qualifier. Objects default to

being in bank0 if no other bank qualifier is used. All auto objects are positioned into bank0, along

with function parameters. Examples of bank qualifier usage:

An unsigned char in bank3:

static bank3 unsigned char fred;

A pointer to an unsigned char in bank2:

bank2 unsigned char * ptr;

A pointer to an unsigned char in bank3 with the pointer itself residing in bank2:

bank3 unsigned char * bank2 ptr2;

49

Supported Data Types and Variables C Language Features

3.4.10 Eeprom Type Qualifier

The eeprom qualifier is used to to place static variables into EEPROM. Since accessing EEPROM

memory is a lot less efficient than accessing RAM, only very basic C expressions are supported.

This qualifier is provided as a convenient way to store and access the EEPROM available on some

processors. Examples of use:

An int stored in eeprom:

eeprom int number = 0x1234;

A double in eeprom:

eeprom double pi = 3.14;

A RAM pointer to an eeprom int:

eeprom int * nptr;

EEPROM access is described in further detail in section 3.2.5.2.

3.4.11 Pointer Types

The format and use of pointers depend upon the range of processor selected. This is described in the

following sections.

3.4.11.1 Baseline Pointers

All pointers in the Baseline (12-bit PICs) range are 8-bits.

• RAM pointers point to RAM using the FSR index register.

• Const pointers point to ROM via a RETLW table.

• Function Pointers reference functions. A function is jumped to rather than called. A jump

table is used to return control to the calling function.

3.4.11.2 Midrange Pointers

All pointers for Midrange processors (14-bit PICs) are the same as for Baseline processors with the

following exceptions:

50

C Language Features Supported Data Types and Variables

• RAM pointers are 8-bits and therefore can only access 256 bytes. A pointer which is unqual-

ified or has a bank 1 qualifier can point to any object in bank 0 or bank 1. If the pointer is

qualified as bank 2 or bank 3, then it can access any object in banks 2 or 3. At present, there

is no general purpose pointer that can read and write to all four banks.

• Const pointers are 16-bits wide. They can be used to access either ROM or RAM. If the upper

bit of the const pointer is non-zero, it is a pointer into RAM. A const pointer may be used to

read from any RAM location in any bank, but writing to such locations is not permitted. If

upper bit is zero, it is a pointer able to access the entire ROM space. The ability of this pointer

to access both ROM and RAM is very useful in string-related functions where a pointer passed

to the function may point to a string in ROM or RAM.

• Function pointers reference functions. A function is called using the address assigned to the

pointer.

3.4.11.3 Highend Pointers

Highend processors (17Cxxx processors) differ in many ways from baseline and midrange proces-

sors and this effects the way pointers have been implemented.

• RAM banks in highend processors are 0xFF bytes long, so an 8-bit RAM pointer can only

access objects in one bank. Thus a bank 0 RAM pointer can only access bank 0; a bank 1

RAM pointer can only access bank 1, etc...

• Const pointers for highend processors are 16-bits wide. Const pointers on highend processors

work in the same way as they do for midrange processors.

• Far pointers are 16-bits wide and can be used to access objects in any available bank of RAM.

These pointers are similar to const pointers; they differ in that they may be used to indirectly

read from, or write to, RAM locations. Far pointers can also access ROM locations as per

const pointers. The far qualifier is used to specify the larger pointer size.

• Function pointers reference function. A function is called using the address assigned to the

pointer.

3.4.11.4 Qualifiers and Pointers

Pointers can be qualified like any other C objects, but care must be taken when doing so as there

are two quantities associated with pointers. The first is the actual pointer itself, which is treated like

any ordinary C variable and has memory reserved for it. The second is the object that the pointer

references, or to which the pointer points. The general form of an initialized pointer definition looks

like the following.

51

Storage Class and Object Placement C Language Features

object’s_type_&_qualifiers * pointer’s_qualifiers pointer’s_name = value;

The rule is as follows: if the modifier is to the left of the * in the pointer declaration, it applies to

the object which the pointer references. If the modifier is to the right of the *(next to the pointer’s

name), it applies to the pointer variable itself. Any data variable qualifier may be applied to pointers

in the above manner.

Here are some examples of pointers, initialized with the address of the variables:

const int ci = 0x55aa;

int i;

const int * cip = &ci ;

int * const icp = &i ;

const int * const cicp = &ci ;

The first example is a pointer called cip. It contains the address of an int object (in this case

ci) that is qualified const, however the pointer itself is not qualified. The pointer may be used to

read, but not write, the object to which it references. The contents of the pointer may be read and

written by the program.

The second example is a pointer called icp which contains the address of an int object (in this

case i). Since this object is not qualified, it is a data space object which is referenced by the pointer

and this object can be both read and written using the pointer. However, the pointer is qualified

const and so can only be read by the program — it cannot be made to point to any other object

other than the object whose address initializes the pointer (in this case i).

The last example is of a pointer called cicp which is itself qualified const and which also holds

the address of an object that is also qualified const. Thus the pointer can only be used to read the

object to which it references and the pointer itself cannot be modified so it will always reference the

same object during the program (in this case ci).

3.5 Storage Class and Object Placement

Objects are positioned in different memory areas dependant on their storage class and declaration.

This is discussed in the following sections.

3.5.1 Local Variables

A local variable is one which only has scope within the block in which it was defined. That is, it may

only be referenced within that block. C supports two classes of local variables in functions: auto

variables which are normally allocated in the function’s stack frame, and static variables which

are always given a fixed memory location and have permanent duration.

52

C Language Features Storage Class and Object Placement

3.5.1.1 Auto Variables

Auto (short for automatic) variables are the default type of local variable. Unless explicitly declared

to be static a local variable will be made auto, however the auto keyword may be used if desired.

Auto variables are allocated in the auto-variable block and referenced by indexing off the symbol

that represents that block. The variables will not necessarily be allocated in the order declared - in

contrast to parameters which are always in lexical order. Note that most type qualifiers cannot be

used with auto variables, since there is no control over the storage location. The exceptions are const

and volatile.

All auto variables are allocated memory in bank 0. The bank qualifiers cannot be used with

objects of type auto.

The auto-variable blocks for a number of functions are overlapped by the linker if those functions

are never called at the same time.

Auto objects are referenced with a symbol that consists of a question mark, ?, concatenated

with a_function plus some offset, where function is the name of the function in which the object is

defined. For example, if the int object test is the first object placed in main’s auto-variable block it

will be accessed using the addresses ?a_main and ?a_main+1 since an int is two bytes long.

3.5.1.2 Static Variables

Uninitialized static variables are allocated in the rbss_n psect and occupy fixed memory location

which will not be overlapped by storage for other functions. Static variables are local in scope to

the function in which they are declared, but may be accessed by other functions via pointers since

they have permanent duration. Static variables are guaranteed to retain their value between calls to a

function, unless explicitly modified via a pointer. Static variables are not subject to any architectural

limitations on the PIC.

Static variables which are initialised are only done so once during the programs execution. Thus,

they may be preferable over initialised auto objects which are assigned a value every time the block

in which the definition is placed is executed.

3.5.2 Absolute Variables

A global or static variable can be located at an absolute address by following its declaration with

the construct @ address, for example:

volatile unsigned char Portvar @ 0x06;

will declare a variable called Portvar located at 06h. Note that the compiler does not reserve

any storage, but merely equates the variable to that address, the compiler-generated assembler will

include a line of the form:

53

Functions C Language Features

_Portvar EQU 06h

This construct is primarily intended for equating the address of a C identifier with a microprocessor

special function register. To place a user-defined variable at an absolute address, define it in a

separate psect and instruct the linker to place this psect at the required address as specified in Section

3.12.3.5.

Absolute variables are accessed using the address specified with their definition, thus there are

no symbols associated with them. Because the linker never sees any symbols for these objects it is

not aware that they have been allocated space and it cannot make any checks for overlap of absolute

variables with other objects. It is entirely the programmer’s responsibility to ensure that absolute

variables are allocated memory that is not already in use.

3.6 Functions

3.6.1 Function Argument Passing

The method used to pass function arguments depends on the size of the argument or arguments.

If there is only one argument, and it is one byte in size, it is passed in the W register.

If there is only one argument, and it is greater than one byte in size, it is passed in the argument

area of the called function. If there are subsequent arguments, these arguments are also passed in the

argument area of the called function. The argument area is referenced by an offset from the symbol

?_function, where function is the name of the function concerned.

If there is more than one argument, and the first argument is one byte in size, it is passed in the

W register, with subsequent arguments being passed in the argument area of the called function.

In the case of a variable argument list, which is defined by the ellipsis symbol ..., the calling

function builds up the variable argument list and passes a pointer to the variable part of the argument

list in btemp. Btemp is the label at the start of the temp psect (the psect used for temporary data).

Take, for example, the following ANSI-style function:

void test(char a, int b)

{

}

The function test() will receive the parameter b in its function argument block and a in the W register.

A call:

test(a, 8);

would generate code similar to:

54

C Language Features Functions

movlw 08h

movwf ?_test

clrf ?_test+1

movf _a,w

call (_test)

In this example, the parameter b is held in the memory locations ?_test and ?_test+1.

If you need to determine, for assembler code for example, the exact entry or exit code within a

function or the code used to call a function, it is often helpful to write a dummy C function with the

same argument types as your assembler function, and compile to assembler code with the PICC -S

option, allowing you to examine the assembler code.

3.6.2 Function Return Values

Function return values are passed to the calling function as follows:

8-Bit Return Values

Eight-bit values are returned from a function in the W register. For example, the function:

char return_8(void)

{

return 0;

}

will exit with the following code:

retlw 0

16-bit and 32-bit values are returned in temporary memory locations, with the least significant

word in the lowest memory location. For example, the function:

int return_16(void)

{

return 0x1234;

}

will exit with the following code:

movlw 34h

movwf btemp

movlw 12h

movwf btemp+1

return

55

Function Calling Convention C Language Features

3.6.2.1 Structure Return Values

Composite return values (struct and union) of size 4 bytes or smaller are returned in memory as

with 16-bit and 32-bit return values. For composite return values of greater than 4 bytes in size,

the structure or union is copied into the struct psect. Data is copied using a library routine which

uses FSR for the source address, btemp for the destination address and W for the structure size. For

example:

struct fred

{

int ace[4];

} ;

struct fred return_struct(void)

{

struct fred wow;

return wow;

}

will exit with the following code:

movlw ?a_return_struct+0

movwf fsr

movlw structret

movwf btemp

movlw 8

global structbank

call structbank

3.7 Function Calling Convention

The baseline PIC devices have a two-level deep hardware stack which is used to store the return

address of a subroutine call. Typically, PICC uses a call instruction to transfer control to a C function

when it is called, however on baseline processors, the size of the stack severely limits the level of

nested C function calls possible.

By default, function calls on baseline PICs are implemented using a method involving an assem-

bly jump instruction and a lookup table, or jump table. A function is called by jumping directly to

its address after storing the address of a jump table instruction which will be able to return control

back to the calling function. The address is stored as an object local to the function being called. The

56

C Language Features Operators

lookup table is accessed after the function called has finished executing. This method allows func-

tions to be nested without overflowing the stack, however it does come at the expense of memory

and program speed.

To disable the lookup-table mode of operation, a function definition can be qualified as fastcall,

so that calls to this function are performed using the usual call assembly instruction. Extreme care

must be used when functions are declared as fastcall, since the each nested fastcall will use one

word of available stack space. Check the call graph in the map file to ensure that the stack will not

overflow.

The function prototype for a baseline fastcall function might look something like:

fastcall void my_function(int a);

The midrange and high end PIC devices have larger stacks and are thus allow a higher degree of

function nesting. These devices do not use the lookup table method when calling functions.

The compiler assumes that bank zero will be selected after returning from any function call. The

compiler inserts the appropriate instructions to ensure this is true if required. Any functions callable

from C code that are written in assembler must also ensure that bank zero is selected before the

return.

3.8 Operators

HI-TECH C supports all the ANSI operators. The exact results of some of these are implementation

defined. The following sections illustrate code produced by the compiler.

3.8.1 Integral Promotion

When there is more than one operand to an operator, they typically must be of exactly the same type.

The compiler will automatically convert the operands, if necessary, so they have the same type. The

conversion is to a “larger” type so there is no loss of information. Even if the operands have the same

type, in some situations they are converted to a different type before the operation. This conversion

is called integral promotion. HI-TECH C performs these integral promotions where required. If you

are not aware that these changes of type have taken place, the results of some expressions are not

what would normally be expected.

Integral promotion is the implicit conversion of enumerated types, signed or unsigned varieties

of char, short int or bit-field types to either signed int or unsigned int. If the result of the

conversion can be represented by an signed int, then that is the destination type, otherwise the

conversion is to unsigned int.

Consider the following example.

57

Operators C Language Features

unsigned char count, a=0, b=50;

if(a - b < 10)

count++;

The unsigned char result of a - b is 206 (which is not less than 10), but both a and b are con-

verted to signed int via integral promotion before the subtraction takes place. The result of the

subtraction with these data types is -50 (which is less than 10) and hence the body of the if() state-

ment is executed. If the result of the subtraction is to be an unsigned quantity, then apply a cast.

For example:

if((unsigned int)(a - b) < 10)

count++;

The comparison is then done using unsigned int, in this case, and the body of the if() would not

be executed.

Another problem that frequently occurs is with the bitwise compliment operator, “~”. This

operator toggles each bit within a value. Consider the following code.

unsigned char count, c;

c = 0x55;

if(~c == 0xAA)

count++;

If c contains the value 55h, it often assumed that ~c will produce AAh, however the result is FFAAh

and so the comparison in the above example would fail. The compiler may be able to issue a

mismatched comparison error to this effect in some circumstances. Again, a cast could be used to

change this behaviour.

The consequence of integral promotion as illustrated above is that operations are not performed

with char-type operands, but with int-type operands. However there are circumstances when the

result of an operation is identical regardless of whether the operands are of type char or int. In

these cases, HI-TECH C will not perform the integral promotion so as to increase the code efficiency.

Consider the following example.

unsigned char a, b, c;

a = b + c;

Strictly speaking, this statement requires that the values of b and c should be promoted to unsigned

int, the addition performed, the result of the addition cast to the type of a, and then the assignment

can take place. Even if the result of the unsigned int addition of the promoted values of b and c

was different to the result of the unsigned char addition of these values without promotion, after

58

C Language Features Psects

Table 3.5: Integral division

Operand 1 Operand 2 Quotient Remainder

+ + + +

- + - -

+ - - +

- - + -

the unsigned int result was converted back to unsigned char, the final result would be the same.

If an 8-bit addition is more efficient than a 16-bit addition, the compiler will encode the former.

If, in the above example, the type of a was unsigned int, then integral promotion would have

to be performed to comply with the ANSI standard.

3.8.2 Shifts applied to integral types

The ANSI standard states that the result of right shifting (> > operator) signed integral types is

implementation defined when the operand is negative. Typically, the possible actions that can be

taken are that when an object is shifted right by one bit, the bit value shifted into the most significant

bit of the result can either be zero, or a copy of the most significant bit before the shift took place.

The latter case amounts to a sign extension of the number.

HI-TECH PICC STD performs a sign extension of any signed integral type (for example signed

char, signed int or signed long). Thus an object with the signed int value 0x0124 shifted right

one bit will yield the value 0x0092 and the value 0x8024 shifted right one bit will yield the value

0xC012.

Right shifts of unsigned integral values always clear the most significant bit of the result.

Left shifts (< < operator), signed or unsigned, always clear the least significant bit of the result.

3.8.3 Division and modulus with integral types

The sign of the result of division with integers when either operand is negative is implementation

specific. Table 3.5 shows the expected sign of the result of the division of operand 1 with operand 2

when compiled with HI-TECH C.

In the case where the second operand is zero (division by zero), the result will always be zero.

3.9 Psects

The compiler splits code and data objects into a number of standard program sections referred to

as psects. The HI-TECH assembler allows an arbitrary number of named psects to be included in

59

Psects C Language Features

assembler code. The linker will group all data for a particular psect into a single segment.

If you are using PICC to invoke the linker, you don’t need to worry about the information doc-

umented here, except as background knowledge. If you want to run the linker manually (this is

not recommended), or write your own assembly language subroutines, you should read this section

carefully.

A psect can be created in assembler code by using the PSECT assembler directive (see Section

4.3.8.3). In C, user-defined psects can be created by using the #pragma psect preprocessor direc-

tive, see Section 3.12.3.5.

3.9.1 Compiler-generated Psects

The code generator places code and data into psects with standard names which are subsequent

positioned by the default linker options. These psects are described below.

The compiler-generated psects which are placed in the program space are:

clrtext Used by some startup routines for clearing the rbss_n psects.

checksum If a checksum has been requested, the result will be stored in this psect.

config Used to store the configuration word.

cstrings High-End processors use the cstrings psect to store const objects and string literals. ROM

on these devices is 16 bits wide so two characters can be stored in the one ROM word.

eeprom_data Used to store data into EEPROM memory.

end_init Used by initialisation code which, for example, clears RAM.

float_textn Used by some library routines, and in particular by arithmetic routines.It is possible

that this psect will have a non-zero length even if no floating point operations are included in

a program.

idata_n These psects (where n is the bank number) contain the ROM image of any initialised vari-

ables. These psects are copied into the rdata_n psects at startup.

idloc Used to store the ID location words.

init Used by initialisation code which, for example, clears RAM.

intcode Is the psect which contains the executable code for the interrupt service routine.

intentry Contains the entry code for the interrupt service routine. This code saves the necessary

registers and parts of the temp psect.

60

C Language Features Psects

intret Is the psect which contains the executable code responsible for restoring saved registers and

objects after an interrupt routine has completed executing.

jmp_tab Only for the Baseline processors, this is another strings psect used to store jump addresses

and function return values.

maintext This psect will contain the main() function. It is used so that main() can be directly linked.

powerup Contains executable code for a user-supplied power-up routine.

pstrings For processors that support string packing, this psect will contain the packed strings.

reset_vec The reset vector.

reset_wrap For baseline PICs, this psect contains code which appears after the reset vector has

wrapped around to address 0x0.

strings The strings psect is used for some const objects. Const objects whose size exceeds 256

bytes, for example const arrays, are positioned in this psect. It also includes all unnamed

string constants, such as string constants passed as arguments to routines like printf() and

puts(). This psect is linked into ROM, since it does not need to be modifiable.

stringtable The stringtable psect contains the string table which is used to access objects in the

strings psect. This psect will only be generated if there is a strings or baseline jmp_tab psect.

text Is a global psect used for executable code for some library functions.

textn These psects (where n is a number) contain all executable code for the Midrange and High-

end processors. They also contains any executable code after the first goto instruction which

can never be skipped for the Baseline processors.

The compiler-generated psects which are placed in the data space are:

intsave Holds the W register saved by the interrupt service routine. If necessary, the W register will

also be saved in the intsave_n psects.

intsave_n May also hold the W register saved by the interrupt service routine. (See the description

of the intsave psect.)

nvbit_n These psects are used to store persistent bit variables. They are not cleared or otherwise

modified at startup.

nvram_n These psects are used to store persistent variables. They are not cleared or otherwise

modified at startup.

61

Interrupt Handling in C C Language Features

rbit_n These psects are used to store all bit variables except those declared at absolute locations.

rbss_n These psects contain any uninitialized variables.

rdata_n These psects contain any initialised variables.

struct Contains any structure which is returned from a function.

temp Is used to store scratch variables used by the compiler. These include function return values

larger than a char and values passed to and returned from library routines. If possible, this will

be positioned in the common area of the processor.

xtemp Is used to store scratch variables used by the compiler and to pass values to and from the

library routines.

3.10 Interrupt Handling in C

The compiler incorporates features allowing interrupts to be handled from C code. Interrupt func-

tions are often called interrupt service routines (ISR). Interrupts are also known as exceptions.

3.10.1 Interrupt Functions

The function qualifier interrupt may be applied to any number of C function definitions to allow

them to be called directly from the hardware interrupts. The compiler will process the interrupt

function differently to any other functions, generating code to save and restore any registers used

and exit using the appropriate instruction.

If the PICC option --STRICT is used, the interrupt keyword becomes __interrupt.

An interrupt function must be declared as type void interrupt and may not have parame-

ters. This is the only function prototype that makes sense for an interrupt function. interrupt

functions may not be called directly from C code (due to the different return instruction that is used),

but they may call other functions itself.

3.10.1.1 Midrange Interrupt Functions

An example of an interrupt function for a midrange PIC processor is shown here.

int tick_count;

void interrupt tc_int(void)

{

if (T0IE && T0IF) {

T0IF=0;

62

C Language Features Interrupt Handling in C

++tick_count;

}

}

As there is a maximum of one interrupt vector in the midrange PIC series, only one interrupt

function may be defined. The interrupt vector will automatically be set to point to this function.

3.10.1.2 Highend Interrupt Functions

As there is more than one vector location usable with highend processors, an indicator is required

with the function definition to specify the interrupt vector to which the function should associated.

This takes the form of a @ symbol followed by the vector address at the end of the function prototype.

An example of an interrupt function for a high-end processor is shown here.

int tick_count;

void interrupt tc_int(void) @ 0x10

{

if (TMR0IE && T0IF) {

T0IF = 0;

++tick_count;

}

}

3.10.1.3 Context Saving on Interrupts

The PIC processor only saves the PC on its stack whenever an interrupt occurs. Other registers and

objects must be saved in software. The PICC compiler determines which registers and objects are

used by an interrupt function and saves these appropriately.

If the interrupt routine calls other functions and these functions are defined before the interrupt

code in the same module, then any registers used by these functions will be saved as well. If the

called functions have not been seen by the compiler, a worst case scenario is assumed and all registers

and objects will be saved.

PICC does not scan assembly code which is placed in-line within the interrupt function for

register usage. Thus, if you include in-line assembly code into an interrupt function, you may have

to add extra assembly code to save and restore any registers or locations used.

3.10.1.4 MidRange Context Saving

The code associated with interrupt functions that do not require registers or objects is placed directly

at the interrupt vector in a psect called intcode.

63

Interrupt Handling in C C Language Features

If context saving is required, this is performed by code placed in to a psect called intentry which

will be placed at the interrupt vector. Any registers or objects to be saved are done so to areas of

memory especially reserved for this purpose.

If the W register is to be saved, it is stored to memory reserved in the intsave_0 psect which is

located in Bank 0. If the processor for which the code is written has more than one RAM bank, it is

impossible to swap to Bank 0 without corrupting W, so an intsave_n psect is allocated to each RAM

bank (where n represents the bank number). The addresses of these memory areas are identical in

the lower seven bits.When the interrupt occurs, W will be saved into one of these memory areas

depending on the bank in which the processor was in before the interrupt occurred.

If the STATUS register is to be saved, it is stored into memory reserved in the intsave psect which

resides in Bank 0.

Some C code, for example division, may call an assembly routine which used temporary RAM

locations. If these are used during the interrupt function, they too will be saved by separate routines

which are automatically linked.

3.10.1.5 High-End Context Saving

The ALUSTA, BSR and PCLATH registers are automatically saved by code in a psect called intcode.

This code is placed at the interrupt vector. This code includes a jump to the users interrupt code. If

the interrupt function uses the W register, this will also be saved before the jump is taken. These

registers are saved to an unbanked area of RAM so that it does not matter which RAM bank is

selected when the interrupt occurs.

3.10.1.6 Context Restoration

Any objects saved by the compiler are automatically restored before the interrupt function returns.

3.10.1.7 Interrupt Levels

Normally it is assumed by the compiler that any interrupt may occur at any time, and an error will

be issued by the linker if a function appears to be called by an interrupt and by main-line code, or

another interrupt. Since it is often possible for the user to guarantee this will not happen for a specific

routine, the compiler supports an interrupt level feature.

This is achieved with the #pragma interrupt_level directive. There are two interrupt levels avail-

able, and any interrupt functions at the same level will be assumed by the compiler to be mutually

exclusive. (Since the midrange PIC devices only support one active interrupt there is no value in

using more than one interrupt level when these processors are selected.) This exclusion must be

guaranteed by the user - the compiler is not able to control interrupt priorities. Each interrupt routine

may be assigned a single level, either 0 or 1.

64

C Language Features Interrupt Handling in C

In addition, any non-interrupt functions that are called from an interrupt function and also from

main-line code may also use the #pragma interrupt_level directive to specify that they will never be

called by interrupt functions of one or more levels. This will prevent linker from issuing an error

message because the function was included in more than one call graph. Note that it is entirely up to

the user to ensure that the function is NOT called by both main-line and interrupt code at the same

time. This will normally be ensured by disabling interrupts before calling the function. It is not

sufficient to disable interrupts inside the function after it has been called.

An example of using the interrupt levels is given below. Note that the #pragma directive ap-

plies to only the immediately following function. Multiple #pragma interrupt_level directives may

precede a non-interrupt function to specify that it will be protected from multiple interrupt levels.

/* non-interrupt function called by interrupt and by main-line code */

#pragma interrupt_level 1

void bill(){

int i;

i = 23;

}

/* two interrupt functions calling the same non-interrupt function */

#pragma interrupt_level 1

void interrupt fred(void) {

bill();

}

#pragma interrupt_level 1

void interrupt joh() {

bill();

}

main() {

bill();

}

3.10.1.8 Multiple Interrupts on High-End PICs

On High-End devices, the compiler allows a maximum of two interrupt routines to be active at any

given time. This is handled by the #pragma interrupt_level directive. The only available interrupt

levels are levels 0 and 1. Interrupts are level 0 by default.

All level 0 interrupts share the same memory for saving context when the interrupt occurs. Level

1 interrupts use a separate memory area. Thus only one interrupt of each level may be active at any

given time. It is up to the user to ensure that this is the case. Interrupts may be re-enabled during an

interrupt routine as long as the only possible interrupt will be of a different level.

65

Mixing C and Assembler Code C Language Features

3.10.1.9 Enabling Interrupts

Two macros are available in <htc.h> which control the masking of all available interrupts. These

macros are ei(), which enable or unmask all interrupts, and di(), which disable or mask all interrupts.

On High-End PIC devices, these macros affect the GLINTD bit in the CPUSTA register; in midrange

PIC devices, they affect the GIE bit in the INTCON register.

These macros should be used once the appropriate interrupt enable bits for the interrupts that are

required in a program have been enabled. For example:

ADIE = 1; // A/D interrupts will be used

PEIE = 1; // all peripheral interrupts are enabled

ei(); // enable all interrupts

di(); // disable all interrupts

3.11 Mixing C and Assembler Code

Assembly language code can be mixed with C code using two different techniques: writing assembly

code and placing it into a separate assembler module, or including it as in-line assembler in a C

module. For the latter, there are two formats in which this can be done.

3.11.1 External Assembly Language Functions

Entire functions may be coded in assembly language as separate .as source files, assembled and

combined into the output image using the linker. This technique allows arguments and return values

to be passed between C and assembler code.

The following are guidelines that must be adhered to when writing a routine in assembly code

that is callable from C code.

• select, or define, a suitable psect for the executable assembly code

• select a name (label) for the routine so that its corresponding C identifier is valid

• ensure that the routine’s label is globally accessible from other modules

• select an appropriate equivalent C prototype for the routine on which argument passing can be

modelled

• ensure any symbol used to hold arguments to the routine is globally accessible

• ensure any symbol used to hold a return value is globally accessible

• optionally, use a signature value to enable type checking when the function is called

66

C Language Features Mixing C and Assembler Code

• write the routine ensuring arguments are read from the correct location, the return value is

loaded to the correct storage location before returning

• ensure any local variables required by the routine have space reserved by the appropriate

directive

A mapping is performed on the names of all C functions and non-static global variables. See

Section 3.11.3.1 for a complete description of mappings between C and assembly identifiers.

An assembly routine is required which can add two 16-bit values together. The routine must be

callable from C code. Both the values are passed in as arguments when the routine is called from the

C code. The assembly routine should return the result of the addition as a 16-bit quantity.

Most compiler-generated executable code is placed in a psect called textn (see Section 3.9.1).

As we do not need to have this assembly routine linked at any particular location, we can use this

psect so the code is bundled with other executable code and stored somewhere in the program space.

This way we do not need to use any additional linker options. So we use an ordinary looking psect

that you would see in assembly code produced by the compiler. The psect’s name is text0, will be

linked in the CODE class, which will reside in a memory space that has 2 bytes per addressable

location:

PSECT text0,local,class=CODE,delta=2

Now we would like to call this routine add. However in assembly we must choose the name

_add as this then maps to the C identifier add since the compiler prepends an underscore to all C

identifiers when it creates assembly labels. If the name add was chosen for the assembler routine

the it could never be called from C code. The name of the assembly routine is the label that we will

associate with the assembly code:

_add:

We need to be able to call this from other modules, some make this label globally accessible:

GLOBAL _add

By compiling a dummy C function with a similar prototype to how we will be calling this as-

sembly routine, we can determine the signature value. We add a assembler directive to make this

signature value known:

SIGNAT _add,8298

When writing the function, you can find that the parameters will be loaded into the function’s

parameter area by the calling function, and the result should be placed in btemp.

To call an assembly routine from C code, a declaration for the routine must be provided. This

ensures that the compiler knows how to encode the function call in terms of parameters and return

values, however no other code is necessary.

If a signature value is present in the assembly code routine, its value will be checked by the linker

when the calling and called routines’ signatures can be compared.

To continue the previous example, here is a code snippet that declares the operation of the as-

sembler routine, then calls the routine.

67

Mixing C and Assembler Code C Language Features

extern unsigned int add(unsigned a, unsigned b);

void main(void)

{

int a, result;

a = read_port();

result = add(5, a);

}

3.11.2 #asm, #endasm and asm()

PIC instructions may also be directly embedded “in-line” into C code using the directives #asm,

#endasm or the statement asm().

The #asm and #endasm directives are used to start and end a block of assembly instructions which

are to be embedded into the assembly output of the code generator. The #asm and #endasm construct

is not syntactically part of the C program, and thus it does not obey normal C flow-of-control rules,

however you can easily include multiple instructions with this form of in-line assembly.

The asm() statement is used to embed a single assembler instruction. This form looks and be-

haves like a C statement, however each instruction must be encapsulated within an asm() statement.

You should not use a #asm block within any C constructs such as if, while, do etc. In these

cases, use only the asm("") form, which is a C statement and will correctly interact with all C

flow-of-control structures.

The following example shows both methods used:

unsigned int var;

void main(void)

{

var = 1;

// like this...

#asm

bcf 0,3

rlf _var

rlf _var+1

#endasm

// or like this

asm("bcf 0,3");

asm("rlf _var");

asm("rlf _var+1");

}

68

C Language Features Mixing C and Assembler Code

When using in-line assembler code, great care must be taken to avoid interacting with compiler-

generated code. The code generator cannot scan the assembler code for register usage and so will

remain unaware if registers are clobbered or used by the code. If in doubt, compile your program

with the PICC -S option and examine the assembler code generated by the compiler.

3.11.3 Accessing C objects from within Assembly Code

The following applies regardless of whether the assembly is part of a separate assembly module, or

in-line with C code.

For any non-local assembly symbol, the GLOBAL directive must be used to link in with the symbol

if it was defined elsewhere. If it is a local symbol, then it may be used immediately.

3.11.3.1 Equivalent Assembly Symbols

The assembler equivalent identifier to an identifier in C code follows a form that is dependent on

the scope and type of the C identifier. The different forms are discussed below. Accessing the C

identifier in C code and its assembly equivalent in assembly code implies accessing the same object.

Here, “global” implies defined outside a function; “local” defined within a function.

C identifiers are assigned different symbols in the output assembly code so that an assembly

identifier cannot conflict with an identifier defined in C code. If assembly programmers choose

identifier names that do not begin with an underscore, these identifiers will never conflict with C

identifiers. Importantly, this implies that the assembly identifier, i, and the C identifier i relate to

different objects at different memory locations.

3.11.3.2 Accessing special function register names from assembler

If writing separate assembly modules, SFR definitions will not automatically be present. If writing

assembler code from within a C module, SFRs may be accessed by referring to the symbols defined

by the chip-specific C header files. Whenever you include <htc.h> into a C module, all the available

SFRs are defined as absolute C variables. As the contents of this file is C code, it cannot be included

into an assembler module, but assembler code can uses these definitions. To use a SFR in in-line

assembler code from within the same C module that includes <htc.h>, simply use the symbol with

an underscore character prepended to the name. For example:

#include <htc.h>

void main(void)

{

PORTA = 0x55;

asm("movlw #0xAA");

asm("movwf _PORTA);

69

Preprocessing C Language Features

3.12 Preprocessing

All C source files are preprocessed before compilation. Assembler files can also be preprocessed if

the -P command-line option is issued.

3.12.1 Preprocessor Directives

HI-TECH PICC STD accepts several specialised preprocessor directives in addition to the standard

directives. All of these are listed in Table 3.6.

Macro expansion using arguments can use the # character to convert an argument to a string, and

the ## sequence to concatenate tokens.

3.12.2 Predefined Macros

The compiler drivers define certain symbols to the preprocessor (CPP), allowing conditional com-

pilation based on chip type etc. The symbols listed in Table 3.7 show the more common symbols

defined by the drivers. Each symbol, if defined, is equated to 1 unless otherwise stated.

3.12.3 Pragma Directives

There are certain compile-time directives that can be used to modify the behaviour of the compiler.

These are implemented through the use of the ANSI standard #pragma facility. The format of a

pragma is:

#pragma keyword options

where keyword is one of a set of keywords, some of which are followed by certain options.

A list of the keywords is given in Table 3.9. Those keywords not discussed elsewhere are detailed

below.

3.12.3.1 The #pragma inline Directive

The #pragma inline directive is used to indicate to the compiler that a function is to be inlined.

The directive is only able to be used on functions that are hard coded in the code generator of the

compiler. User defined and library function are not able to be inlinded. This directive should be

placed directly before the function prototype of the inline function. Below is example usage

#pragma inline(__va_start)

extern void * __va_start(void);

70

C Language Features Preprocessing

Table 3.6: Preprocessor directives

Directive Meaning Example

preprocessor null directive, do

nothing

#

#assert generate error if condition false #assert SIZE > 10

#asm signifies the beginning of in-line

assembly

#asm

movlw FFh

#endasm
#define define preprocessor macro #define SIZE 5

#define FLAG

#define add(a,b) ((a)+(b))
#elif short for #else #if see #ifdef

#else conditionally include source lines see #if

#endasm terminate in-line assembly see #asm

#endif terminate conditional source

inclusion

see #if

#error generate an error message #error Size too big

#if include source lines if constant

expression true

#if SIZE < 10

c = process(10)

#else

skip();

#endif
#ifdef include source lines if preprocessor

symbol defined

#ifdef FLAG

do_loop();

#elif SIZE == 5

skip_loop();

#endif
#ifndef include source lines if preprocessor

symbol not defined

#ifndef FLAG

jump();

#endif
#include include text file into source #include <stdio.h>

#include "project.h"
#line specify line number and filename

for listing

#line 3 final

#nn (where nn is a number) short for

#line nn

#20

#pragma compiler specific options Refer to section 3.12.3

#undef undefines preprocessor symbol #undef FLAG

#warning generate a warning message #warning Length not set

71

Preprocessing C Language Features

Table 3.7: Predefined macros

Symbol When set Usage

HI_TECH_C Always To indicate that the compiler in use is

HI-TECH C.

_HTC_VER_MAJOR_ Always To indicate the integer component of the

compiler’s version number.

_HTC_VER_MINOR_ Always To indicate the decimal component of the

compiler’s version number.

_HTC_VER_PATCH_ Always To indicate the patch level of the compiler’s

version number.

_HTC_EDITION_ Always Indicates which of PRO, Standard or Lite

compiler is in use. Values of 2, 1 or 0 are

assigned respectively.

__PICC__ Always Indicates HI-TECH PICC compiler in use.

MPC Always Indicates compiling for Microchip PIC family.

_PIC12 If 12-bit device To indicate selected device is a baseline PIC.

_PIC14 If 14-bit device To indicate selected device is a midrange PIC.

_PIC16 If 16-bit device To indicate selected device is a highend PIC.

COMMON If common RAM

present

To indicate whether device has common RAM

area.

BANKBITS Always Assigned 0, 1 or 2 to indicate 1, 2 or 4 available

banks or RAM.

GPRBITS Always Assigned 0, 1 or 2 to indicate 1, 2 or 4 available

banks or general purpose RAM.

__MPLAB_ICD__ If compiling for

MPLAB ICD or

ICD2 debugger

Assigned 1 to indicate that the code is generated

for use with the Microchip MPLAB ICD1.

Assigned 2 for ICD2.

_ROMSIZE Always To indicate how many words of program memory

are available.

_EEPROMSIZE Always To indicate how many bytes of EEPROM are

available.

_chipname When chip selected To indicate the specific chip type selected

__FILE__ Always To indicate this source file being preprocessed.

__LINE__ Always To indicate this source line number.

__DATE__ Always To indicate the current date, e.g. May 21 2004

__TIME__ Always To indicate the current time, e.g. 08:06:31.

72

C Language Features Preprocessing

Table 3.9: Pragma directives

Directive Meaning Example

inline Specify function as inline #pragma inline(fabs)

jis Enable JIS character handling in

strings

#pragma jis

nojis Disable JIS character handling (de-

fault)

#pragma nojis

pack Specify structure packing #pragma pack 1

printf_check Enable printf-style format string

checking

#pragma

printf_check(printf) const

psect Rename compiler-defined psect #pragma psect text=mytext

regsused Specify additional registers to save

when interrupt context switching

#pragma regsused w,fsr

switch Specify code generation for switch

statements

#pragma switch direct

3.12.3.2 The #pragma jis and nojis Directives

If your code includes strings with two-byte characters in the JIS encoding for Japanese and other na-

tional characters, the #pragma jis directive will enable proper handling of these characters, specif-

ically not interpreting a backslash, \, character when it appears as the second half of a two byte

character. The nojis directive disables this special handling. JIS character handling is disabled by

default.

3.12.3.3 The #pragma pack Directive

Some MCUs requires word accesses to be aligned on word boundaries. Consequently the compiler

will align all word or larger quantities onto a word boundary, including structure members. This can

lead to “holes” in structures, where a member has been aligned onto the next word boundary.

This behaviour can be altered with this directive. Use of the directive #pragma pack 1 will

prevent any padding or alignment within structures. Use this directive with caution - in general if

you must access data that is not aligned on a word boundary you should do so by extracting individual

bytes and re-assembling the data. This will result in portable code. Note that this directive must not

appear before any system header file, as these must be consistent with the libraries supplied.

PICs can only perform byte accesses to memory and so do not require any alignment of memory

objects. This pragma will have no effect when used.

73

Preprocessing C Language Features

3.12.3.4 The #pragma printf_check Directive

Certain library functions accept a format string followed by a variable number of arguments in the

manner of printf(). Although the format string is interpreted at runtime, it can be compile-time

checked for consistency with the remaining arguments.

This directive enables this checking for the named function, e.g. the system header file <stdio.h>

includes the directive #pragma printf_check(printf) const to enable this checking for printf().

You may also use this for any user-defined function that accepts printf-style format strings. The

qualifier following the function name is to allow automatic conversion of pointers in variable argu-

ment lists. The above example would cast any pointers to strings in RAM to be pointers of the type

(const char *)

Note that the warning level must be set to -1 or below for this option to have any visible effect.

See Section 2.4.55.

3.12.3.5 The #pragma psect Directive

Normally the object code generated by the compiler is broken into the standard psects as described

in Section 3.9.1. This is fine for most applications, but sometimes it is necessary to redirect variables

or code into different psects when a special memory configuration is desired. Code and data for any

of the standard C psects may be redirected using a #pragma psect directive.

The general form of this pragma looks like:

#pragma psect default_psect=new_psect

and instructs the code generator that anything that would normally appear in the compiler-generated

psect default_psect, will now appear in a new psect called new_psect. This psect will be

identical to default_psect in terms of its options, however will have a different name. Thus,

this new psect can be explicitly positioned by the linker without affect the original psect’s location.

If the name of the default psect that is being redirected contains a counter, e.g. text0, text1,

text2, then the placeholder %%u should be used in the name of the psect at the position of the counter,

e.g. text%%u. Any default psect, regardless of the counter value, will match such a psect name.

This pragma remains in force until the end of the module and any given psect should only be

redirected once in a particular module. All psect redirections for a particular module should be

placed at the top of the source file, below any #include statements and above any other declarations.

A particular function, called read_port(), needs to be located at the absolute address 0x400 in a

program. Using the #pragma psect directive in the source code, and adding a new linker option can

do this. First write the function in the usual way. Place the function definition in a separate module.

There is obviously something special about this function so a module all to itself is probably a good

idea anyway.

74

C Language Features Preprocessing

unsigned char read_port(void)

{

return PORTA;

}

Now, how do we know in which psect the code associated with the function will be placed?

Compile you program, including this new module and generate an assembly list file, see Section

2.4.17.

Look for the definition of the function. A function starts with an assembly label which is the

name of the function prepended with an underscore. In this example, the label appears on line 37.

36 psect text

37 0002 _read_port:

Look above this to see the first PSECT directive you encounter. This will indicate the name of the

psect in which the code is located. In this case it is the psect called text.

So let us redirect this psect into one with a unique and more meaningful name. In the C module

that contains the definition for read_port() place the following pragma:

#pragma psect text=readport

at the top of the module, before the function definition. With this, the read_port() function

will be placed in the psect called readport. Confirm this in the new assembly list file.

Now we can tell the linker where we would like this psect positioned. Issue an additional option

to the command-line driver to place this psect at address 0x400.

-L-preadport=0400h

The generate an check the map file, see Section 2.4.8. You should see the additional linker

command (minus the leading -L part of the option) present in the section after Linker command

line:. You should also see the remapped psect name appear in the source file list of psects, e.g.:

Name Link Load Length Selector Space Scale

/tmp/cgt9e31jr.obj

main.obj maintext 0 0 2 0 0

portread 400 400 2 800 0

Check the link address to ensure it is that requested, in this case, 0x400.

3.12.3.6 The #pragma regsused Directive

HI-TECH C will automatically save context when an interrupt occurs. The compiler will determine

only those registers and objects which need to be saved for the particular interrupt function defined.

The #pragma regsused directive allows the programmer to indicate register usage for functions

that will not be “seen” by the code generator, for example if they were written in assembly code.

The general form of the pragma is:

#pragma regsused register_list

75

Preprocessing C Language Features

Table 3.10: Valid Register Names

Register Name Description

btemp, btemp+1...btemp+11 btemp temporary area

fsr indirect data pointer

tablreg highend processor’s table pointer

w the working register

Table 3.11: switch types

switch type description

auto use smallest code size method (default)

direct table lookup (fixed delay)

where register_list is a comma-separated list of registers names. Those registers not listed are

assumed to be unused by the function or routine. The code generator may use the unlisted registers

to hold values across a function call. Hence, if the routine does in fact use these registers, unreliable

program execution may eventuate. The list of registers to be saved will apply to the first interrupt

qualified function defined after the pragma’s usage.

The register names are not case sensitive and a warning will be produced if the register name is

not recognised. A blank list indicates that the specified function or routine uses no registers.

3.12.3.7 The #pragma switch Directive

Normally the compiler decides the code generation method for switch statements which results in

the smallest possible code size. The #pragma switch directive can be used to force the compiler to

use one particular method. The general form of the switch pragma is:

#pragma switch switch_type

where switch_type is one of the available switch methods listed in Table .

Specifying the direct option to the #pragma switch directive forces the compiler to generate

the table look-up style switch method. This is mostly useful where timing is an issue for switch

statements (i.e.: state machines).

This pragma affects all code generated onward. The auto option may be used to revert to the

default behaviour.

76

C Language Features Linking Programs

3.13 Linking Programs

The compiler will automatically invoke the linker unless requested to stop after producing assembler

code (PICC -S option) or object code (PICC -C option).

HI-TECH C, by default, generates Intel HEX. Use the --OUTPUT= option to specify a different

output format.

After linking, the compiler will automatically generate a memory usage map which shows the

address used by, and the total sizes of, all the psects which are used by the compiled code.

The program statistics shown after the summary provides more concise information based on

each memory area of the device. This can be used as a guide to the available space left in the device.

More detailed memory usage information, listed in ascending order of individual psects, may be

obtained by using the PICC --SUMMARY=psect option. Generate a map file for the complete memory

specification of the program.

3.13.1 Replacing Library Modules

Although HI-TECH C comes with a librarian (LIBR) which allows you to unpack a library files and

replace modules with your own modified versions, you can easily replace a library module that is

linked into your program without having to do this. If you add the source file which contains the

library routine you wish to replace on the command-line list of source files then the routine will

replace the routine in the library file with the same name.

This method works due to the way the linker scans source and library file. When trying to resolve

a symbol (in this instance a function name) the linker first scans all source modules for the definition.

Only if it cannot resolve the symbol in these files does it then search the library files. Even though

the symbol may be defined in a source file and a library file, the linker will not search the libraries

and no multiply defined symbol error will result. This is not true if a symbol is defined twice in

source files.

For example, if you wished to make changes to the library function max() which resides in

the file max.c in the SOURCES directory, you could make a copy of this source file, make the

appropriate changes and then compile and use it as follows.

PICC –chip=16F877A main.c init.c max.c

The code for max() in max.c will be linked into the program rather than the max() function

contained in the standard libraries. Note, that if you replace an assembler module, you may need the

-P option to preprocess assembler files as the library assembler files often contain C preprocessor

directives.

77

Linking Programs C Language Features

3.13.2 Signature Checking

The compiler automatically produces signatures for all functions. A signature is a 16-bit value

computed from a combination of the function’s return data type, the number of its parameters and

other information affecting the calling sequence for the function. This signature is output in the

object code of any function referencing or defining the function.

At link time the linker will report any mismatch of signatures. HI-TECH PICC STD is only

likely to issue a mismatch error from the linker when the routine is either a precompiled object file

or an assembly routine. Other function mismatches are reported by the code generator.

It is sometimes necessary to write assembly language routines which are called from C using an

extern declaration. Such assembly language functions should include a signature which is compati-

ble with the C prototype used to call them. The simplest method of determining the correct signature

for a function is to write a dummy C function with the same prototype and compile it to assembly

language using the PICC -S option. For example, suppose you have an assembly language routine

called _widget which takes two int arguments and returns a char value. The prototype used to call

this function from C would be:

extern char widget(int, int);

Where a call to _widget is made in the C code, the signature for a function with two int

arguments and a char return value would be generated. In order to match the correct signature the

source code for widget needs to contain an assembler SIGNAT pseudo-op which defines the same

signature value. To determine the correct value, you would write the following code:

char widget(int arg1, int arg2)

{

}

and compile it to assembler code using

PICC -S x.c

The resultant assembler code includes the following line:

SIGNAT _widget,8249

The SIGNAT pseudo-op tells the assembler to include a record in the .obj file which associates

the value 8249 with symbol _widget. The value 8249 is the correct signature for a function with

two int arguments and a char return value. If this line is copied into the .as file where _widget is

defined, it will associate the correct signature with the function and the linker will be able to check

for correct argument passing. For example, if another .c file contains the declaration:

extern char widget(long);

then a different signature will be generated and the linker will report a signature mis-match which

will alert you to the possible existence of incompatible calling conventions.

78

C Language Features Standard I/O Functions and Serial I/O

Table 3.12: Supported standard I/O functions

Function name Purpose

printf(const char * s, ...) Formatted printing to stdout

sprintf(char * buf, const char * s, ...) Writes formatted text to buf

3.13.3 Linker-Defined Symbols

The link address of a psect can be obtained from the value of a global symbol with name __Lname

where name is the name of the psect. For example, __Lbss is the low bound of the bss psect. The

highest address of a psect (i.e. the link address plus the size) is symbol __Hname.

If the psect has different load and link addresses the load start address is specified as __Bname.

3.14 Standard I/O Functions and Serial I/O

A number of the standard I/O functions are provided in the C library with the compiler, specifically

those functions intended to read and write formatted text on standard output and input. A list of the

available functions is in Table 3.12. More details of these functions can be found in Appendix A.

Before any characters can be written or read using these functions, the putch() and getch()

functions must be written. Other routines which may be required include getche() and kbhit().

79

Standard I/O Functions and Serial I/O C Language Features

80

Chapter 4

Macro Assembler

The Macro Assembler included with HI-TECH PICC STD assembles source files for PIC MCUs.

This chapter describes the usage of the assembler and the directives (assembler pseudo-ops and

controls) accepted by the assembler in the source files.

The HI-TECH C Macro Assembler package includes a linker, librarian, cross reference generator

and an object code converter.

•

Athough the term “assembler” is almost universally used to decribe the tool which con-

verts human-readable mnemonics into machine code, both “assembler” and “assembly”

are used to describe the source code which such a tool reads. The latter is more com-

mon and is used in this manual to describe the language. Thus you will see the terms

assembly language (or just assembly), assembly listing and etc, but assembler options,

assembler directive and assembler optimizer.

4.1 Assembler Usage

The assembler is called ASPIC and is available to run on Windows, Linux and Mac OS systems. Note

that the assembler will not produce any messages unless there are errors or warnings — there are no

“assembly completed” messages.

Typically the command-line driver, PICC, is used to envoke the assembler as it can be passed

assembler source files as input, however the options for the assembler are supplied here for instances

81

Assembler Options Macro Assembler

where the assembler is being called directly, or when they are specified using the command-line

driver option --SETOPTION, see Section 2.4.49.

The usage of the assembler is similar under all of available operating systems. All command-line

options are recognised in either upper or lower case. The basic command format is shown:

ASPIC [options] files

files is a space-separated list of one or more assembler source files. Where more than one source

file is specified the assembler treats them as a single module, i.e. a single assembly will be performed

on the concatenation of all the source files specified. The files must be specified in full, no default

extensions or suffixes are assumed.

options is an optional space-separated list of assembler options, each with a minus sign - as

the first character. A full list of possible options is given in Table 4.1, and a full description of each

option follows.

Table 4.1: ASPIC command-line options

Option Meaning Default

-A Produce assembler output Produce object code

-C Produce cross-reference file No cross reference

-Cchipinfo Define the chipinfo file dat\picc.ini

-E[file|digit] Set error destination/format

-Flength Specify listing form length 66

-H Output hex values for constants Decimal values

-I List macro expansions Don’t list macros

-L[listfile] Produce listing No listing

-O Perform optimization No optimization

-Ooutfile Specify object name srcfile.obj

-Pprocessor Define the processor

-R Specify non-standard ROM

-Twidth Specify listing page width 80

-V Produce line number info No line numbers

-Wlevel Set warning level threshold 0

-X No local symbols in OBJ file

4.2 Assembler Options

The command line options recognised by ASPIC are as follows:

82

Macro Assembler Assembler Options

-A An assembler file with an extension .opt will be produced if this option is used. This is useful

when checking the optimized assembler produced using the -O option.

-C A cross reference file will be produced when this option is used. This file, called srcfile.crf,

where srcfile is the base portion of the first source file name, will contain raw cross refer-

ence information. The cross reference utility CREF must then be run to produce the formatted

cross reference listing. See Section 4.7 for more information.

-Cchipinfo Specify the chipinfo file to use. The chipinfo file is called picc.ini and can be found

in the DAT directory of the compiler distribution.

-E[file|digit] The default format for an error message is in the form:

filename: line: message

where the error of type message occurred on line line of the file filename.

The -E option with no argument will make the assembler use an alternate format for

error and warning messages.

Specifying a digit as argument has a similar effect, only it allows selection of any of

the available message formats.

Specifying a filename as argument will force the assembler to direct error and warning

messages to a file with the name specified.

-Flength By default the listing format is pageless, i.e. the assembler listing output is continuous.

The output may be formatted into pages of varying lengths. Each page will begin with a

header and title, if specified. The -F option allows a page length to be specified. A zero value

of length implies pageless output. The length is specified in a number of lines.

-H Particularly useful in conjunction with the -A or -L ASPIC options, this option specifies that

output constants should be shown as hexadecimal values rather than decimal values.

-I This option forces listing of macro expansions and unassembled conditionals which would other-

wise be suppressed by a NOLIST assembler control. The -L option is still necessary to produce

a listing.

-Llistfile This option requests the generation of an assembly listing file. If listfile is specified

then the listing will be written to that file, otherwise it will be written to the standard output.

-O This requests the assembler to perform optimization on the assembly code. Note that the use of

this option slows the assembly process down, as the assembler must make an additional pass

over the input code. Debug information for assembler code generated from C source code

may become unreliable.

83

HI-TECH C Assembly Language Macro Assembler

-Ooutfile By default the assembler determines the name of the object file to be created by stripping

any suffix or extension (i.e. the portion after the last dot) from the first source filename and

appending .obj. The -O option allows the user to override the default filename and specify a

new name for the object file.

-Pprocessor This option defines the processor which is being used. The processor type can also be

indicated by use of the PROCESSOR directive in the assembler source file, see Section 4.3.8.24.

You can also add your own processors to the compiler via the compiler’s chipinfo file.

-V This option will include line number and filename information in the object file produced by

the assembler. Such information may be used by debuggers. Note that the line numbers will

correspond with assembler code lines in the assembler file. This option should not be used

when assembling an assembler file produced by the code generator from a C source file.

-Twidth This option allows specification of the listfile paper width, in characters. width should be

a decimal number greater than 41. The default width is 80 characters.

-X The object file created by the assembler contains symbol information, including local symbols,

i.e. symbols that are neither public or external. The -X option will prevent the local symbols

from being included in the object file, thereby reducing the file size.

4.3 HI-TECH C Assembly Language

The source language accepted by the macro assembler, ASPIC, is described below. All opcode

mnemonics and operand syntax are strictly PIC assembly language. Additional mnemonics and

assembler directives are documented in this section.

4.3.1 Statement Formats

Legal statement formats are shown in Table 4.2.

The label field is optional and, if present, should contain one identifier. A label may appear

on a line of its own, or precede a mnemonic as shown in the second format.

The third format is only legal with certain assembler directives, such as MACRO, SET and EQU. The

name field is mandatory and should also contain one identifier.

If the assembly file is first processed by the C preprocessor, see Section 2.4.11, then it may also

contain lines that form valid preprocessor directives. See Section 3.12.1 for more information on the

format for these directives.

There is no limitation on what column or part of the line in which any part of the statement

should appear.

84

Macro Assembler HI-TECH C Assembly Language

Table 4.2: ASPICstatement formats
Format 1 label:

Format 2 label: mnemonic operands ; comment

Format 3 name pseudo-op operands ; comment

Format 4 ; comment only

Format 5 <empty line>

4.3.2 Characters

The character set used is standard 7 bit ASCII. Alphabetic case is significant for identifiers, but not

mnemonics and reserved words. Tabs are treated as equivalent to spaces.

4.3.2.1 Delimiters

All numbers and identifiers must be delimited by white space, non-alphanumeric characters or the

end of a line.

4.3.2.2 Special Characters

There are a few characters that are special in certain contexts. Within a macro body, the character & is

used for token concatenation. To use the bitwise & operator within a macro body, escape it by using

&& instead. In a macro argument list, the angle brackets < and > are used to quote macro arguments.

4.3.3 Comments

An assembly comment is initiated with a semicolon that is not part of a string or character constant.

If the assembly file is first processed by the C preprocessor, see Section 2.4.11, then it may also

contain C or C++ style comments using the standard /* ... */ and // syntax.

4.3.3.1 Special Comment Strings

Several comment strings are appended to assembler instructions by the code generator. These are

typically used by the assembler optimizer.

The comment string ;volatile is used to indicate that the memory location being accessed in

the commented instruction is associated with a variable that was declared as volatile in the C

source code. Accesses to this location which appear to be redundant will not be removed by the

assembler optimizer if this string is present.

This comment string may also be used in assembler source to achive the same effect for locations

defined and accessed in assembly code.

85

HI-TECH C Assembly Language Macro Assembler

Table 4.3: ASPIC numbers and bases
Radix Format

Binary digits 0 and 1 followed by B

Octal digits 0 to 7 followed by O, Q, o or q

Decimal digits 0 to 9 followed by D, d or nothing

Hexadecimal digits 0 to 9, A to F preceded by Ox or followed by H or h

4.3.4 Constants

4.3.4.1 Numeric Constants

The assembler performs all arithmetic with signed 32-bit precision.

The default radix for all numbers is 10. Other radices may be specified by a trailing base specifier

as given in Table 4.3.

Hexadecimal numbers must have a leading digit (e.g. 0ffffh) to differentiate them from identi-

fiers. Hexadecimal digits are accepted in either upper or lower case.

Note that a binary constant must have an upper case B following it, as a lower case b is used for

temporary (numeric) label backward references.

In expressions, real numbers are accepted in the usual format, and are interpreted as IEEE 32-bit

format.

4.3.4.2 Character Constants and Strings

A character constant is a single character enclosed in single quotes ’.

Multi-character constants, or strings, are a sequence of characters, not including carriage return

or newline characters, enclosed within matching quotes. Either single quotes ’ or double quotes "

maybe used, but the opening and closing quotes must be the same.

4.3.5 Identifiers

Assembly identifiers are user-defined symbols representing memory locations or numbers. A sym-

bol may contain any number of characters drawn from the alphabetics, numerics and the special

characters dollar, $, question mark, ? and underscore, _.

The first character of an identifier may not be numeric. The case of alphabetics is significant,

e.g. Fred is not the same symbol as fred. Some examples of identifiers are shown here:

An_identifier

an_identifier

an_identifier1

86

Macro Assembler HI-TECH C Assembly Language

$

?$_12345

4.3.5.1 Significance of Identifiers

Users of other assemblers that attempt to implement forms of data typing for identifiers should note

that this assembler attaches no significance to any symbol, and places no restrictions or expectations

on the usage of a symbol.

The names of psects (program sections) and ordinary symbols occupy separate, overlapping

name spaces, but other than this, the assembler does not care whether a symbol is used to represent

bytes, words or sports cars. No special syntax is needed or provided to define the addresses of bits

or any other data type, nor will the assembler issue any warnings if a symbol is used in more than

one context. The instruction and addressing mode syntax provide all the information necessary for

the assembler to generate correct code.

4.3.5.2 Assembler-Generated Identifiers

Where a LOCAL directive is used in a macro block, the assembler will generate a unique symbol to

replace each specified identifier in each expansion of that macro. These unique symbols will have

the form ??nnnn where nnnn is a 4 digit number. The user should avoid defining symbols with the

same form.

4.3.5.3 Location Counter

The current location within the active program section is accessible via the symbol $. This symbol

expands to the address of the currently executing instruction. Thus:

goto $

will represent code that will jump to itself and form an endless loop. By using this symbol and an

offset, a relative jump destination to be specified.

The address represented by $ is a word address and thus any offset to this symbol represents a

number of instructions. For example:

goto $+1

movlw 8

movwf _foo

will skip one instruction.

87

HI-TECH C Assembly Language Macro Assembler

4.3.5.4 Register Symbols

Code in assembly modules may gain access to the special function registers by including pre-defined

assembly header files. The appropriate file can be included by add the line:

#include <aspic.h>

to the assembler source file. Note that the file must be included using a C pre-processor directive and

hence the option to pre-process assembly files must be enabled when compiling, see Section 2.4.11.

This header file contains appropriate commands to ensure that the header file specific for the target

device is included into the souce file.

These header files contain EQU declarations for all byte or multi-byte sized registers and #define

macros for named bits within byte registers.

4.3.5.5 Symbolic Labels

A label is symbolic alias which is assigned a value equal to its offset within the current psect.

A label definition consists of any valid assembly identifier and optionally followed by a colon,

:. The definition may appear on a line by itself or be positioned before a statement. Here are two

examples of legitimate labels interspersed with assembly code.

frank:

movlw 1

goto fin

simon44: clrf _input

Here, the label frankwill ultimately be assigned the address of the mov instruction, and simon44 the

address of the clrf instruction. Regardless of how they are defined, the assembler list file produced

by the assembler will always show labels on a line by themselves.

Note that the colon following the label is optional, therefore symbols which are not interpreted

in any other way are assumed to be labels. Thus the code:

mowlv 23h

bananas

movf 37h

defined a symbol called bananas. Mis-typed assembler instructions can sometimes be treated as

labels without an error message being issuesd. Labels may be used (and are prefered) in assembly

code rather than using an absolute address. Thus they can be used as the target location for jump-type

instructions or to load an address into a register.

Like variables, labels have scope. By default, they may be used anywhere in the module in which

they are defined. They may be used by code above their definition. To make a label accessable in

other modules, use the GLOBAL directive. See Section 4.3.8.1 for more information.

88

Macro Assembler HI-TECH C Assembly Language

4.3.6 Expressions

The operands to instructions and directives are comprised of expressions. Expressions can be made

up of numbers, identifiers, strings and operators.

Operators can be unary (one operand, e.g. not) or binary (two operands, e.g. +). The operators

allowable in expressions are listed in Table 4.4. The usual rules governing the syntax of expressions

apply.

The operators listed may all be freely combined in both constant and relocatable expressions. The

HI-TECH linker permits relocation of complex expressions, so the results of expressions involving

relocatable identifiers may not be resolved until link time.

4.3.7 Program Sections

Program sections, or psects, are simply a section of code or data. They are a way of grouping together

parts of a program (via the psect’s name) even though the source code may not be physically adjacent

in the source file, or even where spread over several source files.

•

The concept of a program section is not a HI-TECH-only feature. Often referred to as

blocks or segments in other compilers, these grouping of code and data have long used

the names text, bss and data.

A psect is identified by a name and has several attributes. The PSECT assembler directive is used

to define a psect. It takes as arguments a name and an optional comma-separated list of flags. See

Section 4.3.8.3 for full information on psect definitions. Chapter 5 has more information on the

operation of the linker and on optins that can be used to control psect placement in memory.

The assembler associates no significance to the name of a psect and the linker is also not aware

of which are compiler-generated or user-defined psects. Unless defined as abs (absolute), psects are

relocatable.

The following is an example showing some executable instructions being placed in the text

psect, and some data being placed in the rbss psect.

PSECT text0,class=CODE,delta=2

adjust

goto clear_fred

increment

incf _fred

PSECT rbss_0,class=BANK0,space=1

fred

89

HI-TECH C Assembly Language Macro Assembler

Table 4.4: ASPIC operators

Operator Purpose Example

* Multiplication movlw 4*33,W

+ Addition bra $+1

- Subtraction DB 5-2

/ Division movlw 100/4

= or eq Equality IF inp eq 66

> or gt Signed greater than IF inp > 40

>= or ge Signed greater than or equal to IF inp ge 66

< or lt Signed less than IF inp < 40

<= or le Signed less than or equal to IF inp le 66

<> or ne Signed not equal to IF inp <> 40

low Low byte of operand movlw low(inp)

high High byte of operand movlw high(1008h)

highword High 16 bits of operand DW highword(inp)

mod Modulus movlw 77mod4

& Bitwise AND clrf inp&0ffh

^ Bitwise XOR (exclusive or) movf inp^80,W

| Bitwise OR movf inp!1,W

not Bitwise complement movlw not 055h,W

< < or shl Shift left DB inp> >8

> > or shr Shift right movlw inp shr 2,W

rol Rotate left DB inp rol 1

ror Rotate right DB inp ror 1

float24 24-bit version of real operand DW float24(3.3)

nul Tests if macro argument is null

90

Macro Assembler HI-TECH C Assembly Language

DS 2

PSECT text0,class=CODE,delta=2

clear_fred

clrf _fred

return

Note that even though the two blocks of code in the text psect are separated by a block in the rbss

psect, the two text psect blocks will be contiguous when loaded by the linker. In other words,

the incf _fred instruction will be followed by the clrf instruction in the final ouptut. The actual

location in memory of the text and rbss psects will be determined by the linker.

Code or data that is not explicitly placed into a psect will become part of the default (unnamed)

psect.

4.3.8 Assembler Directives

Assembler directives, or pseudo-ops, are used in a similar way to instruction mnemonicss, but either

do not generate code, or generate non-executable code, i.e. data bytes. The directives are listed in

Table 4.5, and are detailed below.

4.3.8.1 GLOBAL

GLOBAL declares a list of symbols which, if defined within the current module, are made public. If

the symbols are not defined in the current module, it is a reference to symbols in external modules.

Example:

GLOBAL lab1,lab2,lab3

4.3.8.2 END

END is optional, but if present should be at the very end of the program. It will terminate the assembly

and not even blank lines should follow this directive. If an expression is supplied as an argument,

that expression will be used to define the start address of the program. Whether this is of any use

will depend on the linker. Example:

END start_label

91

HI-TECH C Assembly Language Macro Assembler

Table 4.5: ASPIC assembler directives
Directive Purpose

GLOBAL Make symbols accessible to other modules or allow reference to

other modules’ symbols

END End assembly

PSECT Declare or resume program section

ORG Set location counter

EQU Define symbol value

SET Define or re-define symbol value

DB Define constant byte(s)

DW Define constant word(s)

DS Reserve storage

IF Conditional assembly

ELSIF Alternate conditional assembly

ELSE Alternate conditional assembly

ENDIF End conditional assembly

FNADDR Inform the linker that a function may be indirectly called

FNARG Inform the linker that evaluation of arguments for one function

requires calling another

FNBREAK Break call graph links

FNCALL Inform the linker that one function calls another

FNCONF Supply call graph configuration information for the linker

FNINDIR Inform the linker that all functions with a particular signature

may be indirectly called

FNROOT Inform the linker that a function is the “root” of a call grpah

FNSIZE Inform the linker of argument and local variable for a function

MACRO Macro definition

ENDM End macro definition

LOCAL Define local tabs

ALIGN Align output to the specified boundary

PAGESEL Generate set/reset instruction to set PCLATH for this page

PROCESSOR Define the particular chip for which this file is to be assembled.

REPT Repeat a block of code n times

IRP Repeat a block of code with a list

IRPC Repeat a block of code with a character list

SIGNAT Define function signature

92

Macro Assembler HI-TECH C Assembly Language

Table 4.6: PSECT flags

Flag Meaning

abs Psect is absolute

bit Psect holds bit objects

class=name Specify class name for psect

delta=size Size of an addressing unit

global Psect is global (default)

limit=address Upper address limit of psect

local Psect is not global

ovrld Psect will overlap same psect in other modules

pure Psect is to be read-only

reloc=boundary Start psect on specified boundary

size=max Maximum size of psect

space=area Represents area in which psect will reside

with=psect Place psect in the same page as specified psect

4.3.8.3 PSECT

The PSECT directive declares or resumes a program section. It takes as arguments a name and,

optionally, a comma-separated list of flags. The allowed flags are listed in Table 4.6, below.

Once a psect has been declared it may be resumed later by another PSECT directive, however the

flags need not be repeated.

• abs defines the current psect as being absolute, i.e. it is to start at location 0. This does

not mean that this module’s contribution to the psect will start at 0, since other modules may

contribute to the same psect.

• The bit flag specifies that a psect hold objects that are 1 bit long. Such psects have a scale

value of 8 to indicate that there are 8 addressable units to each byte of storage.

• The class flag specifies a class name for this psect. Class names are used to allow local psects

to be referred to by a class name at link time, since they cannot be referred to by their own

name. Class names are also useful where psects need only be positioned anywhere within a

range of addresses rather than at one specific address.

• The delta flag defines the size of an addressing unit. In other words, the number of bytes

covered for an increment in the address.

93

HI-TECH C Assembly Language Macro Assembler

• A psect defined as global will be combined with other global psects of the same name from

other modules at link time. This is the default behaviour for psects, unless the local flag is

used.

• The limit flag specifies a limit on the highest address to which a psect may extend.

• A psect defined as local will not be combined with other local psects at link time, even if

there are others with the same name. Where there are two local psects in the one module,

they reference the same psect. A local psect may not have the same name as any global

psect, even one in another module.

• A psect defined as ovrld will have the contribution from each module overlaid, rather than

concatenated at runtime. ovrld in combination with abs defines a truly absolute psect, i.e. a

psect within which any symbols defined are absolute.

• The pure flag instructs the linker that this psect will not be modified at runtime and may

therefore, for example, be placed in ROM. This flag is of limited usefulness since it depends

on the linker and target system enforcing it.

• The reloc flag allows specification of a requirement for alignment of the psect on a particular

boundary, e.g. reloc=100h would specify that this psect must start on an address that is a

multiple of 100h.

• The size flag allows a maximum size to be specified for the psect, e.g. size=100h. This will

be checked by the linker after psects have been combined from all modules.

• The space flag is used to differentiate areas of memory which have overlapping addresses,

but which are distinct. Psects which are positioned in program memory and data memory may

have a different space value to indicate that the program space address zero, for example,

is a different location to the data memory address zero. Devices which use banked RAM

data memory typically have the same space value as their full addresses (including bank

information) are unique.

• The with flag allows a psect to be placed in the same page with a specified psect. For example

with=text will specify that this psect should be placed in the same page as the text psect.

Some examples of the use of the PSECT directive follow:

PSECT fred

PSECT bill,size=100h,global

PSECT joh,abs,ovrld,class=CODE,delta=2

94

Macro Assembler HI-TECH C Assembly Language

4.3.8.4 ORG

The ORG directive changes the value of the location counter within the current psect. This means that

the addresses set with ORG are relative to the base address of the psect, which is not determined

until link time.

•

The much-abused ORG directive does not necessarily move the location counter to the

absolute address you specify as the operand. This directive is rarely needed in programs.

The argument to ORG must be either an absolute value, or a value referencing the current psect. In

either case the current location counter is set to the value determined by the argument. It is not

possible to move the location counter backward. For example:

ORG 100h

will move the location counter to the beginning of the current psect plus 100h. The actual location

will not be known until link time.

In order to use the ORG directive to set the location counter to an absolute value, the directive

must be used from within an absolute, overlaid psect. For example:

PSECT absdata,abs,ovrld

ORG 50h

4.3.8.5 EQU

This pseudo-op defines a symbol and equates its value to an expression. For example

thomas EQU 123h

The identifier thomas will be given the value 123h. EQU is legal only when the symbol has not

previously been defined. See also Section 4.3.8.6.

4.3.8.6 SET

This pseudo-op is equivalent to EQU except that allows a symbol to be re-defined. For example

thomas SET 0h

95

HI-TECH C Assembly Language Macro Assembler

4.3.8.7 DB

DB is used to initialize storage as bytes. The argument is a list of expressions, each of which will be

assembled into one byte. Each character of the string will be assembled into one memory location.

Examples:

alabel: DB ’X’,1,2,3,4,

Note that because the size of an address unit in ROM is 2 bytes, the DB pseudo-op will initialise a

word with the upper byte set to zero.

4.3.8.8 DW

DW operates in a similar fashion to DB, except that it assembles expressions into words. Example:

DW -1, 3664h, ‘A’, 3777Q

4.3.8.9 DS

This directive reserves, but does not initialize, memory locations. The single argument is the number

of bytes to be reserved. Examples:

alabel: DS 23 ;Reserve 23 bytes of memory

xlabel: DS 2+3 ;Reserve 5 bytes of memory

4.3.8.10 FNADDR

This directive tells the linker that a function has its address taken, and thus could be called indirectly

through a function pointer. For example

FNADDR _func1

tells the linker that func1() has its address taken.

4.3.8.11 FNARG

The directive

FNARG fun1,fun2

tells the linker that evaluation of the arguments to function fun1 involves a call to fun2, thus the

memory argument memory allocated for the two functions should not overlap. For example, the C

function calls

96

Macro Assembler HI-TECH C Assembly Language

fred(var1, bill(), 2);

will generate the assembler directive

FNARG _fred,_bill

thereby telling the linker that bill() is called while evaluating the arguments for a call to fred().

4.3.8.12 FNBREAK

This directive is used to break links in the call graph information. The form of this directive is as

follows:

FNBREAK fun1,fun2

and is automatically generated when the interrupt_level pragma is used. It states that any calls to

fun1 in trees other than the one rooted at fun2 should not be considered when checking for functions

that appear in multiple call graphs. Fun2() is typically intlevel0 or intlevel1 in compiler-generated

code when the interrupt_level pragma is used. Memory for the auto/parameter area for a fun1 will

only be assigned in the tree rooted at fun2.

4.3.8.13 FNCALL

This directive takes the form:

FNCALL fun1,fun2

FNCALL is usually used in compiler generated code. It tells the linker that function fun1 calls func-

tion fun2. This information is used by the linker when performing call graph analysis. If you write

assembler code which calls a C function, use the FNCALL directive to ensure that your assembler

function is taken into account. For example, if you have an assembler routine called _fred which

calls a C routine called foo(), in your assembler code you should write:

FNCALL _fred,_foo

4.3.8.14 FNCONF

The FNCONF directive is used to supply the linker with configuration information for a call graph.

FNCONF is written as follows:

FNCONF psect,auto,args

97

HI-TECH C Assembly Language Macro Assembler

where psect is the psect containing the call graph, auto is the prefix on all auto variable symbol names

and args is the prefix on all function argument symbol names. This directive normally appears in

only one place: the runtime startup code used by C compiler generated code. For the HI-TECH

PICC Compiler the startup routine will include the directive:

FNCONF rbss,?a,?

telling the linker that the call graph is in the rbss psect, auto variable blocks start with ?a and function

argument blocks start with ?.

4.3.8.15 FNINDIR

This directive tells the linker that a function performs an indirect call to another function with a

particular signature (see the SIGNAT directive). The linker must assume worst case that the function

could call any other function which has the same signature and has had its address taken (see the

FNADDR directive). For example, if a function called fred() performs an indirect call to a function

with signature 8249, the compiler will produce the directive:

FNINDIR _fred,8249

4.3.8.16 FNSIZE

The FNSIZE directive informs the linker of the size of the local variable and argument area associ-

ated with a function. These values are used by the linker when building the call graph and assigning

addresses to the variable and argument areas. This directive takes the form:

FNSIZE func,local,args

The named function has a local variable area and argument area as specified, for example

FNSIZE _fred, 10, 5

means the function fred() has 10 bytes of local variables and 5 bytes of arguments. The function

name arguments to any of the call graph associated directives may be local or global. Local functions

are of course defined in the current module, but most be used in the call graph construction in the

same manner as global names.

4.3.8.17 FNROOT

This directive tells the assembler that a function is a root function and thus forms the root of a call

graph. It could either be the C main() function or an interrupt function. For example, the C main

module produce the directive:

FNROOT _main

98

Macro Assembler HI-TECH C Assembly Language

4.3.8.18 IF, ELSIF, ELSE and ENDIF

These directives implement conditional assembly. The argument to IF and ELSIF should be an

absolute expression. If it is non-zero, then the code following it up to the next matching ELSE,

ELSIF or ENDIF will be assembled. If the expression is zero then the code up to the next matching

ELSE or ENDIF will be skipped.

At an ELSE the sense of the conditional compilation will be inverted, while an ENDIF will termi-

nate the conditional assembly block. Example:

IF ABC

goto aardvark

ELSIF DEF

goto denver

ELSE

goto grapes

ENDIF

In this example, if ABC is non-zero, the first jmp instruction will be assembled but not the second or

third. If ABC is zero and DEF is non-zero, the second jmp will be assembled but the first and third

will not. If both ABC and DEF are zero, the third jmp will be assembled. Conditional assembly blocks

may be nested.

4.3.8.19 MACRO and ENDM

These directives provide for the definition of macros. The MACRO directive should be preceded by

the macro name and optionally followed by a comma-separated list of formal parameters. When the

macro is used, the macro name should be used in the same manner as a machine opcode, followed

by a list of arguments to be substituted for the formal parameters.

For example:

;macro: movlf

;args: arg1 - the literal value to load

; arg2 - the NAME of the source variable

;descr: Move a literal value into a nominated file register:

movlf MACRO arg1,arg2

movlw arg1

movwf arg2 mod 080h

ENDM

When used, this macro will expand to the 2 instructions in the body of the macro, with the formal

parameters substituted by the arguments. Thus:

99

HI-TECH C Assembly Language Macro Assembler

movlf 2,tempvar

expands to:

movlw 2

movwf tempvar mod 080h

A point to note in the above example: the & character is used to permit the concatenation of macro

parameters with other text, but is removed in the actual expansion.

A comment may be suppressed within the expansion of a macro (thus saving space in the macro

storage) by opening the comment with a double semicolon, ;;.

When invoking a macro, the argument list must be comma-separated. If it is desired to include a

comma (or other delimiter such as a space) in an argument then angle brackets < and > may be used

to quote the argument. In addition the exclamation mark, ! may be used to quote a single character.

The character immediately following the exclamation mark will be passed into the macro argument

even if it is normally a comment indicator.

If an argument is preceded by a percent sign %, that argument will be evaluated as an expression

and passed as a decimal number, rather than as a string. This is useful if evaluation of the argument

inside the macro body would yield a different result.

The nul operator may be used within a macro to test a macro argument, for example:

IF nul arg3 ; argument was not supplied.

...

ELSE ; argument was supplied

...

ENDIF

By default, the assembly list file will show macro in an unexpanded format, i.e. as the macro was

invoked. Expansion of the macro in the listing file can be shown by using the EXPAND assembler

control, see Section 4.3.9.2,

4.3.8.20 LOCAL

The LOCAL directive allows unique labels to be defined for each expansion of a given macro. Any

symbols listed after the LOCAL directive will have a unique assembler generated symbol substituted

for them when the macro is expanded. For example:

down MACRO count

LOCAL more

more: decfsz count

goto more

ENDM

100

Macro Assembler HI-TECH C Assembly Language

when expanded will include a unique assembler generated label in place of more. For example:

down foobar

expands to:

??0001 decfsz foobar

goto ??0001

if invoked a second time, the label more would expand to ??0002.

4.3.8.21 ALIGN

The ALIGN directive aligns whatever is following, data storage or code etc., to the specified boundary

in the psect in which the directive is found. The boundary is specified by a number following the

directive and it specifies a number of bytes. For example, to align output to a 2 byte (even) address

within a psect, the following could be used.

ALIGN 2

Note, however, that what follows will only begin on an even absolute address if the psect begins on

an even address. The ALIGN directive can also be used to ensure that a psect’s length is a multiple

of a certain number. For example, if the above ALIGN directive was placed at the end of a psect, the

psect would have a length that was always an even number of bytes long.

4.3.8.22 REPT

The REPT directive temporarily defines an unnamed macro, then expands it a number of times as

determined by its argument. For example:

REPT 3

addwf fred,w

ENDM

will expand to

addwf fred,w

addwf fred,w

addwf fred,w

101

HI-TECH C Assembly Language Macro Assembler

4.3.8.23 IRP and IRPC

The IRP and IRPC directives operate similarly to REPT, however instead of repeating the block a

fixed number of times, it is repeated once for each member of an argument list. In the case of IRP

the list is a conventional macro argument list, in the case or IRPC it is each character in one argument.

For each repetition the argument is substituted for one formal parameter.

For example:

PSECT idata_0

IRP number,4865h,6C6Ch,6F00h

DW number

ENDM

PSECT text0

would expand to:

PSECT idata_0

DW 4865h

DW 6C6Ch

DW 6F00h

PSECT text0

Note that you can use local labels and angle brackets in the same manner as with conventional

macros.

The IRPC directive is similar, except it substitutes one character at a time from a string of non-

space characters.

For example:

PSECT romdata,class=CODE,delta=2

IRPC char,ABC

DB ’char’

ENDM

PSECT text

will expand to:

PSECT romdata,class=CODE,delta=2

DB ’A’

DB ’B’

DB ’C’

PSECT text

102

Macro Assembler HI-TECH C Assembly Language

4.3.8.24 PROCESSOR

The output of the assembler may vary depending on the target device. The device name is typically

set using the --CHIP option to the command-line driver PICC, see Section 2.4.20, or using the

assembler -P option, see Table 4.1, but can also be set with this directive, e.g.

PROCESSOR 16F877

4.3.8.25 SIGNAT

This directive is used to associate a 16-bit signature value with a label. At link time the linker checks

that all signatures defined for a particular label are the same and produces an error if they are not. The

SIGNAT directive is used by the HI-TECH C compiler to enforce link time checking of C function

prototypes and calling conventions.

Use the SIGNAT directive if you want to write assembly language routines which are called from

C. For example:

SIGNAT _fred,8192

will associate the signature value 8192 with the symbol _fred. If a different signature value for

_fred is present in any object file, the linker will report an error.

4.3.9 Assembler Controls

Assembler controls may be included in the assembler source to control assembler operation such as

listing format. These keywords have no significance anywhere else in the program. The control is

invoked by the directive OPT followed by the control name. Some keywords are followed by one or

more parameters. For example:

OPT EXPAND

A list of keywords is given in Table 4.7, and each is described further below.

4.3.9.1 COND

Any conditional code will be included in the listing output. See also the NOCOND control in Section

4.3.9.5.

4.3.9.2 EXPAND

When EXPAND is in effect, the code generated by macro expansions will appear in the listing output.

See also the NOEXPAND control in Section 4.3.9.6.

103

HI-TECH C Assembly Language Macro Assembler

Table 4.7: ASPIC assembler controls
Control1 Meaning Format

COND* Include conditional code in the listing COND

EXPAND Expand macros in the listing output EXPAND

INCLUDE Textually include another source file INCLUDE <pathname>

LIST* Define options for listing output LIST [<listopt>, ...,

<listopt>]

NOCOND Leave conditional code out of the listing NOCOND

NOEXPAND* Disable macro expansion NOEXPAND

NOLIST Disable listing output NOLIST

PAGE Start a new page in the listing output PAGE

SUBTITLE Specify the subtitle of the program SUBTITLE “<subtitle>”

TITLE Specify the title of the program TITLE “<title>”

4.3.9.3 INCLUDE

This control causes the file specified by pathname to be textually included at that point in the

assembly file. The INCLUDE control must be the last control keyword on the line, for example:

OPT INCLUDE "options.h"

The driver does not pass any search paths to the assembler, so if the include file is not located in the

working directory, the pathname must specify the exact location.

See also the driver option -P in Section 2.4.11 which forces the C preprocessor to preprocess

assembly file, thus allowing use of preprocessor directives, such as #include (see Section 3.12.1).

4.3.9.4 LIST

If the listing was previously turned off using the NOLIST control, the LIST control on its own will

turn the listing on.

Alternatively, the LIST control may includes options to control the assembly and the listing. The

options are listed in Table 4.8.

See also the NOLIST control in Section 4.3.9.7.

4.3.9.5 NOCOND

Using this control will prevent conditional code from being included in the listing output. See also

the COND control in Section 4.3.9.1.

104

Macro Assembler HI-TECH C Assembly Language

Table 4.8: LIST control options

List Option Default Description

c=nnn 80 Set the page (i.e. column) width.

n=nnn 59 Set the page length.

t=ON|OFF OFF Truncate listing output lines. The default wraps lines.

p=<processor> n/a Set the processor type.

r=<radix> hex Set the default radix to hex, dec or oct.

x=ON|OFF OFF Turn macro expansion on or off.

4.3.9.6 NOEXPAND

NOEXPAND disables macro expansion in the listing file. The macro call will be listed instead. See

also the EXPAND control in Section 4.3.9.2. Assembly macro are discussed in Section 4.3.8.19.

4.3.9.7 NOLIST

This control turns the listing output off from this point onward. See also the LIST control in Section

4.3.9.4.

4.3.9.8 NOXREF

NOXREF will disable generation of the raw cross reference file. See also the XREF control in Section

4.3.9.13.

4.3.9.9 PAGE

PAGE causes a new page to be started in the listing output. A Control-L (form feed) character will

also cause a new page when encountered in the source.

4.3.9.10 SPACE

The SPACE control will place a number of blank lines in the listing output as specified by its param-

eter.

4.3.9.11 SUBTITLE

SUBTITLE defines a subtitle to appear at the top of every listing page, but under the title. The string

should be enclosed in single or double quotes. See also the TITLE control in Section 4.3.9.12.

105

HI-TECH C Assembly Language Macro Assembler

4.3.9.12 TITLE

This control keyword defines a title to appear at the top of every listing page. The string should be

enclosed in single or double quotes. See also the SUBTITLE control in Section 4.3.9.11.

4.3.9.13 XREF

XREF is equivalent to the driver command line option --CR (see Section 2.4.23). It causes the assem-

bler to produce a raw cross reference file. The utility CREF should be used to actually generate the

formatted cross-reference listing.

106

Chapter 5

Linker and Utilities

5.1 Introduction

HI-TECH C incorporates a relocating assembler and linker to permit separate compilation of C

source files. This means that a program may be divided into several source files, each of which

may be kept to a manageable size for ease of editing and compilation, then each source file may be

compiled separately and finally all the object files linked together into a single executable program.

This chapter describes the theory behind and the usage of the linker. Note however that in most

instances it will not be necessary to use the linker directly, as the compiler driver will automatically

invoke the linker with all necessary arguments. Using the linker directly is not simple, and should

be attempted only by those with a sound knowledge of the compiler and linking in general.

If it is absolutely necessary to use the linker directly, the best way to start is to copy the linker

arguments constructed by the compiler driver, and modify them as appropriate. This will ensure that

the necessary startup module and arguments are present.

Note also that the linker supplied with HI-TECH C is generic to a wide variety of compilers for

several different processors. Not all features described in this chapter are applicable to all compilers.

5.2 Relocation and Psects

The fundamental task of the linker is to combine several relocatable object files into one. The

object files are said to be relocatable since the files have sufficient information in them so that any

references to program or data addresses (e.g. the address of a function) within the file may be

adjusted according to where the file is ultimately located in memory after the linkage process. Thus

the file is said to be relocatable. Relocation may take two basic forms; relocation by name, i.e.

107

Program Sections Linker and Utilities

relocation by the ultimate value of a global symbol, or relocation by psect, i.e. relocation by the

base address of a particular section of code, for example the section of code containing the actual

executable instructions.

5.3 Program Sections

Any object file may contain bytes to be stored in memory in one or more program sections, which

will be referred to as psects. These psects represent logical groupings of certain types of code bytes in

the program. In general the compiler will produce code in three basic types of psects, although there

will be several different types of each. The three basic kinds are text psects, containing executable

code, data psects, containing initialised data, and bss psects, containing uninitialised but reserved

data.

The difference between the data and bss psects may be illustrated by considering two external

variables; one is initialised to the value 1, and the other is not initialised. The first will be placed into

the data psect, and the second in the bss psect. The bss psect is always cleared to zeros on startup of

the program, thus the second variable will be initialised at run time to zero. The first will however

occupy space in the program file, and will maintain its initialised value of 1 at startup. It is quite

possible to modify the value of a variable in the data psect during execution, however it is better

practice not to do so, since this leads to more consistent use of variables, and allows for restartable

and ROMable programs.

For more information on the particular psects used in a specific compiler, refer to the appropriate

machine-specific chapter.

5.4 Local Psects

Most psects are global, i.e. they are referred to by the same name in all modules, and any reference

in any module to a global psect will refer to the same psect as any other reference. Some psects

are local, which means that they are local to only one module, and will be considered as separate

from any other psect even of the same name in another module. Local psects can only be referred

to at link time by a class name, which is a name associated with one or more psects via the PSECT

directive class= in assembler code. See Section 4.3.8.3 for more information on PSECT options.

5.5 Global Symbols

The linker handles only symbols which have been declared as GLOBAL to the assembler. The code

generator generates these assembler directives whenever it encounters global C objects. At the C

source level, this means all names which have storage class external and which are not declared

108

Linker and Utilities Link and load addresses

as static. These symbols may be referred to by modules other than the one in which they are

defined. It is the linker’s job to match up the definition of a global symbol with the references to it.

Other symbols (local symbols) are passed through the linker to the symbol file, but are not otherwise

processed by the linker.

5.6 Link and load addresses

The linker deals with two kinds of addresses; link and load addresses. Generally speaking the link

address of a psect is the address by which it will be accessed at run time. The load address, which

may or may not be the same as the link address, is the address at which the psect will start within the

output file (HEX or binary file etc.). In the case of the 8086 processor, the link address roughly cor-

responds to the offset within a segment, while the load address corresponds to the physical address

of a segment. The segment address is the load address divided by 16.

Other examples of link and load addresses being different are; an initialised data psect that is

copied from ROM to RAM at startup, so that it may be modified at run time; a banked text psect that

is mapped from a physical (== load) address to a virtual (== link) address at run time.

The exact manner in which link and load addresses are used depends very much on the particular

compiler and memory model being used.

5.7 Compiled Stack Operation

A compiler can either take advantage of the hardware stack contained on a device, or produce code

which uses a compiled stack for parameter passing between functions and auto variables. Temporary

variables used by a function may also be allocated space in the auto area. (Temporary variables with

names like btemp, wtemp or ltemp are not examples of such variables. These variables are treated

more like registers, although they may be are allocated memory.) A compiled stack consists of fixed

memory areas that are usable by each function’s auto and parameter variables. When a compiled

stack is used, functions are not re-entrant since local variables in each function will use the same

fixed area of memory every time the function is invoked. Compilers such as PICC, 6805 and Arclite

use compiled stacks. The 8051 compiler uses a compiled stack in small and medium memory models

only.

Fundamental to the compiled stack is the call graph which defines a tree-like hierarchy indicating

the structure of function calls. The call graph consists of one or more call trees which are defined by

the program. Each tree has a root function, which is typically not called by the program, but which is

executed via other means. The function main is an example of a root function. Interrupt functions are

another. The term main-line code means any code that is executed, or may be executed, by a function

that appears under the main root in the call graph. See Section 5.11.1 for detailed information on the

call graph which is displayed in the map file.

109

Compiled Stack Operation Linker and Utilities

Each function in the call graph is allocated an auto/parameter block (APB) for its parameter,

auto and temporary variables. Temporary variables act just like auto variables. Local variables

which are qualified static are not part of this block. For situations where a compiled stack is used,

the linker performs additional operations to minimise the memory consumed by the program by

overlaying each function’s APB where possible.

In assembly code variables within a function’s APB are referenced via special symbols, which

marks the start of the auto or parameter area in the block, and an offset. The symbol used to represent

the base address of the parameter area within the function’s APB is the concatenation of ? and the

assembler name of the function. The symbol used to represent the base address of the auto area

within the function’s APB is the concatenation of ?a, in the case of Standard version compilers, or

??, in the case of Pro version compilers, and the assembler name of the function.

For example, a function called foo, for example, will use the assembly symbol ?_foo as the

base address for all its parameters variables that have been allocated memory, and either ?a_foo

(Standard) or ??_foo (Pro) as the base address for auto variables which the function defines. So the

first two-byte auto variable might be referenced in Pro version compiler assembly code as ??_foo;

the second auto variable as ??_foo+2, etc. Note that some parameters may be passed in registers,

and may not have memory allocated to them in the parameter area of the APB.

The linker allocates memory for each function’s APB, based on how that function is used in a

program. In particular, the linker determines which functions are, or may be, active at the same

time. If one function calls another, then both are active at the same time. To this end, a call graph

is created from information in the object files being linker. See Section 5.11.1 for information on

reading the call graph displayed in the map file. This information is directly related to the FNCALL

assembler directive (see Section 4.3.8.13 for more information) which the code generator places in

the assembler output whenever a C function calls another. Hand-written assembler code should also

contain these directives, if required. Information regarding the size of the auto and parameter areas

within in function’s APB is specified by the FNSIZE assembler directive (see Section 4.3.8.16).

5.7.1 Parameters involving Function Calls

The linker must take special note of the results of function calls used in expressions that are them-

selves parameters to another function. For example, if input and output are both functions that

accept two int parameters and and both return an int, the following:

result = output(out_selector, input(int_selector, 10));

shows that the function input is called to determine the second parameter to the function output.

This information is very important as it indicates areas of the code that must be considered carefully,

lest the code fail due to re-entrancy related issues.

A re-entrant call is typically considered to be the situation in which a function is called and

executed while another instance of the same function is also actively executing. For a compiled

110

Linker and Utilities Compiled Stack Operation

stack program, a function must be considered active as soon as its parameter area has been modified

in preparation for a call, even though code in that function is not yet being executed and a call to

that function has not been made. This is particularly import with functions that accept more than

one parameter as the ANSI standard does not dictate the order in which function parameters must be

evaluated.

Such a condition is best illustrated by an example, which is shown in the following tutorial.

TUT•RIAL

PARAMETERS IMPLEMENTED AS FUNCTION CALLS Consider the following code.

int B(int x, int y) {

return x - y;

}

int A(int a, int b) {

return a+B(9, b);

}

void main(void) {

B(5, A(6, 7)); // consider this statement

}

For the highlighted statement, the compiler might evaluate and load the first parameter

to the function B, which is the literal, 5. To do this, the value of 5 is loaded to the loca-

tions ?_B and ?_B+1. Now to evaluate the second parameter value to the function B, the

compiler must first call the function A. So A’s parameters are loaded and the call to func-

tion A is made. Code inside the function A, calls the function B. This involves loading

the parameters to B: the contents of the variable b are loaded to ?_B+2 and ?_B+3, and

the value 9 is loaded to ?_B and ?_B+1, which corrupts the contents of these locations

which were loaded earlier for the still pending call to function B. Function A eventually

returns normally and the the return value is the loaded to the second parameter locations

for the still pending call to function B, back at the highlighted line of source. However,

the value of 5 previously loaded as the first parameter to B has been lost. When the call

to function B is now made, the parameters will not be correct.

Note that the function B is not actively executing code in more than one instance of the

function at the same time, however the code that loads the parameters to function B is.

The linker indicates in the call graph those functions that may have been called to determine param-

eter values to other functions. See Section 5.11.1 for information on how this is displayed in the map

file.

111

Map Files Linker and Utilities

5.7.2 Implicit Calls to Assembler Library Routines

Evaluation of certain C operators will require the use of assembly routines that are precompiled into

the object code library files. The code generator will call these routines as required. These assembly

routines behave like C functions, in terms of their parameter passing, and calls to them will appear

in the call graph in the usual way.

If the same operators are used in a C interrupt functions, calls are made to routines which

are functionally identical, but which are distinct copies of those routines called from main-line

code. These duplicate routines have unique names which are derived from the interrupt level of

the interrupt function. The name consists of the usual routine name prefixed with in, where n is

the level number of the interrupt function. For example: if a compiler uses an assembler routine to

perform word multiplication, and this is called wmul, then an expression in main-line code involving

such a multiplication will call wmul; the same code used in an interrupt function of level 1 will

result in a call to the routine i1wmul; in an interrupt function of level 2 will call i2wmul, etc.

Having duplicate routines means that these implicitly called assembly library routines can safely

be called from both code under the main call tree and code under the interrupt tree. Pro compilers

will have as many duplicates of these routines precompiled in the object code libraries as there are

interrupt levels.

5.8 Map Files

The map file contains information relating to the relocation of psects and the addresses assigned to

symbols within those psects.

5.8.1 Generation

If compilation is being performed via HI-TIDE
TM

a map file is generated by default without you

having to adjust the compiler options. If you are using the driver from the command line then you’ll

need to use the -M option, see Section 2.4.8.

Map files are produced by the linker. If the compilation process is stopped before the linker is

executed, then no map file is produced. The linker will still produce a map file even if it encounters

errors, which will allow you to use this file to track down the cause of the errors. However, if the

linker ultimately reports too many errors then it did not run to completion, and the map file will

be either not created or not complete. You can use the --ERRORS option on the command line, or as

an alternate MPLAB IDE setting, to increase the number of errors before the compiler applications

give up. See Section 2.4.28 for more information on this option.

112

Linker and Utilities Map Files

5.8.2 Contents

The sections in the map file, in order of appearance, are as follows:

• The compiler name and version number

• A copy of the command line used to invoke the linker;

• The version number of the object code in the first file linked;

• The machine type;

• Optionally (dependent on the processor and compiler options selected), the call graph infor-

mation;

• A psect summary sorted by the psect’s parent object file;

• A psect summary sorted by the psect’s CLASS;

• A segment summary;

• Unused address ranges summary

• The symbol table

Portions of an example map file, along with explanatory text, are shown in the following sections.

5.8.2.1 General Information

At the top of the map file is general information relating to the execution of the linker.

When analysing a program, always confirm the compiler version number shown in the map file if

you have more than one compiler version installed to ensure the desired compiler is being executed.

The chip selected with the --CHIP option should appear after the Machine type entry.

The Object code version relates to the file format used by relocatable object files produced by

the assembler. Unless either the assembler or linker have been updated independently, this should

not be of concern.

A typical map file may begin something like the following. This example has been cut down for

clarity and brevity, and should not be used for reference.

HI-TECH Software PICC Compiler std#V9.60

Linker command line:

--edf=C:\Program Files\HI-TECH Software\pic\std\9.60\dat\en_msgs.txt \

-h+conv.sym -z -Q16F73 -ol.obj -Mconv.map -ver=PICC#std#V9.60 \

113

Map Files Linker and Utilities

-ACODE=00h-07FFhx2 -ACONST=00h-0FFhx16 -ASTRING=00h-0FFhx16 \

-ABANK0=020h-07Fh -ABANK1=0A0h-0FFh \

-preset_vec=00h,intentry,intcode -ppowerup=CODE -pintsave_0=07Fh \

-prbit_0=BANK0,rbss_0=BANK0,rdata_0=BANK0,idata_0=CODE

C:\DOCUME~1\user\LOCALS~1\Temp\cgta5eHNF.obj conv.obj \

C:\Program Files\HI-TECH Software\pic\std\9.60\lib\pic412-c.lib \

C:\Program Files\HI-TECH Software\pic\std\9.60\lib\pic20--u.lib

Object code version is 3.9

Machine type is 16F73

The Linker command line shown is the entire list of options and files that were passed to the linker

for the build recorded by this map file. Remember, these are linker options and not command-line

driver options. Typically the first options relate to general execution of the linker: path and file

names for various input and output support files; and the chip type etc. These are followed by the

memory allocation options, e.g. -A and -p. Last are the input object and library files that will be

linked together.

The linker command line should be used to confirm that driver options that control the link step

have been specified correctly, and at the correct time. It is particularly useful when using the driver

-L- option, see Section 2.4.7.

TUT•RIAL

CONFIRMING LINKER OPERATION A project requires that a number of memory lo-

cations be reserved. For the compiler and device, the --ROM driver option is suitable for

this task. How can the operation of this option be confirmed?

First the program is compiled without using this option and the following linker class

definition is noted in the linker command line:

-ACODE=0-03FFFhx2

The class name will vary with compile and the selected device, however there is typi-

cally a class that is defined to cover the entire memory space used by the device which

should be apparent.

The option --ROM=default,-4000-400F is then added and the map file resulting from

the subsequent build shows the following change:

-ACODE=0-03FFFh,04010h-07FFFh

which confirms that the memory option was seen by the linker.

114

Linker and Utilities Map Files

5.8.2.2 Call Graph Information

A call graph is produced and displayed in the map file for target devices and memory models that use

a compiled stack to facilitate parameter passing between functions and auto variables. See Section

5.7 for more detailed information on compiled stack operation.

The call graph in the map file shows the information collated and interpreted by the linker,

which is primarily used to allow overlapping of functions’ APBs. The following information can be

obtained from studying the call graph:

• The functions in the program that are “root” nodes marking the top of a call tree, and which

are not directly called;

• The functions that the linker deemed were called, or may have been called, during program

execution;

• The program’s hierarchy of function calls;

• The size of the auto and parameter areas within each function’s APB;

• The offset of each function’s APB within the program’s auto/parameter psect;

• Which functions’ APBs are consuming memory not overlapped by the APB of any other

function;

• Which functions are called indirectly;

• Which functions are called as part of a parameter expression for another function;

• Estimated call tree depth.

These features are discussed below.

The call graph produced by Pro versions compilers is very similar to that produced by Stan-

dard version compilers, however there are differences. A typical Pro compiler call graph may look

something like:

Call graph:

*_main size 0,4 offset 0

* _byteconv size 0,17 offset 4

float size 3,7 offset 21

ldiv size 8,6 offset 21

_crv ARG size 0 offset 21

_crv size 1 offset 21

ldiv size 8,6 offset 21

115

Map Files Linker and Utilities

_convert size 4,0 offset 33

_srv size 2,10 offset 21

_convert size 4,0 offset 33

* _srv size 2,10 offset 21

* _convert size 4,0 offset 33

_init size 0,4 offset 4

indir_func size 0,0 offset 4

Estimated maximum call depth: 3

*intlevel1 size 0,0 offset 37

* _isr size 0,2 offset 37

* i1ldiv size 8,6 offset 44

Estimated maximum call depth: 2

Each line basically consists of the name of the function in question, and its APB size and offset. The

general form of most entries look like:

name size p,a offset n

Note that the function name will always be the assembly name, thus the function main appears as

_main.

A function printed with no indent is a root function in a call tree. These functions are typically

not called by the C program. Examples include the function main, any any interrupt functions

the program defines. The programmer may also define additional functions that are root functions

in the call tree by using the FNROOT assembler directive, see Section 4.3.8.17 for more information.

The code generator issues an FNROOT directive for each interrupt function encountered, and the

runtime startup code contains the FNROOT directive for the function main.

The functions that the root function calls, or may call, are indented one level and listed below

the root node. If any of these functions call (or might call) other functions, these called functions

are indented and listed below the calling functions. And so the process continues for entire program.

A function’s inclusion into the call graph does not imply the function was called, but there is a

possibility that the function was called. For example, code such as:

int test(int a) {

if(a)

foo();

else

bar();

}

will list foo and bar under test, as either may be called. If a is always true, then clearly the function

bar will never be called. If a function does not appear in the call graph, the linker has determined

that the function cannot possibly be called, and that it is not a root function. For code like:

116

Linker and Utilities Map Files

int test(void) {

int a = 0;

if(a)

foo();

else

bar();

}

the function foo will never appear in the call graph.

The inclusion of a function into the call graph is controlled by the FNCALL assembler directive,

see Section 4.3.8.13 for more information. These directives are placed in the assembler output by

the code generator. For the above code, the code generator optimiser will remove the redundant call

to bar before the C source code conversion is performed, as so the FNCALL directive will not be

present in the output file, hence not detectable by the linker. When writing assembler source code,

the FNCALL assembler directive should always be used, particularly if the assembler routines define

local auto-like variables using the FNSIZE directive, see below, and also Section 4.3.8.16 for more

information.

If printed, the two components to the size are the size of that function’s parameter area, and

the size of the function’s auto area, respectively. The parameter size only includes those parameters

which are allocated memory locations, and which are not passed via a register. The auto size does not

include any auto variables which are allocated registers by the code generator’s (global) optimizer

for the entire duration of the function. The auto size does, however, include any values which must

be stored temporarily in the functions scratch area. Variables which are passed via a register may

need to be saved into the function’s temporary variable if that register is required for code generation

purposes, in which case they do not contribute to the function’s parameter size, but increase the size

of the auto area.

The total parameter and auto area for each function is grouped to form an APB. This is then

allocated an address within the program’s auto/parameter psect. The offset value indicates the offset

within the psect for that block. Thus, two APBs with the same offset are mapped over one another.

If a star, *, appears on the very left line of a call tree, this implies that the memory consumed

by the function represented by that line does not fully overlap with that of other functions, and thus

this functions APB directly influences the size of the auto/parameter psect, and hence the total RAM

usage of the program. If the RAM usage of a program needs to be reduced and the number or size

of the parameters or auto variables defined by the starred functions can be reduced, the program’s

RAM usage will also be reduced. Reducing the number or size of the parameters or auto variables

defined by the functions that are not starred will have no effect on the program’s total RAM usage.

Pro compilers track the values assigned to function pointers and maintains a list of all functions

that could be called via the function pointer. Functions called indirectly are listed in the call graph

along with those functions which are directly called.

117

Map Files Linker and Utilities

If the ARG flag appears after a function’s name, this implies that the call to this “ARG function”

involves other function calls to determine the parameter values for this function. For example, if

input and output are both functions that take two int parameters and and both return an int, the

following:

result = output(out_selector, input(in_selector, 10));

shows that the function input is called to determine the second parameter to the function output.

The ARG function’s name is listed again under the line which actually shows the ARG flag, and

any functions this function calls appear here, indented in the usual way. Under this is listed every

function (regardless of its depth in the call tree) that could be called to determine a parameter value

to the ARG function throughout the program. If any of these functions call other functions, they

also list called functions below, indented in the usual way. For example the following annotated call

graph snippet illustrates the ARG function one.

_one ARG size 0 offset 21 ; _one is the ARG function

_one size 0 offset 21 ; ** here is _one’s call tree:

_two size 2,2 offset 21 ; ** _one may call _two

_prep1 size 1,1 offset 45 ; # _prep1, _get & _prep2 may

_get size 0,0 offset 47 ; # ultimately be called to

_prep2 size 1,1 offset 47 ; # obtain parameters for _one

_get size 0,0 offset 47 ; _prep2 may call by _get

After each tree in call tree, there is an indication of the maximum call depth that might be realised

by that tree. This may be used as a guide to the stack usage of the program. No definitive value can

be given for the program’s total stack usage for several reasons:

• Certain parts of the call tree may never be reached, reducing that tree’s stack usage;

• The contribution of interrupt (or other) trees to the tree associated with the main function

cannot be determined as the point in main’s call tree at which the interrupt (or other function

invocation) will occur cannot be known;

• Any additional stack usage by functions, particularly interrupt functions, cannot be known;

and

• The assembler optimizer may have replaced function calls with jumps to functions, reducing

that tree’s stack usage.

The above call graph example is analysed in the following tutorial.

118

Linker and Utilities Map Files

TUT•RIAL

INTERPRETING A PRO COMPILER CALL GRAPH The graph graph shown above in-

dicates that the program compiled consists of two call trees rooted at the functions:

main, which can have up 3 levels of stack used, and intlevel1, which can use up to

two levels of stack. In the example above, the symbol _main is associated with the

function main, and intlevel1 associated with an interrupt function (with interrupt

level 1).

Here, the function main takes no parameters and defines 4 bytes of auto variables. The

total size of the APB for main is 4, and this was placed at an offset of 0 in the programs

auto/parameter psect. The function main may call a function called init. This function

also uses a total of 4 bytes of auto variables. The function main is still active when

init is active so their APBs must occupy distinct memory. The block for init follows

immediately after that of main’s at address offset 4. The function init does not call any

other functions.

The main may also call the function byteconv. This function defines a total of 17 bytes

of auto variables. It is called when main is still active (NB main will always be active),

but it is never active at the same time as init is active, so its APB can overlap with that

of init and is placed at offset 4 within the auto/parameter psect.

The function byteconv may call several functions: float, ldiv, crv and srv. (Any

function name that does not start with an underscore must be an assembly routine.

The routine float and ldiv in this case relating to floating point and long division

library routines.) All these functions have their APB placed at the same offset in the

auto/parameter psect. Of these functions, srv also may call convert.

The call to crv from byteconv indicates that other functions might be called to obtain

crv’s parameter values. Those other functions are listed in a “flattened” call list below

the ARG function line which shows every possible function that might be called, re-

gardless of call depth. The functions which might be called are: ldiv, convert and

srv. The function srv, which also calls convert still indicates this fact by also listing

convert below and indented in the more conventional call graph format. The two lines

of C code that produced this outcome were:

TUT•RIAL

if(crv((my_long%10)) != 5) // ...

if(crv(srv(8)) != 6) // ...

where crv accepts one char parameter and returns a char. The call to srv is obvious;

the other call come from the modulus operator, calling ldiv.

119

Map Files Linker and Utilities

The other call tree rooted at intlevel1 relates to the interrupt function. intlevel1

is not a real function, but is used to represent the interrupt level associated with the

interrupt function. There is no call from intlevel1 to the function isr and no stack

usage. Note that an additional level of call depth is indicated for interrupt functions.

This is used to mark the place of the return address of the stack. The selected device

may use a differing number of stack locations when interrupts occur and this needs to

be factored into any stack calculations.

Notice that the interrupt function isr calls a function called i1ldiv. This is a du-

plicate of the ldiv routine that is callable by functions under the intlevel1 call tree.

Having duplicate routines means that these implicitly called assembly library routines

can safely be called from both code under the main call tree and code under the interrupt

tree. Pro compilers will have as many duplicates of these routines as there are interrupt

levels.

The call graph shows that the functions: main, byteconv, srv, convert, isr and

i1ldiv are all consuming APB memory that does not fully overlap with that of other

functions. Reducing the auto/parameter memory requirements for these functions will

reduce the program’s memory requirements. The call graph reveals that 82 bytes of

memory are required by the program for autos and parameters, but that only 58 are re-

served and used by the program. The difference shows the amount of memory saved by

overlapping of these blocks by the linker.

5.8.2.3 Psect Information listed by Module

The next section in the map file lists those modules that made a contribution to the output, and

information regarding the psects these modules defined.

This section is heralded by the line that contains the headings:

Name Link Load Length Selector Space Scale

Under this on the far left is a list of object files. These object files include both files generated from

source modules and those that were extracted from object library files. In the case of those from

library files, the name of the library file is printed before the object file list.

This section shows all the psects (under the Name column) that were linked into the program

from each object file, and information regarding that psect. This only deals with object files linked

by the linker. P-code modules derived from p-code library files are handled by the code generator,

and do not appear in the map file.

The Link address indicates the address at which this psect will be located when the program

is running. (The Load address is also shown for those psects that may reside in the HEX file at

120

Linker and Utilities Map Files

a different location and which are mapped before program execution.) The Length of the psect is

shown (in units suitable for that psect). The Selector is less commonly used, but the Space field is

important as it indicates the memory space in which the psect was placed. For Harvard architecture

machines, with separate memory spaces, this field must be used in conjunction with the address to

specify an exact storage location. The Scale of a psect indicates the number of address units per byte

— this is left blank if the scale is 1 — and typically this will show 8 for psects that hold bit objects.

The Load address of psects that hold bits is used to display the link address converted into units of

bytes, rather than the load address.

TUT•RIAL

INTERPRETING THE PSECT LIST The following appears in a map file.

Name Link Load Length Selector Space Scale

ext.obj text 3A 3A 22 30 0

bss 4B 4B 10 4B 1

rbit 50 A 2 0 1 8

This indicates that one of the files that the linker processed was called ext.obj. (This

may have been derived from ext.c or ext.as.) This object file contained a text psect,

as well as psects called bss and rbit. The psect text was linked at address 3A and

bss at address 4B. At first glance, this seems to be a problem given that text is 22 words

long, however note that they are in different memory areas, as indicated by the Space

flag (0 for text and 1 for bss), and so do not occupy the same memory. The psect

rbit contains bit objects, as indicated by its Scale value (its name is a bit of a giveaway

too). Again, at first glance there seems there could be an issue with rbit linked over

the top of bss. Their Space flags are the same, but since rbit contains bit objects, all

the addresses shown are bit addresses, as indicated by the Scale value of 8. Note that

the Load address field of rbit psect displays the Link address converted to byte units,

i.e. 50h/8 => Ah.

The list of files, that make up the program, indicated in this section of the map file will typically

consist of one or more object files derived from input source code. The map file produced by Pro

compilers will show one object file derived from all C source modules, however Standard version

compilers will show one object file per C source module.

In addition, there will typically be the runtime startup module. The runtime startup code is

precompiled into an object file, in the case of Standard version compilers, or is a compiler-written

assembler source file, which is then compiled along with the remainder of the program. In either

case, an object file module will be listed in this section, along with those psects which it defines.

121

Map Files Linker and Utilities

If the startup module is not being deleted after compilation (see the --RUNTIME option in Section

2.4.46) then the module name will be startup.obj, otherwise this module will have a system-

dependent temporary file name, stored in a system-dependent location.

Modules derived from library files area also shown in this list. The name of the library file is

printed as a header, followed by a list of the modules that contributed to the output. Only mod-

ules that define symbols that are referenced are included in the program output. For example, the

following:

C:\program files\HI-TECH Software\PICC-18\9.50\lib\pic86l-c.lib

i1aldiv.obj text 174 174 3C C 0

aldiv.obj text 90 90 3C C 0

indicates that both the i1aldiv.obj and aldiv.obj modules were linked in from the library file

pic86l-c.lib.

Underneath the library file contributions, there may be a label COMMON. This shows the con-

tribution to the program from program-wide psects, in particular that used by the compiled stack

auto/parameter area.

This information in this section of the map file can be used to observe several details;

• To confirm that a module is making a contribution to the output file by ensuring that the

module appears in the module list;

• To determine the exact psects that each module defines;

• For cases where a user-defined routine, with the same name as a library routine, is present in

the programs source file list, to confirm that the user-defined routine was linked in preference

to the library routine.

5.8.2.4 Psect Information listed by Class

The next section in the map file is the same psect information listed by module, but this time grouped

into the psects’ class.

This section is heralded by the line that contains the headings:

TOTAL Name Link Load Length

Under this are the class names followed by those psects which belong to this class. These psects are

the same as those listed by module in the above section; there is no new information contained in

this section.

122

Linker and Utilities Map Files

5.8.2.5 Segment Listing

The class listing in the map file is followed by a listing of segments. A segment is conceptual

grouping of contiguous psects, and are used by the linker as an aid in psect placement. There is no

segment assembler directive and segments cannot be controlled in any way.

This section is heralded by the line that contains the headings:

SEGMENTS Name Load Length Top Selector Space Class

The name of a segment is derived from the psect in the contiguous group with the lowest link address.

This can lead to confusion with the psect with the same name. Do not read psect information from

this section of the map file.

Typically this section of the map file can be ignored by the user.

5.8.2.6 Unused Address Ranges

The last of the memory summaries Just before the symbol table in the map file is a list of memory

which was not allocated by the linker. This memory is thus unused. The linker is aware of any

memory allocated by the code generator (for absolute variables), and so this free space is accurate.

This section follows the heading:

UNUSED ADDRESS RANGES

and is followed by a list of classes and the memory still available in each class defined in the program.

If there is more than one range in a class, each range is printed on a separate line. Any paging

boundaries within a class are ignored and not displayed in any way.

Note that classes often define memory that is also covered by other classes, thus the total free

space in a memory area is not simply the addition of the size of all the ranges indicated. For example

if there are two classes the cover the RAM memory — RAM and BANKRAM — and the first 100h

out of 500h bytes are used, then both will indicate 000100-0004FF as the unused memory.

5.8.2.7 Symbol Table

The final section in the map file list global symbols that the program defines. This section has a

heading:

Symbol Table

and is followed by two columns in which the symbols are alphabetically listed. As always with the

linker, any C derived symbol is shown with its assembler equivalent symbol name. The symbols

listed in this table are:

123

Operation Linker and Utilities

• Global assembly labels;

• Global EQU/SET assembler directive labels; and

• Linker-defined symbols.

Assembly symbols are made global via the GLOBAL assembler directive, see Section 4.3.8.1 for more

information. linker-defined symbols act like EQU directives, however they are defined by the linker

during the link process, and no definition for them will appear in any source or intermediate file.

Non-static C functions, and non-auto and non-static C variables directly map to assembly

labels. The name of the label will be the C identifier with a leading underscore character. The

linker-defined symbols include symbols used to mark the bounds of psects. See Section 3.13.3. The

symbols used to mark the base address of each functions’ auto and parameter block are also shown.

Although these symbols are used to represent the local autos and parameters of a function, they

themselves must be globally accessible to allow each calling function to load their contents. The

C auto and parameter variable identifiers are local symbols that only have scope in the function in

which they are defined.

Each symbol is shown with the psect in which they are placed, and the address which the symbol

has been assigned. There is no information encoded into a symbol to indicate whether it represents

code or variables, nor in which memory space it resides.

If the psect of a symbol is shown as (abs), this implies that the symbol is not directly associated

with a psect as is the case with absolute C variables. Linker-defined symbols showing this as the

psect name may be symbols that have never been used throughout the program, or relate to symbols

that are not directly associated with a psect.

Note that a symbol table is also shown in each assembler list file. (See Section 2.4.17 for in-

formation on generating these files.) These differ to that shown in the map file in that they list

all symbols, whether they be of global or local scope, and they only list the symbols used in the

module(s) associated with that list file.

5.9 Operation

A command to the linker takes the following form:

hlink1 options files ...

Options is zero or more linker options, each of which modifies the behaviour of the linker in some

way. Files is one or more object files, and zero or more library names. The options recognised by

the linker are listed in Table 5.1 and discussed in the following paragraphs.

1In earlier versions of HI-TECH C the linker was called LINK.EXE

124

Linker and Utilities Operation

Table 5.1: Linker command-line options

Option Effect

-8 Use 8086 style segment:offset address form

-Aclass=low-high,... Specify address ranges for a class

-Cx Call graph options

-Cpsect=class Specify a class name for a global psect

-Cbaseaddr Produce binary output file based at baseaddr

-Dclass=delta Specify a class delta value

-Dsymfile Produce old-style symbol file

-Eerrfile Write error messages to errfile

-F Produce .obj file with only symbol records

-Gspec Specify calculation for segment selectors

-Hsymfile Generate symbol file

-H+symfile Generate enhanced symbol file

-I Ignore undefined symbols

-Jnum Set maximum number of errors before aborting

-K Prevent overlaying function parameter and auto areas

-L Preserve relocation items in .obj file

-LM Preserve segment relocation items in .obj file

-N Sort symbol table in map file by address order

-Nc Sort symbol table in map file by class address order

-Ns Sort symbol table in map file by space address order

-Mmapfile Generate a link map in the named file

-Ooutfile Specify name of output file

-Pspec Specify psect addresses and ordering

-Qprocessor Specify the processor type (for cosmetic reasons only)

-S Inhibit listing of symbols in symbol file

-Sclass=limit[,bound] Specify address limit, and start boundary for a class of psects

-Usymbol Pre-enter symbol in table as undefined

-Vavmap Use file avmap to generate an Avocet format symbol file

-Wwarnlev Set warning level (-9 to 9)

-Wwidth Set map file width (>=10)

-X Remove any local symbols from the symbol file

-Z Remove trivial local symbols from the symbol file

125

Operation Linker and Utilities

5.9.1 Numbers in linker options

Several linker options require memory addresses or sizes to be specified. The syntax for all these is

similar. By default, the number will be interpreted as a decimal value. To force interpretation as a

hex number, a trailing H should be added, e.g. 765FH will be treated as a hex number.

5.9.2 -Aclass=low-high,...

Normally psects are linked according to the information given to a -P option (see below) but some-

times it is desired to have a class of psects linked into more than one non-contiguous address range.

This option allows a number of address ranges to be specified for a class. For example:

-ACODE=1020h-7FFEh,8000h-BFFEh

specifies that the class CODE is to be linked into the given address ranges. Note that a contribution

to a psect from one module cannot be split, but the linker will attempt to pack each block from each

module into the address ranges, starting with the first specified.

Where there are a number of identical, contiguous address ranges, they may be specified with a

repeat count, e.g.

-ACODE=0-FFFFhx16

specifies that there are 16 contiguous ranges each 64k bytes in size, starting from zero. Even though

the ranges are contiguous, no code will straddle a 64k boundary. The repeat count is specified as the

character x or * after a range, followed by a count.

5.9.3 -Cx

These options allow control over the call graph information which may be included in the map file

produced by the linker. The -CN option removes the call graph information from the map file. The

-CC option only include the critical paths of the call graph. A function call that is marked with a * in

a full call graph is on a critical path and only these calls are included when the -CC option is used.

A call graph is only produced for processors and memory models that use a compiled stack.

5.9.4 -Cpsect=class

This option will allow a psect to be associated with a specific class. Normally this is not required on

the command line since classes are specified in object files.

126

Linker and Utilities Operation

5.9.5 -Dclass=delta

This option allows the delta value for psects that are members of the specified class to be defined.

The delta value should be a number and represents the number of bytes per addressable unit of

objects within the psects. Most psects do not need this option as they are defined with a delta value.

5.9.6 -Dsymfile

Use this option to produce an old-style symbol file. An old-style symbol file is an ASCII file, where

each line has the link address of the symbol followed by the symbol name.

5.9.7 -Eerrfile

Error messages from the linker are written to standard error (file handle 2). Under DOS there is no

convenient way to redirect this to a file (the compiler drivers will redirect standard error if standard

output is redirected). This option will make the linker write all error messages to the specified file

instead of the screen, which is the default standard error destination.

5.9.8 -F

Normally the linker will produce an object file that contains both program code and data bytes, and

symbol information. Sometimes it is desired to produce a symbol-only object file that can be used

again in a subsequent linker run to supply symbol values. The -F option will suppress data and code

bytes from the output file, leaving only the symbol records.

This option can be used when producing more than one hex file for situations where the program

is contained in different memory devices located at different addresses. The files for one device are

compiled using this linker option to produce a symbol-only object file; this is then linked with the

files for the other device. The process can then be repeated for the other files and device.

5.9.9 -Gspec

When linking programs using segmented, or bank-switched psects, there are two ways the linker

can assign segment addresses, or selectors, to each segment. A segment is defined as a contiguous

group of psects where each psect in sequence has both its link and load address concatenated with

the previous psect in the group. The segment address or selector for the segment is the value derived

when a segment type relocation is processed by the linker.

By default the segment selector will be generated by dividing the base load address of the seg-

ment by the relocation quantum of the segment, which is based on the reloc= flag value given to

psects at the assembler level. This is appropriate for 8086 real mode code, but not for protected mode

127

Operation Linker and Utilities

or some bank-switched arrangements. In this instance the -G option is used to specify a method for

calculating the segment selector. The argument to -G is a string similar to:

A/10h-4h

where A represents the load address of the segment and / represents division. This means "Take the

load address of the psect, divide by 10 hex, then subtract 4". This form can be modified by substi-

tuting N for A, * for / (to represent multiplication), and adding rather than subtracting a constant.

The token N is replaced by the ordinal number of the segment, which is allocated by the linker. For

example:

N*8+4

means "take the segment number, multiply by 8 then add 4". The result is the segment selector. This

particular example would allocate segment selectors in the sequence 4, 12, 20, ... for the number

of segments defined. This would be appropriate when compiling for 80286 protected mode, where

these selectors would represent LDT entries.

5.9.10 -Hsymfile

This option will instruct the linker to generate a symbol file. The optional argument symfile

specifies a file to receive the symbol file. The default file name is l.sym.

5.9.11 -H+symfile

This option will instruct the linker to generate an enhanced symbol file, which provides, in addition

to the standard symbol file, class names associated with each symbol and a segments section which

lists each class name and the range of memory it occupies. This format is recommended if the code

is to be run in conjunction with a debugger. The optional argument symfile specifies a file to

receive the symbol file. The default file name is l.sym.

5.9.12 -Jerrcount

The linker will stop processing object files after a certain number of errors (other than warnings).

The default number is 10, but the -J option allows this to be altered.

5.9.13 -K

For compilers that use a compiled stack, the linker will try and overlay function auto and parameter

areas in an attempt to reduce the total amount of RAM required. For debugging purposes, this feature

can be disabled with this option.

128

Linker and Utilities Operation

5.9.14 -I

Usually failure to resolve a reference to an undefined symbol is a fatal error. Use of this option will

cause undefined symbols to be treated as warnings instead.

5.9.15 -L

When the linker produces an output file it does not usually preserve any relocation information, since

the file is now absolute. In some circumstances a further "relocation" of the program will be done at

load time, e.g. when running a .exe file under DOS or a .prg file under TOS. This requires that some

information about what addresses require relocation is preserved in the object (and subsequently the

executable) file. The -L option will generate in the output file one null relocation record for each

relocation record in the input.

5.9.16 -LM

Similar to the above option, this preserves relocation records in the output file, but only segment

relocations. This is used particularly for generating .exe files to run under DOS.

5.9.17 -Mmapfile

This option causes the linker to generate a link map in the named file, or on the standard output if

the file name is omitted. The format of the map file is illustrated in Section 5.11.

5.9.18 -N, -Ns and-Nc

By default the symbol table in the link map will be sorted by name. The -N option will cause it to

be sorted numerically, based on the value of the symbol. The -Ns and -Nc options work similarly

except that the symbols are grouped by either their space value, or class.

5.9.19 -Ooutfile

This option allows specification of an output file name for the linker. The default output file name is

l.obj. Use of this option will override the default.

5.9.20 -Pspec

Psects are linked together and assigned addresses based on information supplied to the linker via -P

options. The argument to the -P option consists basically of comma-separated sequences thus:

129

Operation Linker and Utilities

-Ppsect=lnkaddr+min/ldaddr+min,psect=lnkaddr/ldaddr, ...

There are several variations, but essentially each psect is listed with its desired link and load ad-

dresses, and a minimum value. All values may be omitted, in which case a default will apply,

depending on previous values.

The minimum value, min, is preceded by a + sign, if present. It sets a minimum value for the

link or load address. The address will be calculated as described below, but if it is less than the

minimum then it will be set equal to the minimum.

The link and load addresses are either numbers as described above, or the names of other psects

or classes, or special tokens. If the link address is a negative number, the psect is linked in reverse

order with the top of the psect appearing at the specified address minus one. Psects following a

negative address will be placed before the first psect in memory. If a link address is omitted, the

psect’s link address will be derived from the top of the previous psect, e.g.

-Ptext=100h,data,bss

In this example the text psect is linked at 100 hex (its load address defaults to the same). The data

psect will be linked (and loaded) at an address which is 100 hex plus the length of the text psect,

rounded up as necessary if the data psect has a reloc= value associated with it. Similarly, the bss

psect will concatenate with the data psect. Again:

-Ptext=-100h,data,bss

will link in ascending order bss, data then text with the top of text appearing at address 0ffh.

If the load address is omitted entirely, it defaults to the same as the link address. If the slash /

character is supplied, but no address is supplied after it, the load address will concatenate with the

previous psect, e.g.

-Ptext=0,data=0/,bss

will cause both text and data to have a link address of zero, text will have a load address of 0, and

data will have a load address starting after the end of text. The bss psect will concatenate with data

for both link and load addresses.

The load address may be replaced with a dot . character. This tells the linker to set the load

address of this psect to the same as its link address. The link or load address may also be the name of

another (already linked) psect. This will explicitly concatenate the current psect with the previously

specified psect, e.g.

-Ptext=0,data=8000h/,bss/. -Pnvram=bss,heap

130

Linker and Utilities Operation

This example shows text at zero, data linked at 8000h but loaded after text, bss is linked and

loaded at 8000h plus the size of data, and nvram and heap are concatenated with bss. Note here

the use of two -P options. Multiple -P options are processed in order.

If -A options have been used to specify address ranges for a class then this class name may be

used in place of a link or load address, and space will be found in one of the address ranges. For

example:

-ACODE=8000h-BFFEh,E000h-FFFEh

-Pdata=C000h/CODE

This will link data at C000h, but find space to load it in the address ranges associated with CODE.

If no sufficiently large space is available, an error will result. Note that in this case the data psect

will still be assembled into one contiguous block, whereas other psects in the class CODE will be

distributed into the address ranges wherever they will fit. This means that if there are two or more

psects in class CODE, they may be intermixed in the address ranges.

Any psects allocated by a -P option will have their load address range subtracted from any

address ranges specified with the -A option. This allows a range to be specified with the -A option

without knowing in advance how much of the lower part of the range, for example, will be required

for other psects.

5.9.21 -Qprocessor

This option allows a processor type to be specified. This is purely for information placed in the map

file. The argument to this option is a string describing the processor.

5.9.22 -S

This option prevents symbol information relating from being included in the symbol file produced

by the linker. Segment information is still included.

5.9.23 -Sclass=limit[, bound]

A class of psects may have an upper address limit associated with it. The following example places

a limit on the maximum address of the CODE class of psects to one less than 400h.

-SCODE=400h

Note that to set an upper limit to a psect, this must be set in assembler code (with a limit= flag on

a PSECT directive).

131

Operation Linker and Utilities

If the bound (boundary) argument is used, the class of psects will start on a multiple of the bound

address. This example places the FARCODE class of psects at a multiple of 1000h, but with an upper

address limit of 6000h:

-SFARCODE=6000h,1000h

5.9.24 -Usymbol

This option will enter the specified symbol into the linker’s symbol table as an undefined symbol.

This is useful for linking entirely from libraries, or for linking a module from a library where the

ordering has been arranged so that by default a later module will be linked.

5.9.25 -Vavmap

To produce an Avocet format symbol file, the linker needs to be given a map file to allow it to

map psect names to Avocet memory identifiers. The avmap file will normally be supplied with the

compiler, or created automatically by the compiler driver as required.

5.9.26 -Wnum

The -W option can be used to set the warning level, in the range -9 to 9, or the width of the map file,

for values of num >= 10.

-W9will suppress all warning messages. -W0 is the default. Setting the warning level to -9 (-W-9)

will give the most comprehensive warning messages.

5.9.27 -X

Local symbols can be suppressed from a symbol file with this option. Global symbols will always

appear in the symbol file.

5.9.28 -Z

Some local symbols are compiler generated and not of interest in debugging. This option will

suppress from the symbol file all local symbols that have the form of a single alphabetic character,

followed by a digit string. The set of letters that can start a trivial symbol is currently "klfLSu".

The -Z option will strip any local symbols starting with one of these letters, and followed by a digit

string.

132

Linker and Utilities Invoking the Linker

5.10 Invoking the Linker

The linker is called HLINK, and normally resides in the BIN subdirectory of the compiler installation

directory. It may be invoked with no arguments, in which case it will prompt for input from standard

input. If the standard input is a file, no prompts will be printed. This manner of invocation is

generally useful if the number of arguments to HLINK is large. Even if the list of files is too long

to fit on one line, continuation lines may be included by leaving a backslash \ at the end of the

preceding line. In this fashion, HLINK commands of almost unlimited length may be issued. For

example a link command file called x.lnk and containing the following text:

-Z -OX.OBJ -MX.MAP \

-Ptext=0,data=0/,bss,nvram=bss/. \

X.OBJ Y.OBJ Z.OBJ C:\HT-Z80\LIB\Z80-SC.LIB

may be passed to the linker by one of the following:

hlink @x.lnk

hlink < x.lnk

5.11 Map Files

The map file contains information relating to the relocation of psects and the addresses assigned

to symbols within those psects. The sections in the map file are as follows; first is a copy of the

command line used to invoke the linker. This is followed by the version number of the object code

in the first file linked, and the machine type. This is optionally followed by call graph information,

depended on the processor and memory model selected. Then are listed all object files that were

linked, along with their psect information. Libraries are listed, with each module within the library.

The TOTALS section summarises the psects from the object files. The SEGMENTS section sum-

marises major memory groupings. This will typically show RAM and ROM usage. The segment

names are derived from the name of the first psect in the segment.

Lastly (not shown in the example) is a symbol table, where each global symbol is listed with its

associated psect and link address.

Linker command line:

-z -Mmap -pvectors=00h,text,strings,const,im2vecs \

-pbaseram=00h -pramstart=08000h,data/im2vecs,bss/.,stack=09000h \

-pnvram=bss,heap \

-oC:\TEMP\l.obj C:\HT-Z80\LIB\rtz80-s.obj hello.obj \

C:\HT-Z80\LIB\z80-sc.lib

133

Map Files Linker and Utilities

Object code version is 2.4

Machine type is Z80

Name Link Load Length Selector

C:\HT-Z80\LIB\rtz80-s.obj

vectors 0 0 71

bss 8000 8000 24

const FB FB 1 0

text 72 72 82

hello.obj text F4 F4 7

C:\HT-Z80\LIB\z80-sc.lib

powerup.obj vectors 71 71 1

TOTAL Name Link Load Length

CLASS CODE

vectors 0 0 72

const FB FB 1

text 72 72 89

CLASS DATA

bss 8000 8000 24

SEGMENTS Name Load Length Top Selector

vectors 000000 0000FC 0000FC 0

bss 008000 000024 008024 8000

5.11.1 Call Graph Information

A call graph is produced for chip types and memory models that use a compiled stack, rather than a

hardware stack, to facilitate parameter passing between functions and auto variables defined within

a function. When a compiled stack is used, functions are not re-entrant since the function will use a

fixed area of memory for its local objects (parameters/auto variables). A function called foo(), for

example, will use symbols like ?_foo for parameters and ?a_foo for auto variables. Compilers such

as the PIC, 6805 and V8 use compiled stacks. The 8051 compiler uses a compiled stack in small and

medium memory models. The call graph shows information relating to the placement of function

parameters and auto variables by the linker. A typical call graph may look something like:

Call graph:

*_main size 0,0 offset 0

_init size 2,3 offset 0

_ports size 2,2 offset 5

* _sprintf size 5,10 offset 0

* _putch

134

Linker and Utilities Map Files

INDIRECT 4194

INDIRECT 4194

_function_2 size 2,2 offset 0

_function size 2,2 offset 5

*_isr->_incr size 2,0 offset 15

The graph shows the functions called and the memory usage (RAM) of the functions for their own

local objects. In the example above, the symbol _main is associated with the function main(). It is

shown at the far left of the call graph. This indicates that it is the root of a call tree. The run-time

code has the FNROOT assembler directive that specifies this. The size field after the name indicates

the number of parameters and auto variables, respectively. Here, main() takes no parameters and

defines no auto variables. The offset field is the offset at which the function’s parameters and auto

variables have been placed from the beginning of the area of memory used for this purpose. The

run-time code contains a FNCONF directive which tells the compiler in which psect parameters and

auto variables should reside. This memory will be shown in the map file under the name COMMON.

Main() calls a function called init(). This function uses a total of two bytes of parameters

(it may be two objects of type char or one int; that is not important) and has three bytes of auto

variables. These figures are the total of bytes of memory consumed by the function. If the function

was passed a two-byte int, but that was done via a register, then the two bytes would not be included

in this total. Since main() did not use any of the local object memory, the offset of init()’s memory

is still at 0.

The function init() itself calls another function called ports(). This function uses two bytes

of parameters and another two bytes of auto variables. Since ports() is called by init(), its

local variables cannot be overlapped with those of init()’s, so the offset is 5, which means that

ports()’s local objects were placed immediately after those of init()’s.

The function main also calls sprintf(). Since the function sprintf() is not active at the same

time as init() or ports(), their local objects can be overlapped and the offset is hence set to 0.

Sprintf() calls a function putch(), but this function uses no memory for parameters (the char

passed as argument is apparently done so via a register) or locals, so the size and offset are zero and

are not printed.

Main() also calls another function indirectly using a function pointer. This is indicated by the

two INDIRECT entries in the graph. The number following is the signature value of functions that

could potentially be called by the indirect call. This number is calculated from the parameters and

return type of the functions the pointer can indirectly call. The names of any functions that have this

signature value are listed underneath the INDIRECT entries. Their inclusion does not mean that they

were called (there is no way to determine that), but that they could potentially be called.

The last line shows another function whose name is at the far left of the call graph. This implies

that this is the root of another call graph tree. This is an interrupt function which is not called by any

code, but which is automatically invoked when an enabled interrupt occurs. This interrupt routine

135

Librarian Linker and Utilities

calls the function incr(), which is shown shorthand in the graph by the -> symbol followed by the

called function’s name instead of having that function shown indented on the following line. This is

done whenever the calling function does not takes parameters, nor defines any variables.

Those lines in the graph which are starred with * are those functions which are on a critical

path in terms of RAM usage. For example, in the above, (main() is a trivial example) consider

the function sprintf(). This uses a large amount of local memory and if you could somehow

rewrite it so that it used less local memory, it would reduce the entire program’s RAM usage. The

functions init() and ports() have had their local memory overlapped with that of sprintf(), so

reducing the size of these functions’ local memory will have no affect on the program’s RAM usage.

Their memory usage could be increased, as long as the total size of the memory used by these two

functions did not exceed that of sprintf(), with no additional memory used by the program. So if

you have to reduce the amount of RAM used by the program, look at those functions that are starred.

If, when searching a call graph, you notice that a function’s parameter and auto areas have been

overlapped (i.e. ?a_foo was placed at the same address as ?_foo, for example), then check to

make sure that you have actually called the function in your program. If the linker has not seen a

function actually called, then it overlaps these areas of memory since that are not needed. This is

a consequence of the linker’s ability to overlap the local memory areas of functions which are not

active at the same time. Once the function is called, unique addresses will be assigned to both the

parameters and auto objects.

If you are writing a routine that calls C code from assembler, you will need to include the appro-

priate assembler directives to ensure that the linker sees the C function being called.

5.12 Librarian

The librarian program, LIBR, has the function of combining several object files into a single file

known as a library. The purposes of combining several such object modules are several.

• fewer files to link

• faster access

• uses less disk space

In order to make the library concept useful, it is necessary for the linker to treat modules in a library

differently from object files. If an object file is specified to the linker, it will be linked into the final

linked module. A module in a library, however, will only be linked in if it defines one or more

symbols previously known, but not defined, to the linker. Thus modules in a library will be linked

only if required. Since the choice of modules to link is made on the first pass of the linker, and

the library is searched in a linear fashion, it is possible to order the modules in a library to produce

special effects when linking. More will be said about this later.

136

Linker and Utilities Librarian

Table 5.2: Librarian command-line options

Option Effect

-Pwidth specify page width

-W Suppress non-fatal errors

Table 5.3: Librarian key letter commands

Key Meaning

r Replace modules

d Delete modules

x Extract modules

m List modules

s List modules with symbols

5.12.1 The Library Format

The modules in a library are basically just concatenated, but at the beginning of a library is main-

tained a directory of the modules and symbols in the library. Since this directory is smaller than the

sum of the modules, the linker can perform faster searches since it need read only the directory, and

not all the modules, on the first pass. On the second pass it need read only those modules which are

required, seeking over the others. This all minimises disk I/O when linking.

It should be noted that the library format is geared exclusively toward object modules, and is not

a general purpose archiving mechanism as is used by some other compiler systems. This has the

advantage that the format may be optimized toward speeding up the linkage process.

5.12.2 Using the Librarian

The librarian program is called LIBR, and the format of commands to it is as follows:

LIBR options k file.lib file.obj ...

Interpreting this, LIBR is the name of the program, options is zero or more librarian options which

affect the output of the program. k is a key letter denoting the function requested of the librarian

(replacing, extracting or deleting modules, listing modules or symbols), file.lib is the name of

the library file to be operated on, and file.obj is zero or more object file names.

The librarian options are listed in Table 5.2.

The key letters are listed in Table 5.3.

When replacing or extracting modules, the file.obj arguments are the names of the modules

to be replaced or extracted. If no such arguments are supplied, all the modules in the library will be

137

Librarian Linker and Utilities

replaced or extracted respectively. Adding a file to a library is performed by requesting the librarian

to replace it in the library. Since it is not present, the module will be appended to the library. If the

r key is used and the library does not exist, it will be created.

Under the d key letter, the named object files will be deleted from the library. In this instance, it

is an error not to give any object file names.

The m and s key letters will list the named modules and, in the case of the s keyletter, the symbols

defined or referenced within (global symbols only are handled by the librarian). As with the r and x

key letters, an empty list of modules means all the modules in the library.

5.12.3 Examples

Here are some examples of usage of the librarian. The following lists the global symbols in the

modules a.obj, b.obj and c.obj:

LIBR s file.lib a.obj b.obj c.obj

This command deletes the object modules a.obj, b.obj and c.obj from the library file.lib:

LIBR d file.lib a.obj b.obj c.obj

5.12.4 Supplying Arguments

Since it is often necessary to supply many object file arguments to LIBR, and command lines are

restricted to 127 characters by CP/M and MS-DOS, LIBR will accept commands from standard input

if no command line arguments are given. If the standard input is attached to the console, LIBR will

prompt for input. Multiple line input may be given by using a backslash as a continuation character

on the end of a line. If standard input is redirected from a file, LIBR will take input from the file,

without prompting. For example:

libr

libr> r file.lib 1.obj 2.obj 3.obj \

libr> 4.obj 5.obj 6.obj

will perform much the same as if the object files had been typed on the command line. The libr>

prompts were printed by LIBR itself, the remainder of the text was typed as input.

libr <lib.cmd

LIBR will read input from lib.cmd, and execute the command found therein. This allows a virtually

unlimited length command to be given to LIBR.

138

Linker and Utilities Objtohex

5.12.5 Listing Format

A request to LIBR to list module names will simply produce a list of names, one per line, on standard

output. The s keyletter will produce the same, with a list of symbols after each module name. Each

symbol will be preceded by the letter D or U, representing a definition or reference to the symbol

respectively. The -P option may be used to determine the width of the paper for this operation. For

example:

LIBR -P80 s file.lib

will list all modules in file.lib with their global symbols, with the output formatted for an 80

column printer or display.

5.12.6 Ordering of Libraries

The librarian creates libraries with the modules in the order in which they were given on the com-

mand line. When updating a library the order of the modules is preserved. Any new modules added

to a library after it has been created will be appended to the end.

The ordering of the modules in a library is significant to the linker. If a library contains a module

which references a symbol defined in another module in the same library, the module defining the

symbol should come after the module referencing the symbol.

5.12.7 Error Messages

LIBR issues various error messages, most of which represent a fatal error, while some represent a

harmless occurrence which will nonetheless be reported unless the -W option was used. In this case

all warning messages will be suppressed.

5.13 Objtohex

The HI-TECH linker is capable of producing simple binary files, or object files as output. Any other

format required must be produced by running the utility program OBJTOHEX. This allows conversion

of object files as produced by the linker into a variety of different formats, including various hex

formats. The program is invoked thus:

OBJTOHEX options inputfile outputfile

All of the arguments are optional. If outputfile is omitted it defaults to l.hex or l.bin depend-

ing on whether the -b option is used. The inputfile defaults to l.obj.

The options for OBJTOHEX are listed in Table 5.4. Where an address is required, the format is the

same as for HLINK.

139

Objtohex Linker and Utilities

Table 5.4: OBJTOHEX command-line options

Option Meaning

-8 Produce a CP/M-86 output file

-A Produce an ATDOS .atx output file

-Bbase Produce a binary file with offset of base. Default file name is

l.obj

-Cckfile Read a list of checksum specifications from ckfile or standard

input

-D Produce a COD file

-E Produce an MS-DOS .exe file

-Ffill Fill unused memory with words of value fill - default value is

0FFh

-I Produce an Intel HEX file with linear addressed extended

records.

-L Pass relocation information into the output file (used with .exe

files)

-M Produce a Motorola HEX file (S19, S28 or S37 format)

-N Produce an output file for Minix

-Pstk Produce an output file for an Atari ST, with optional stack size

-R Include relocation information in the output file

-Sfile Write a symbol file into file

-T Produce a Tektronix HEX file.

-TE Produce an extended TekHEX file.

-U Produce a COFF output file

-UB Produce a UBROF format file

-V Reverse the order of words and long words in the output file

-n,m Format either Motorola or Intel HEX file, where n is the maxi-

mum number of bytes per record and m specifies the record size

rounding. Non-rounded records are zero padded to a multiple of

m. m itself must be a multiple of 2.

140

Linker and Utilities Cref

5.13.1 Checksum Specifications

If you are generating a HEX file output, please refer to the hexmate section 5.16 for calculating

checksums. For OBJTOHEX, the checksum specification allows automated checksum calculation and

takes the form of several lines, each line describing one checksum. The syntax of a checksum line

is:

addr1-addr2 where1-where2 +offset

All of addr1, addr2, where1, where2 and offset are hex numbers, without the usual H suffix.

Such a specification says that the bytes at addr1 through to addr2 inclusive should be summed

and the sum placed in the locations where1 through where2 inclusive. For an 8 bit checksum

these two addresses should be the same. For a checksum stored low byte first, where1 should be less

than where2, and vice versa. The +offset is optional, but if supplied, the value offset will be used

to initialise the checksum. Otherwise it is initialised to zero. For example:

0005-1FFF 3-4 +1FFF

This will sum the bytes in 5 through 1FFFH inclusive, then add 1FFFH to the sum. The 16 bit

checksum will be placed in locations 3 and 4, low byte in 3. The checksum is initialised with 1FFFH

to provide protection against an all zero ROM, or a ROM misplaced in memory. A run time check of

this checksum would add the last address of the ROM being checksummed into the checksum. For

the ROM in question, this should be 1FFFH. The initialization value may, however, be used in any

desired fashion.

5.14 Cref

The cross reference list utility CREF is used to format raw cross-reference information produced by

the compiler or the assembler into a sorted listing. A raw cross-reference file is produced with the

--CR option to the compiler. The assembler will generate a raw cross-reference file with a -C option

(most assemblers) or by using an OPT CRE directive (6800 series assemblers) or a XREF control line

(PIC assembler). The general form of the CREF command is:

cref options files

where options is zero or more options as described below and files is one or more raw cross-

reference files. CREF takes the options listed in Table 5.5.

Each option is described in more detail in the following paragraphs.

141

Cref Linker and Utilities

Table 5.5: CREF command-line options

Option Meaning

-Fprefix Exclude symbols from files with a pathname or

filename starting with prefix

-Hheading Specify a heading for the listing file

-Llen Specify the page length for the listing file

-Ooutfile Specify the name of the listing file

-Pwidth Set the listing width

-Sstoplist Read file stoplist and ignore any symbols

listed.

-Xprefix Exclude and symbols starting with prefix

5.14.1 -Fprefix

It is often desired to exclude from the cross-reference listing any symbols defined in a system header

file, e.g. <stdio.h>. The -F option allows specification of a path name prefix that will be used to

exclude any symbols defined in a file whose path name begins with that prefix. For example, -F\

will exclude any symbols from all files with a path name starting with \.

5.14.2 -Hheading

The -H option takes a string as an argument which will be used as a header in the listing. The default

heading is the name of the first raw cross-ref information file specified.

5.14.3 -Llen

Specify the length of the paper on which the listing is to be produced, e.g. if the listing is to be

printed on 55 line paper you would use a -L55 option. The default is 66 lines.

5.14.4 -Ooutfile

Allows specification of the output file name. By default the listing will be written to the standard

output and may be redirected in the usual manner. Alternatively outfile may be specified as the

output file name.

142

Linker and Utilities Cromwell

5.14.5 -Pwidth

This option allows the specification of the width to which the listing is to be formatted, e.g. -P132

will format the listing for a 132 column printer. The default is 80 columns.

5.14.6 -Sstoplist

The -S option should have as its argument the name of a file containing a list of symbols not to be

listed in the cross-reference. Multiple stoplists may be supplied with multiple -S options.

5.14.7 -Xprefix

The -X option allows the exclusion of symbols from the listing, based on a prefix given as argument

to -X. For example if it was desired to exclude all symbols starting with the character sequence xyz

then the option -Xxyzwould be used. If a digit appears in the character sequence then this will match

any digit in the symbol, e.g. -XX0 would exclude any symbols starting with the letter X followed by

a digit.

CREF will accept wildcard filenames and I/O redirection. Long command lines may be supplied

by invoking CREF with no arguments and typing the command line in response to the cref> prompt.

A backslash at the end of the line will be interpreted to mean that more command lines follow.

5.15 Cromwell

The CROMWELL utility converts code and symbol files into different formats. The formats available

are shown in Table 5.6.

The general form of the CROMWELL command is:

CROMWELL options input_files -okey output_file

where options can be any of the options shown in Table 5.7. Output_file (optional) is the

name of the output file. The input_files are typically the HEX and SYM file. CROMWELL

automatically searches for the SDB files and reads those if they are found. The options are further

described in the following paragraphs.

5.15.1 -Pname[,architecture]

The -P options takes a string which is the name of the processor used. CROMWELL may use this in the

generation of the output format selected. Note that to produce output in COFF format an additional

argument to this option which also specifies the processor architecture is required. Hence for this

143

Cromwell Linker and Utilities

Table 5.6: CROMWELL format types

Key Format

cod Bytecraft COD file

coff COFF file format

elf ELF/DWARF file

eomf51 Extended OMF-51 format

hitech HI-TECH Software format

icoff ICOFF file format

ihex Intel HEX file format

mcoff Microchip COFF file format

omf51 OMF-51 file format

pe P&E file format

s19 Motorola HEX file format

Table 5.7: CROMWELL command-line options

Option Description

-Pname[,architecture] Processor name and architecture

-N Identify code classes

-D Dump input file

-C Identify input files only

-F Fake local symbols as global

-Okey Set the output format

-Ikey Set the input format

-L List the available formats

-E Strip file extensions

-B Specify big-endian byte ordering

-M Strip underscore character

-V Verbose mode

144

Linker and Utilities Cromwell

Table 5.8: -P option architecture arguments for COFF file output.

Architecture Description

68K Motorola 68000 series chips

H8/300 Hitachi 8 bit H8/300 chips

H8/300H Hitachi 16 bit H8/300H chips

SH Hitachi 32 bit SuperH RISC chips

PIC12 Microchip base-line PIC chips

PIC14 Microchip mid-range PIC chips

PIC16 Microchip high-end (17Cxxx) PIC chips

PIC18 Microchip PIC18 chips

PIC24 Microchip PIC24F and PIC24H chips

PIC30 Microchip dsPIC30 and dsPIC33 chips

format the usage of this option must take the form: -Pname,architecture. Table 5.8 enumerates

the architectures supported for producing COFF files.

5.15.2 -N

To produce some output file formats (e.g. COFF), Cromwell requires that the names of the program

memory space psect classes be provided. The names of the classes are given as a comma separated

list. For example, in the DSPIC C compiler these classes are typically “CODE” and “NEARCODE”,

i.e. -NCODE,NEARCODE.

5.15.3 -D

The -D option is used to display to the screen details about the named input file in a readable format.

The input file can be one of the file types as shown in Table 5.6.

5.15.4 -C

This option will attempt to identify if the specified input files are one of the formats as shown in

Table 5.6. If the file is recognised, a confirmation of its type will be displayed.

5.15.5 -F

When generating a COD file, this option can be used to force all local symbols to be represented as

global symbols. The may be useful where an emulator cannot read local symbol information from

the COD file.

145

Hexmate Linker and Utilities

5.15.6 -Okey

This option specifies the format of the output file. The key can be any of the types listed in Table

5.6.

5.15.7 -Ikey

This option can be used to specify the default input file format. The key can be any of the types

listed in Table 5.6.

5.15.8 -L

Use this option to show what file format types are supported. A list similar to that given in Table 5.6

will be shown.

5.15.9 -E

Use this option to tell CROMWELL to ignore any filename extensions that were given. The default

extension will be used instead.

5.15.10 -B

In formats that support different endian types, use this option to specify big-endian byte ordering.

5.15.11 -M

When generating COD files this option will remove the preceding underscore character from sym-

bols.

5.15.12 -V

Turns on verbose mode which will display information about operations CROMWELL is performing.

5.16 Hexmate

The Hexmate utility is a program designed to manipulate Intel HEX files. Hexmate is a post-link

stage utility that provides the facility to:

• Calculate and store variable-length checksum values

146

Linker and Utilities Hexmate

• Fill unused memory locations with known data sequences

• Merge multiple Intel hex files into one output file

• Convert INHX32 files to other INHX formats (e.g. INHX8M)

• Detect specific or partial opcode sequences within a hex file

• Find/replace specific or partial opcode sequences

• Provide a map of addresses used in a hex file

• Change or fix the length of data records in a hex file.

• Validate checksums within Intel hex files.

Typical applications for hexmate might include:

• Merging a bootloader or debug module into a main application at build time

• Calculating a checksum over a range of program memory and storing its value in program

memory or EEPROM

• Filling unused memory locations with an instruction to send the PC to a known location if it

gets lost.

• Storage of a serial number at a fixed address.

• Storage of a string (e.g. time stamp) at a fixed address.

• Store initial values at a particular memory address (e.g. initialise EEPROM)

• Detecting usage of a buggy/restricted instruction

• Adjusting hex file to meet requirements of particular bootloaders

5.16.1 Hexmate Command Line Options

Some of these hexmate operations may be possible from the compiler’s command line driver. How-

ever, if hexmate is to be run directly, its usage is:

hexmate <file1.hex ... fileN.hex> <options>

147

Hexmate Linker and Utilities

Table 5.9: Hexmate command-line options

Option Effect

-ADDRESSING Set address fields in all hexmate options to use word addressing

or other

-BREAK Break continuous data so that a new record begins at a set

address

-CK Calculate and store a checksum value

-FILL Program unused locations with a known value

-FIND Search and notify if a particular code sequence is detected

-FIND...,DELETE Remove the code sequence if it is detected (use with caution)

-FIND...,REPLACE Replace the code sequence with a new code sequence

-FORMAT Specify maximum data record length or select INHX variant

-HELP Show all options or display help message for specific option

-LOGFILE Save hexmate analysis of output and various results to a file

-Ofile Specify the name of the output file

-SERIAL Store a serial number or code sequence at a fixed address

-SIZE Report the number of bytes of data contained in the resultant

hex image.

-STRING Store an ASCII string at a fixed address

-STRPACK Store an ASCII string at a fixed address using string packing

-W Adjust warning sensitivity

+ Prefix to any option to overwrite other data in its address range

if necessary

148

Linker and Utilities Hexmate

Where file1.hex through to fileN.hex are a list of input Intel hex files to merge using hexmate. Ad-

ditional options can be provided to further customize this process. Table 5.9 lists the command line

options that hexmate accepts.

The input parameters to hexmate are now discussed in greater detail. Note that any integral

values supplied to the hexmate options should be entered as hexadecimal values without leading 0x

or trailing h characters. Note also that any address fields specified in these options are to be entered

as byte addresses, unless specified otherwise in the -ADDRESSING option.

5.16.1.1 specifications,filename.hex

Intel hex files that can be processed by hexmate should be in either INHX32 or INHX8M format.

Additional specifications can be applied to each hex file to put restrictions or conditions on how this

file should be processed. If any specifications are used they must precede the filename. The list of

specifications will then be separated from the filename by a comma.

A range restriction can be applied with the specification rStart-End. A range restriction will

cause only the address data falling within this range to be used. For example:

r100-1FF,myfile.hex

will use myfile.hex as input, but only process data which is addressed within the range 100h-1FFh

(inclusive) to be read from myfile.hex.

An address shift can be applied with the specification sOffset . If an address shift is used, data

read from this hex file will be shifted (by the Offset) to a new address when generating the output.

The offset can be either positive or negative. For example:

r100-1FFs2000,myfile.hex

will shift the block of data from 100h-1FFh to the new address range 2100h-21FFh.

Be careful when shifting sections of executable code. Program code shouldn’t be shifted unless it

can be guaranteed that no part of the program relies upon the absolute location of this code segment.

5.16.1.2 + Prefix

When the + operator precedes a parameter or input file, the data obtained from that parameter will

be forced into the output file and will overwrite other data existing within its address range. For

example:

+input.hex +-STRING@1000="My string"

Ordinarily, hexmate will issue an error if two sources try to store differing data at the same location.

Using the + operator informs hexmate that if more than one data source tries to store data to the same

address, the one specified with a ’+’ will take priority.

149

Hexmate Linker and Utilities

5.16.1.3 -ADDRESSING

By default, all address parameters in hexmate options expect that values will be entered as byte

addresses. In some device architectures the native addressing format may be something other than

byte addressing. In these cases it would be much simpler to be able to enter address-components

in the device’s native format. To facilitate this, the -ADDRESSING option is used. This option takes

exactly one parameter which configures the number of bytes contained per address location. If for

example a device’s program memory naturally used a 16-bit (2 byte) word-addressing format, the

option -ADDRESSING=2 will configure hexmate to interpret all command line address fields as word

addresses. The affect of this setting is global and all hexmate options will now interpret addresses

according to this setting. This option will allow specification of addressing modes from one byte-

per-address to four bytes-per-address.

5.16.1.4 -BREAK

This option takes a comma separated list of addresses. If any of these addresses are encountered

in the hex file, the current data record will conclude and a new data record will recommence from

the nominated address. This can be useful to use new data records to force a distinction between

functionally different areas of program space. Some hex file readers depend on this.

5.16.1.5 -CK

The -CK option is for calculating a checksum. The usage of this option is:

-CK=start-end@destination[+offset][wWidth][tCode][gAlogithm]

where:

• Start and End specify the address range that the checksum will be calculated over.

• Destination is the address where to store the checksum result. This value cannot be within the

range of calculation.

• Offset is an optional initial value to add to the checksum result. Width is optional and specifies

the byte-width of the checksum result. Results can be calculated for byte-widths of 1 to 4

bytes. If a positive width is requested, the result will be stored in big-endian byte order. A

negative width will cause the result to be stored in little-endian byte order. If the width is left

unspecified, the result will be 2 bytes wide and stored in little-endian byte order.

• Code is a hexadecimal code that will trail each byte in the checksum result. This can allow

each byte of the checksum result to be embedded within an instruction.

150

Linker and Utilities Hexmate

Table 5.10: Hexmate Checksum Algorithm Selection

Selector Algorithm description

-4 Subtraction of 32 bit values from initial value

-3 Subtraction of 24 bit values from initial value

-2 Subtraction of 16 bit values from initial value

-1 Subtraction of 8 bit values from initial value

1 Addition of 8 bit values from initial value

2 Addition of 16 bit values from initial value

3 Addition of 24 bit values from initial value

4 Addition of 32 bit values from initial value

• Algorithm is an integer to select which hexmate algorithm to use to calculate the checksum

result. A list of selectable algorithms are given in Table 5.10. If unspecified, the default

checksum algorithm used is 8 bit addition.

A typical example of the use of the checksum option is:

-CK=0-1FFF@2FFE+2100w2

This will calculate a checksum over the range 0-1FFFh and program the checksum result at address

2FFEh, checksum value will apply an initial offset of 2100h. The result will be two bytes wide.

5.16.1.6 -FILL

The -FILL option is used for filling unused memory locations with a known value. The usage of this

option is:

-FILL=Code@Start-End[,data]

where:

• Code is the opcode that will be programmed to unused locations in memory. Multi-byte codes

should be entered in little endian order.

• Start and End specify the address range that this fill will apply to.

For example:

-FILL=3412@0-1FFF,data

151

Hexmate Linker and Utilities

will program opcode 1234h in all unused addresses from program memory address 0 to 1FFFh (Note

the endianism). -FILL accepts whole bytes of hexadecimal data from 1 to 8 bytes in length.

Adding the ,data flag to this option is not required. If the data flag has been specified, hexmate

will only perform ROM filling to records that actually contain data. This means that these records

will be padded out to the default data record length or the width specified in the -FORMAT option.

Records will also begin on addresses which are multiples of the data record length used. The default

data record length is 16 bytes. This facility is particularly useful or is a requirement for some

bootloaders that expect that all data records will be of a particular length and address alignment.

5.16.1.7 -FIND

This option is used to detect and log occurrences of an opcode or partial code sequence. The usage

of this option is:

-FIND=Findcode[mMask]@Start-End[/Align][w][t”Title”]

where:

• Findcode is the hexadecimal code sequence to search for and is entered in little endian byte

order.

• Mask is optional. It allows a bit mask over the Findcode value and is entered in little endian

byte order.

• Start and End limit the address range to search through.

• Align is optional. It specifies that a code sequence can only match if it begins on an address

which is a multiple of this value. w, if present will cause hexmate to issue a warning whenever

the code sequence is detected.

• Title is optional. It allows a title to be given to this code sequence. Defining a title will make

log-reports and messages more descriptive and more readable. A title will not affect the actual

search results.

TUT•RIAL

Let’s look at some examples. The option -FIND=3412@0-7FFF/2w will detect the code

sequence 1234h when aligned on a 2 (two) byte address boundary, between 0h and

7FFFh. w indicates that a warning will be issued each time this sequence is found.

Another example, -FIND=3412M0F00@0-7FFF/2wt"ADDXY" is same as last example

but the code sequence being matched is masked with 000Fh, so hexmate will search for

123xh. If a byte-mask is used, is must be of equal byte-width to the opcode it is applied

152

Linker and Utilities Hexmate

to. Any messaging or reports generated by hexmate will refer to this opcode by the

name, ADDXY as this was the title defined for this search.

If hexmate is generating a log file, it will contain the results of all searches. -FIND accepts whole

bytes of hex data from 1 to 8 bytes in length. Optionally, -FIND can be used in conjunction with

,REPLACE or ,DELETE (as described below).

5.16.1.8 -FIND...,DELETE

If DELETE is used in conjunction with a -FIND option and a sequence is found that matches the

-FIND criteria, it will be removed. This function should be used with extreme caution and is not

recommended for removal of executable code.

5.16.1.9 -FIND...,REPLACE

REPLACE Can only be used in conjunction with a -FIND option. Code sequences that matched the

-FIND criteria can be replaced or partially replaced with new codes. The usage for this sub-option

is:

-FIND...,REPLACE=Code[mMask]

where:

• Code is a little endian hexadecimal code to replace the sequences that match the -FIND crite-

ria.

• Mask is an optional bit mask to specify which bits within Code will replace the code sequence

that has been matched. This may be useful if, for example, it is only necessary to modify 4

bits within a 16-bit instruction. The remaining 12 bits can masked and be left unchanged.

5.16.1.10 -FORMAT

The -FORMAT option can be used to specify a particular variant of INHX format or adjust maximum

record length. The usage of this option is:

-FORMAT=Type[,Length]

where:

• Type specifies a particular INHX format to generate.

153

Hexmate Linker and Utilities

Table 5.11: INHX types used in -FORMAT option

Type Description

INHX8M Cannot program addresses beyond 64K.

INHX32 Can program addresses beyond 64K with extended linear address records.

INHX032 INHX32 with initialization of upper address to zero.

• Length is optional and sets the maximum number of bytes per data record. A valid length is

between 1 and 16, with 16 being the default.

TUT•RIAL

Consider this case. A bootloader trying to download an INHX32 file fails succeed

because it cannot process the extended address records which are part of the INHX32

standard. You know that this bootloader can only program data addressed within the

range 0 to 64k, and that any data in the hex file outside of this range can be safely

disregarded. In this case, by generating the hex file in INHX8M format the operation

might succeed. The hexmate option to do this would be -FORMAT=INHX8M.

Now consider this. What if the same bootloader also required every data record to

contain eight bytes of data, no more, no less? This is possible by combining -FORMAT

with -FILL. Appropriate use of -FILL can ensure that there are no gaps in the data

for the address range being programmed. This will satisfy the minimum data length

requirement. To set the maximum length of data records to eight bytes, just modify the

previous option to become -FORMAT=INHX8M,8.

The possible types that are supported by this option are listed in Table 5.11. Note that INHX032 is

not an actual INHX format. Selection of this type generates an INHX32 file but will also initialize

the upper address information to zero. This is a requirement of some device programmers.

5.16.1.11 -HELP

Using -HELP will list all hexmate options. By entering another hexmate option as a parameter of

-HELP will show a detailed help message for the given option. For example:

-HELP=string

will show additional help for the -STRING hexmate option.

154

Linker and Utilities Hexmate

5.16.1.12 -LOGFILE

The -LOGFILE option saves hex file statistics to the named file. For example:

-LOGFILE=output.log

will analyse the hex file that hexmate is generating and save a report to a file named output.log.

5.16.1.13 -Ofile

The generated Intel hex output will be created in this file. For example:

-Oprogram.hex

will save the resultant output to program.hex. The output file can take the same name as one of its

input files, but by doing so, it will replace the input file entirely.

5.16.1.14 -SERIAL

This option will store a particular hex value at a fixed address. The usage of this option is:

-SERIAL=Code[+/-Increment]@Address[+/-Interval][rRepetitions]

where:

• Code is a hexadecimal value to store and is entered in little endian byte order.

• Increment is optional and allows the value of Code to change by this value with each repetition

(if requested).

• Address is the location to store this code, or the first repetition thereof.

• Interval is optional and specifies the address shift per repetition of this code.

• Repetitions is optional and specifies the number of times to repeat this code.

For example:

-SERIAL=000001@EFFE

will store hex code 00001h to address EFFEh.

Another example:

-SERIAL=0000+2@1000+10r5

will store 5 codes, beginning with value 0000 at address 1000h. Subsequent codes will appear at

address intervals of +10h and the code value will change in increments of +2h.

155

Hexmate Linker and Utilities

5.16.1.15 -SIZE

Using the -SIZE option will report the number of bytes of data within the resultant hex image to

standard output. The size will also be recorded in the log file if one has been requested.

5.16.1.16 -STRING

The -STRING option will embed an ASCII string at a fixed address. The usage of this option is:

-STRING@Address[tCode]=”Text”

where:

• Address is the location to store this string.

• Code is optional and allows a byte sequence to trail each byte in the string. This can allow the

bytes of the string to be encoded within an instruction.

• Text is the string to convert to ASCII and embed.

For example:

-STRING@1000="My favourite string"

will store the ASCII data for the string, My favourite string (including null terminator) at ad-

dress 1000h.

Another example:

-STRING@1000t34="My favourite string"

will store the same string with every byte in the string being trailed with the hex code 34h.

5.16.1.17 -STRPACK

This option performs the same function as -STRING but with two important differences. Firstly, only

the lower seven bits from each character are stored. Pairs of 7 bit characters are then concatenated

and stored as a 14 bit word rather than in separate bytes. This is usually only useful for devices where

program space is addressed as 14 bit words. The second difference is that -STRING’s t specifier is

not applicable with -STRPACK.

156

Appendix A

Library Functions

The functions within the standard compiler library are listed in this chapter. Each entry begins with

the name of the function. This is followed by information decomposed into the following categories.

Synopsis the C declaration of the function, and the header file in which it is declared.

Description a narrative description of the function and its purpose.

Example an example of the use of the function. It is usually a complete small program that illus-

trates the function.

Data types any special data types (structures etc.) defined for use with the function. These data

types will be defined in the header file named under Synopsis.

See also any allied functions.

Return value the type and nature of the return value of the function, if any. Information on error

returns is also included

Only those categories which are relevant to each function are used.

157

Library Functions

__CONFIG

Synopsis

#include <htc.h>

__CONFIG(data)

Description

This macro is used to program the configuration fuses that set the device into various modes of

operation.

The macro accepts the 16-bit value it is to update it with.

16-Bit masks have been defined to describe each programmable attribute available on each de-

vice. These attribute masks can be found tabulated in this manual in the Features and Runtime

Environment section.

Multiple attributes can be selected by ANDing them together.

Example

#include <htc.h>

__CONFIG(RC & UNPROTECT)

void

main (void)

{

}

See also

__EEPROM_DATA(), __IDLOC(), __IDLOC7()

158

Library Functions

__EEPROM_DATA

Synopsis

#include <htc.h>

__EEPROM_DATA(a,b,c,d,e,f,g,h)

Description

This macro is used to store initial values into the device’s EEPROM registers at the time of program-

ming.

The macro must be given blocks of 8 bytes to write each time it is called, and can be called

repeatedly to store multiple blocks.

__EEPROM_DATA() will begin writing to EEPROM address zero, and will auto-increment the

address written to by 8, each time it is used.

Example

#include <htc.h>

__EEPROM_DATA(0x00,0x01,0x02,0x03,0x04,0x05,0x06,0x07)

__EEPROM_DATA(0x08,0x09,0x0A,0x0B,0x0C,0x0D,0x0E,0x0F)

void

main (void)

{

}

See also

__CONFIG()

159

Library Functions

__IDLOC

Synopsis

#include <htc.h>

__IDLOC(x)

Description

This macro places data into the device’s special locations outside of addressable memory reserved

for ID. This would be useful for storage of serial numbers etc.

The macro will attempt to write 4 nibbles of data to the 4 locations reserved for ID purposes.

Example

#include <htc.h>

__IDLOC(15F0);

/* will store 1, 5, F and 0 in the ID registers*/

void

main (void)

{

}

See also

__IDLOC7(), __CONFIG()

160

Library Functions

__IDLOC7

Synopsis

#include <htc.h>

__IDLOC7(a,b,c,d)

Description

This macro places data into the device’s special locations outside of addressable memory reserved

for ID. This would be useful for storage of serial numbers etc.

The macro will attempt to write 7 bits of data to each of the 4 locations reserved for ID purposes.

Example

#include <htc.h>

__IDLOC(0x7F,70,1,0x5A);

/* will store 7Fh, 70, 1 and 5Ah in the ID registers */

void

main (void)

{

}

Note

Not all devices permit 7 bit programming of the ID locations. Refer to the device datasheet to see

whether this macro can be used on your particular device.

See also

__IDLOC(), __CONFIG()

161

Library Functions

__RAM_CELL_TEST

Synopsis

void _ram_cell_test(void)

Description

Should not be called from user code. This routine is called from a loop within the generated runtime

startup code if the system requires a RAM integrity test before program execution. Upon entry to this

routine, the FSR register has been loaded with the RAM cell to test. The value 0x55 will be assigned

to the cell and verified, followed by 0xAA. If either of these values fail verification, the routine will

call ram_test_failed() with an error code in the working register and FSR still containing the

address that was in error.

This routine is called repeatedly during startup, with each subsequent call testing the next address

in sequence. If the location being tested contains non volatile data, the value will be backed up before

the test routine is called and restored upon return from the routine.

This library routine can be overriden by a user’s implementation if the standard cell tests are

insufficient for a particular system’s verification.

See also

ram_cell_test()

162

Library Functions

ABS

Synopsis

#include <stdlib.h>

int abs (int j)

Description

The abs() function returns the absolute value of j.

Example

#include <stdio.h>

#include <stdlib.h>

void

main (void)

{

int a = -5;

printf("The absolute value of %d is %d\n", a, abs(a));

}

Return Value

The absolute value of j.

163

Library Functions

ACOS

Synopsis

#include <math.h>

double acos (double f)

Description

The acos() function implements the inverse of cos(), i.e. it is passed a value in the range -1 to +1,

and returns an angle in radians whose cosine is equal to that value.

Example

#include <math.h>

#include <stdio.h>

/* Print acos() values for -1 to 1 in degrees. */

void

main (void)

{

float i, a;

for(i = -1.0; i < 1.0 ; i += 0.1) {

a = acos(i)*180.0/3.141592;

printf("acos(%f) = %f degrees\n", i, a);

}

}

See Also

sin(), cos(), tan(), asin(), atan(), atan2()

Return Value

An angle in radians, in the range 0 to π

164

Library Functions

ASCTIME

Synopsis

#include <time.h>

char * asctime (struct tm * t)

Description

The asctime() function takes the time broken down into the struct tm structure, pointed to by its

argument, and returns a 26 character string describing the current date and time in the format:

Sun Sep 16 01:03:52 1973\n\0

Note the newline at the end of the string. The width of each field in the string is fixed. The

example gets the current time, converts it to a struct tm pointer with localtime(), it then converts

this to ASCII and prints it. The time() function will need to be provided by the user (see time() for

details).

Example

#include <stdio.h>

#include <time.h>

void

main (void)

{

time_t clock;

struct tm * tp;

time(&clock);

tp = localtime(&clock);

printf("%s", asctime(tp));

}

See Also

ctime(), gmtime(), localtime(), time()

165

Library Functions

Return Value

A pointer to the string.

Note

The example will require the user to provide the time() routine as it cannot be supplied with the

compiler. See time() for more details.

166

Library Functions

ASIN

Synopsis

#include <math.h>

double asin (double f)

Description

The asin() function implements the converse of sin(), i.e. it is passed a value in the range -1 to +1,

and returns an angle in radians whose sine is equal to that value.

Example

#include <math.h>

#include <stdio.h>

void

main (void)

{

float i, a;

for(i = -1.0; i < 1.0 ; i += 0.1) {

a = asin(i)*180.0/3.141592;

printf("asin(%f) = %f degrees\n", i, a);

}

}

See Also

sin(), cos(), tan(), acos(), atan(), atan2()

Return Value

An angle in radians, in the range - π

167

Library Functions

ASSERT

Synopsis

#include <assert.h>

void assert (int e)

Description

This macro is used for debugging purposes; the basic method of usage is to place assertions liberally

throughout your code at points where correct operation of the code depends upon certain conditions

being true initially. An assert() routine may be used to ensure at run time that an assumption holds

true. For example, the following statement asserts that the pointer tp is not equal to NULL:

assert(tp);

If at run time the expression evaluates to false, the program will abort with a message identifying

the source file and line number of the assertion, and the expression used as an argument to it. A fuller

discussion of the uses of assert() is impossible in limited space, but it is closely linked to methods

of proving program correctness.

Example

void

ptrfunc (struct xyz * tp)

{

assert(tp != 0);

}

Note

When required for ROM based systems, the underlying routine _fassert(...) will need to be imple-

mented by the user.

168

Library Functions

ATAN

Synopsis

#include <math.h>

double atan (double x)

Description

This function returns the arc tangent of its argument, i.e. it returns an angle e in the range - π

Example

#include <stdio.h>

#include <math.h>

void

main (void)

{

printf("%f\n", atan(1.5));

}

See Also

sin(), cos(), tan(), asin(), acos(), atan2()

Return Value

The arc tangent of its argument.

169

Library Functions

ATOF

Synopsis

#include <stdlib.h>

double atof (const char * s)

Description

The atof() function scans the character string passed to it, skipping leading blanks. It then converts

an ASCII representation of a number to a double. The number may be in decimal, normal floating

point or scientific notation.

Example

#include <stdlib.h>

#include <stdio.h>

void

main (void)

{

char buf[80];

double i;

gets(buf);

i = atof(buf);

printf("Read %s: converted to %f\n", buf, i);

}

See Also

atoi(), atol()

Return Value

A double precision floating point number. If no number is found in the string, 0.0 will be returned.

170

Library Functions

ATOI

Synopsis

#include <stdlib.h>

int atoi (const char * s)

Description

The atoi() function scans the character string passed to it, skipping leading blanks and reading an

optional sign. It then converts an ASCII representation of a decimal number to an integer.

Example

#include <stdlib.h>

#include <stdio.h>

void

main (void)

{

char buf[80];

int i;

gets(buf);

i = atoi(buf);

printf("Read %s: converted to %d\n", buf, i);

}

See Also

xtoi(), atof(), atol()

Return Value

A signed integer. If no number is found in the string, 0 will be returned.

171

Library Functions

ATOL

Synopsis

#include <stdlib.h>

long atol (const char * s)

Description

The atol() function scans the character string passed to it, skipping leading blanks. It then converts

an ASCII representation of a decimal number to a long integer.

Example

#include <stdlib.h>

#include <stdio.h>

void

main (void)

{

char buf[80];

long i;

gets(buf);

i = atol(buf);

printf("Read %s: converted to %ld\n", buf, i);

}

See Also

atoi(), atof()

Return Value

A long integer. If no number is found in the string, 0 will be returned.

172

Library Functions

BSEARCH

Synopsis

#include <stdlib.h>

void * bsearch (const void * key, void * base, size_t n_memb,

size_t size, int (*compar)(const void *, const void *))

Description

The bsearch() function searches a sorted array for an element matching a particular key. It uses a

binary search algorithm, calling the function pointed to by compar to compare elements in the array.

Example

#include <stdlib.h>

#include <stdio.h>

#include <string.h>

struct value {

char name[40];

int value;

} values[100];

int

val_cmp (const void * p1, const void * p2)

{

return strcmp(((const struct value *)p1)->name,

((const struct value *)p2)->name);

}

void

main (void)

{

char inbuf[80];

int i;

struct value * vp;

173

Library Functions

i = 0;

while(gets(inbuf)) {

sscanf(inbuf,"%s %d", values[i].name, &values[i].value);

i++;

}

qsort(values, i, sizeof values[0], val_cmp);

vp = bsearch("fred", values, i, sizeof values[0], val_cmp);

if(!vp)

printf("Item ’fred’ was not found\n");

else

printf("Item ’fred’ has value %d\n", vp->value);

}

See Also

qsort()

Return Value

A pointer to the matched array element (if there is more than one matching element, any of these

may be returned). If no match is found, a null pointer is returned.

Note

The comparison function must have the correct prototype.

174

Library Functions

CEIL

Synopsis

#include <math.h>

double ceil (double f)

Description

This routine returns the smallest whole number not less than f.

Example

#include <stdio.h>

#include <math.h>

void

main (void)

{

double j;

scanf("%lf", &j);

printf("The ceiling of %lf is %lf\n", j, ceil(j));

}

175

Library Functions

CGETS

Synopsis

#include <conio.h>

char * cgets (char * s)

Description

The cgets() function will read one line of input from the console into the buffer passed as an ar-

gument. It does so by repeated calls to getche(). As characters are read, they are buffered, with

backspace deleting the previously typed character, and ctrl-U deleting the entire line typed so far.

Other characters are placed in the buffer, with a carriage return or line feed (newline) terminating

the function. The collected string is null terminated.

Example

#include <conio.h>

#include <string.h>

char buffer[80];

void

main (void)

{

for(;;) {

cgets(buffer);

if(strcmp(buffer, "exit") == 0)

break;

cputs("Type ’exit’ to finish\n");

}

}

See Also

getch(), getche(), putch(), cputs()

176

Library Functions

Return Value

The return value is the character pointer passed as the sole argument.

177

Library Functions

CLRWDT

Synopsis

#include <htc.h>

CLRWDT();

Description

This macro is used to clear the device’s internal watchdog timer.

Example

#include <htc.h>

void

main (void)

{

WDTCON=1;

/* enable the WDT */

CLRWDT();

}

178

Library Functions

COS

Synopsis

#include <math.h>

double cos (double f)

Description

This function yields the cosine of its argument, which is an angle in radians. The cosine is calculated

by expansion of a polynomial series approximation.

Example

#include <math.h>

#include <stdio.h>

#define C 3.141592/180.0

void

main (void)

{

double i;

for(i = 0 ; i <= 180.0 ; i += 10)

printf("sin(%3.0f) = %f, cos = %f\n", i, sin(i*C), cos(i*C));

}

See Also

sin(), tan(), asin(), acos(), atan(), atan2()

Return Value

A double in the range -1 to +1.

179

Library Functions

COSH, SINH, TANH

Synopsis

#include <math.h>

double cosh (double f)

double sinh (double f)

double tanh (double f)

Description

These functions are the implement hyperbolic equivalents of the trigonometric functions; cos(), sin()

and tan().

Example

#include <stdio.h>

#include <math.h>

void

main (void)

{

printf("%f\n", cosh(1.5));

printf("%f\n", sinh(1.5));

printf("%f\n", tanh(1.5));

}

Return Value

The function cosh() returns the hyperbolic cosine value.

The function sinh() returns the hyperbolic sine value.

The function tanh() returns the hyperbolic tangent value.

180

Library Functions

CPUTS

Synopsis

#include <conio.h>

void cputs (const char * s)

Description

The cputs() function writes its argument string to the console, outputting carriage returns before

each newline in the string. It calls putch() repeatedly. On a hosted system cputs() differs from puts()

in that it writes to the console directly, rather than using file I/O. In an embedded system cputs() and

puts() are equivalent.

Example

#include <conio.h>

#include <string.h>

char buffer[80];

void

main (void)

{

for(;;) {

cgets(buffer);

if(strcmp(buffer, "exit") == 0)

break;

cputs("Type ’exit’ to finish\n");

}

}

See Also

cputs(), puts(), putch()

181

Library Functions

CTIME

Synopsis

#include <time.h>

char * ctime (time_t * t)

Description

The ctime() function converts the time in seconds pointed to by its argument to a string of the same

form as described for asctime(). Thus the example program prints the current time and date.

Example

#include <stdio.h>

#include <time.h>

void

main (void)

{

time_t clock;

time(&clock);

printf("%s", ctime(&clock));

}

See Also

gmtime(), localtime(), asctime(), time()

Return Value

A pointer to the string.

Note

The example will require the user to provide the time() routine as one cannot be supplied with the

compiler. See time() for more detail.

182

Library Functions

DI, EI

Synopsis

#include <htc.h>

void ei (void)

void di (void)

Description

The di() and ei() routines disable and re-enable interrupts respectively. These are implemented as

macros defined in pic.h. The example shows the use of ei() and di() around access to a long

variable that is modified during an interrupt. If this was not done, it would be possible to return an

incorrect value, if the interrupt occurred between accesses to successive words of the count value.

Example

#include <htc.h>

long count;

void

interrupt tick (void)

{

count++;

}

long

getticks (void)

{

long val; /* Disable interrupts around access

to count, to ensure consistency.*/

di();

val = count;

ei();

return val;

}

183

Library Functions

DIV

Synopsis

#include <stdlib.h>

div_t div (int numer, int demon)

Description

The div() function computes the quotient and remainder of the numerator divided by the denomina-

tor.

Example

#include <stdlib.h>

#include <stdio.h>

void

main (void)

{

div_t x;

x = div(12345, 66);

printf("quotient = %d, remainder = %d\n", x.quot, x.rem);

}

Return Value

Returns the quotient and remainder into the div_t structure.

184

Library Functions

EEPROM_READ, EEPROM_WRITE

Synopsis

#include <htc.h>

unsigned char eeprom_read (unsigned char addr);

void eeprom_write (unsigned char addr, unsigned char value);

Description

These function allow access to the on-chip eeprom (when present). The eeprom is not in the directly-

accessible memory space and a special byte sequence is loaded to the eeprom control registers to

access the device. Writing a value to the eeprom is a slow process and the eeprom_write() function

polls the appropriate registers to ensure that any previous writes have completed before writing the

next datum. Reading data is completed in the one cycle and no polling is necessary to check for a

read completion.

Example

#include <htc.h>

void

main (void)

{

unsigned char data;

unsigned char address;

address = 0x10;

data = eeprom_read(address);

}

Note

It may be necessary to poll the eeprom registers to ensure that the write has completed if an eep-

rom_write() call is immediately followed by an eeprom_read(). The global interrupt enable bit

(GIE) is now restored by the eeprom_write() routine. The EEIF interrupt flag is not reset by this

function.

185

Library Functions

EVAL_POLY

Synopsis

#include <math.h>

double eval_poly (double x, const double * d, int n)

Description

The eval_poly() function evaluates a polynomial, whose coefficients are contained in the array d, at

x, for example:

y = x*x*d2 + x*d1 + d0.

The order of the polynomial is passed in n.

Example

#include <stdio.h>

#include <math.h>

void

main (void)

{

double x, y;

double d[3] = {1.1, 3.5, 2.7};

x = 2.2;

y = eval_poly(x, d, 2);

printf("The polynomial evaluated at %f is %f\n", x, y);

}

Return Value

A double value, being the polynomial evaluated at x.

186

Library Functions

EXP

Synopsis

#include <math.h>

double exp (double f)

Description

The exp() routine returns the exponential function of its argument, i.e. e to the power of f.

Example

#include <math.h>

#include <stdio.h>

void

main (void)

{

double f;

for(f = 0.0 ; f <= 5 ; f += 1.0)

printf("e to %1.0f = %f\n", f, exp(f));

}

See Also

log(), log10(), pow()

187

Library Functions

FABS

Synopsis

#include <math.h>

double fabs (double f)

Description

This routine returns the absolute value of its double argument.

Example

#include <stdio.h>

#include <math.h>

void

main (void)

{

printf("%f %f\n", fabs(1.5), fabs(-1.5));

}

See Also

abs()

188

Library Functions

FLASH_COPY

Synopsis

#include <htc.h>

void flash_copy(const unsigned char * source_addr, unsigned char length,

unsigned short dest_addr);

Description

This utility function is useful for copying a large section of memory to a new location in flash

memory.

Note it is only applicable to those devices which have an internal set of flash buffer registers.

When the function is called, it needs to be supplied with a const pointer to the source address

of the data to copy. The pointer may point to a valid address in either RAM or flash memory.

A length parameter must be specified to indicate the number of words of the data to be copied.

Finally the flash address where this data is destined must be specified.

Example

#include <htc.h>

const unsigned char ROMSTRING[] = "0123456789ABCDEF";

void

main (void){

const unsigned char * ptr = &ROMSTRING[0];

flash_copy(ptr, 5, 0x70);

}

See Also

EEPROM_READ, EEPROM_WRITE, FLASH_READ, FLASH_WRITE

Note

This function is only applicable to those devices which use internal buffer registers when writing to

flash.

189

Library Functions

Ensure that the function does not attempt to overwrite the section of program memory from

which it is currently executing, and extreme caution must be exercised if modifying code at the

device’s reset or interrupt vectors. A reset or interrupt must not be triggered while this sector is in

erasure.

190

Library Functions

FLASH_ERASE(), FLASH_READ()

Synopsis

#include <htc.h>

void flash_erase (unsigned short addr);

unsigned int flash_read (unsigned short addr);

Description

These functions allow access to the flash memory of the microcontroller (if supported).

Reading from the flash memory can be done one word at a time with use of the flash_read()

function. flash_read() returns the data value found at the specified word address in flash memory.

Entire sectors of 32 words can be restored to an unprogrammed state (value=FF) with use of the

flash_erase() function. Specifying an address to the flash_erase() function, will erase all 32 words

in the sector that contains the given address.

Example

#include <htc.h>

void

main (void)

{

unsigned int data;

unsigned short address=0x1000;

data = flash_read(address);

flash_erase(address);

}

Return Value

flash_read() returns the data found at the given address, as an unsigned int.

191

Library Functions

Note

The functions flash_erase() and flash_read() are only available on those devices that support such

functionality.

192

Library Functions

FLOOR

Synopsis

#include <math.h>

double floor (double f)

Description

This routine returns the largest whole number not greater than f.

Example

#include <stdio.h>

#include <math.h>

void

main (void)

{

printf("%f\n", floor(1.5));

printf("%f\n", floor(-1.5));

}

193

Library Functions

FREXP

Synopsis

#include <math.h>

double frexp (double f, int * p)

Description

The frexp() function breaks a floating point number into a normalized fraction and an integral power

of 2. The integer is stored into the int object pointed to by p. Its return value x is in the interval (0.5,

1.0) or zero, and f equals x times 2 raised to the power stored in *p. If f is zero, both parts of the

result are zero.

Example

#include <math.h>

#include <stdio.h>

void

main (void)

{

double f;

int i;

f = frexp(23456.34, &i);

printf("23456.34 = %f * 2^%d\n", f, i);

}

See Also

ldexp()

194

Library Functions

GETCH, GETCHE

Synopsis

#include <conio.h>

char getch (void)

char getche (void)

Description

The getch() function reads a single character from the console keyboard and returns it without echo-

ing. The getche() function is similar but does echo the character typed.

In an embedded system, the source of characters is defined by the particular routines supplied.

By default, the library contains a version of getch() that will interface to the Lucifer Debugger. The

user should supply an appropriate routine if another source is desired, e.g. a serial port.

The module getch.c in the SOURCES directory contains model versions of all the console I/O

routines. Other modules may also be supplied, e.g. ser180.c has routines for the serial port in a

Z180.

Example

#include <conio.h>

void

main (void)

{

char c;

while((c = getche()) != ’\n’)

continue;

}

See Also

cgets(), cputs(), ungetch()

195

Library Functions

GETCHAR

Synopsis

#include <stdio.h>

int getchar (void)

Description

The getchar() routine is a getc(stdin) operation. It is a macro defined in stdio.h. Note that under

normal circumstances getchar() will NOT return unless a carriage return has been typed on the

console. To get a single character immediately from the console, use the function getch().

Example

#include <stdio.h>

void

main (void)

{

int c;

while((c = getchar()) != EOF)

putchar(c);

}

See Also

getc(), fgetc(), freopen(), fclose()

Note

This routine is not usable in a ROM based system.

196

Library Functions

GETS

Synopsis

#include <stdio.h>

char * gets (char * s)

Description

The gets() function reads a line from standard input into the buffer at s, deleting the newline (cf.

fgets()). The buffer is null terminated. In an embedded system, gets() is equivalent to cgets(), and

results in getche() being called repeatedly to get characters. Editing (with backspace) is available.

Example

#include <stdio.h>

void

main (void)

{

char buf[80];

printf("Type a line: ");

if(gets(buf))

puts(buf);

}

See Also

fgets(), freopen(), puts()

Return Value

It returns its argument, or NULL on end-of-file.

197

Library Functions

GET_CAL_DATA

Synopsis

#include <htc.h>

double get_cal_data (const unsigned char * code_ptr)

Description

This function returns the 32-bit floating point calibration data from the PIC14000 calibration space.

Only use this function to access KREF, KBG, VHTHERM and KTC (that is, the 32-bit floating point

parameters). FOSC and TWDT can be accessed directly as they are bytes.

Example

#include <htc.h>

void

main (void)

{

double x;

unsigned char y;

/* Get the slope reference ratio. */

x = get_cal_data(KREF);

/* Get the WDT time-out. */

y =TWDT;

}

Return Value

The value of the calibration parameter

Note

This function can only be used on the PIC14000.

198

Library Functions

GMTIME

Synopsis

#include <time.h>

struct tm * gmtime (time_t * t)

Description

This function converts the time pointed to by t which is in seconds since 00:00:00 on Jan 1, 1970,

into a broken down time stored in a structure as defined in time.h. The structure is defined in the

’Data Types’ section.

Example

#include <stdio.h>

#include <time.h>

void

main (void)

{

time_t clock;

struct tm * tp;

time(&clock);

tp = gmtime(&clock);

printf("It’s %d in London\n", tp->tm_year+1900);

}

See Also

ctime(), asctime(), time(), localtime()

199

Library Functions

Return Value

Returns a structure of type tm.

Note

The example will require the user to provide the time() routine as one cannot be supplied with the

compiler. See time() for more detail.

200

Library Functions

ISALNUM, ISALPHA, ISDIGIT, ISLOWER et. al.

Synopsis

#include <ctype.h>

int isalnum (char c)

int isalpha (char c)

int isascii (char c)

int iscntrl (char c)

int isdigit (char c)

int islower (char c)

int isprint (char c)

int isgraph (char c)

int ispunct (char c)

int isspace (char c)

int isupper (char c)

int isxdigit(char c)

Description

These macros, defined in ctype.h, test the supplied character for membership in one of several over-

lapping groups of characters. Note that all except isascii() are defined for c, if isascii(c) is true or if

c = EOF.

isalnum(c) c is in 0-9 or a-z or A-Z

isalpha(c) c is in A-Z or a-z

isascii(c) c is a 7 bit ascii character

iscntrl(c) c is a control character

isdigit(c) c is a decimal digit

islower(c) c is in a-z

isprint(c) c is a printing char

isgraph(c) c is a non-space printable character

ispunct(c) c is not alphanumeric

isspace(c) c is a space, tab or newline

isupper(c) c is in A-Z

isxdigit(c) c is in 0-9 or a-f or A-F

201

Library Functions

Example

#include <ctype.h>

#include <stdio.h>

void

main (void)

{

char buf[80];

int i;

gets(buf);

i = 0;

while(isalnum(buf[i]))

i++;

buf[i] = 0;

printf("’%s’ is the word\n", buf);

}

See Also

toupper(), tolower(), toascii()

202

Library Functions

LDEXP

Synopsis

#include <math.h>

double ldexp (double f, int i)

Description

The ldexp() function performs the inverse of frexp() operation; the integer i is added to the exponent

of the floating point f and the resultant returned.

Example

#include <math.h>

#include <stdio.h>

void

main (void)

{

double f;

f = ldexp(1.0, 10);

printf("1.0 * 2^10 = %f\n", f);

}

See Also

frexp()

Return Value

The return value is the integer i added to the exponent of the floating point value f.

203

Library Functions

LDIV

Synopsis

#include <stdlib.h>

ldiv_t ldiv (long number, long denom)

Description

The ldiv() routine divides the numerator by the denominator, computing the quotient and the remain-

der. The sign of the quotient is the same as that of the mathematical quotient. Its absolute value is

the largest integer which is less than the absolute value of the mathematical quotient.

The ldiv() function is similar to the div() function, the difference being that the arguments and

the members of the returned structure are all of type long int.

Example

#include <stdlib.h>

#include <stdio.h>

void

main (void)

{

ldiv_t lt;

lt = ldiv(1234567, 12345);

printf("Quotient = %ld, remainder = %ld\n", lt.quot, lt.rem);

}

See Also

div()

Return Value

Returns a structure of type ldiv_t

204

Library Functions

LOCALTIME

Synopsis

#include <time.h>

struct tm * localtime (time_t * t)

Description

The localtime() function converts the time pointed to by t which is in seconds since 00:00:00 on Jan

1, 1970, into a broken down time stored in a structure as defined in time.h. The routine localtime()

takes into account the contents of the global integer time_zone. This should contain the number of

minutes that the local time zone is westward of Greenwich. On systems where it is not possible to

predetermine this value, localtime() will return the same result as gmtime().

Example

#include <stdio.h>

#include <time.h>

char * wday[] = {

"Sunday", "Monday", "Tuesday", "Wednesday",

"Thursday", "Friday", "Saturday"

};

void

main (void)

{

time_t clock;

struct tm * tp;

time(&clock);

tp = localtime(&clock);

printf("Today is %s\n", wday[tp->tm_wday]);

}

205

Library Functions

See Also

ctime(), asctime(), time()

Return Value

Returns a structure of type tm.

Note

The example will require the user to provide the time() routine as one cannot be supplied with the

compiler. See time() for more detail.

206

Library Functions

LOG, LOG10

Synopsis

#include <math.h>

double log (double f)

double log10 (double f)

Description

The log() function returns the natural logarithm of f. The function log10() returns the logarithm to

base 10 of f.

Example

#include <math.h>

#include <stdio.h>

void

main (void)

{

double f;

for(f = 1.0 ; f <= 10.0 ; f += 1.0)

printf("log(%1.0f) = %f\n", f, log(f));

}

See Also

exp(), pow()

Return Value

Zero if the argument is negative.

207

Library Functions

LONGJMP

Synopsis

#include <setjmp.h>

void longjmp (jmp_buf buf, int val)

Description

The longjmp() function, in conjunction with setjmp(), provides a mechanism for non-local goto’s.

To use this facility, setjmp() should be called with a jmp_buf argument in some outer level function.

The call from setjmp() will return 0.

To return to this level of execution, longjmp() may be called with the same jmp_buf argument

from an inner level of execution. Note however that the function which called setjmp() must still be

active when longjmp() is called. Breach of this rule will cause disaster, due to the use of a stack

containing invalid data. The val argument to longjmp() will be the value apparently returned from

the setjmp(). This should normally be non-zero, to distinguish it from the genuine setjmp() call.

Example

#include <stdio.h>

#include <setjmp.h>

#include <stdlib.h>

jmp_buf jb;

void

inner (void)

{

longjmp(jb, 5);

}

void

main (void)

{

int i;

208

Library Functions

if(i = setjmp(jb)) {

printf("setjmp returned %d\n", i);

exit(0);

}

printf("setjmp returned 0 - good\n");

printf("calling inner...\n");

inner();

printf("inner returned - bad!\n");

}

See Also

setjmp()

Return Value

The longjmp() routine never returns.

Note

The function which called setjmp() must still be active when longjmp() is called. Breach of this rule

will cause disaster, due to the use of a stack containing invalid data.

209

Library Functions

MEMCHR

Synopsis

#include <string.h>

/* For baseline and midrange processors */

const void * memchr (const void * block, int val, size_t length)

/* For high-end processors */

void * memchr (const void * block, int val, size_t length)

Description

The memchr() function is similar to strchr() except that instead of searching null terminated strings,

it searches a block of memory specified by length for a particular byte. Its arguments are a pointer

to the memory to be searched, the value of the byte to be searched for, and the length of the block.

A pointer to the first occurrence of that byte in the block is returned.

Example

#include <string.h>

#include <stdio.h>

unsigned int ary[] = {1, 5, 0x6789, 0x23};

void

main (void)

{

char * cp;

cp = memchr(ary, 0x89, sizeof ary);

if(!cp)

printf("not found\n");

else

printf("Found at offset %u\n", cp - (char *)ary);

}

210

Library Functions

See Also

strchr()

Return Value

A pointer to the first byte matching the argument if one exists; NULL otherwise.

211

Library Functions

MEMCMP

Synopsis

#include <string.h>

int memcmp (const void * s1, const void * s2, size_t n)

Description

The memcmp() function compares two blocks of memory, of length n, and returns a signed value

similar to strncmp(). Unlike strncmp() the comparison does not stop on a null character.

Example

#include <stdio.h>

#include <string.h>

void

main (void)

{

int buf[10], cow[10], i;

buf[0] = 1;

buf[2] = 4;

cow[0] = 1;

cow[2] = 5;

buf[1] = 3;

cow[1] = 3;

i = memcmp(buf, cow, 3*sizeof(int));

if(i < 0)

printf("less than\n");

else if(i > 0)

printf("Greater than\n");

else

printf("Equal\n");

}

212

Library Functions

See Also

strncpy(), strncmp(), strchr(), memset(), memchr()

Return Value

Returns negative one, zero or one, depending on whether s1 points to string which is less than, equal

to or greater than the string pointed to by s2 in the collating sequence.

213

Library Functions

MEMCPY

Synopsis

#include <string.h>

/* For baseline and midrange processors */

void * memcpy (void * d, const void * s, size_t n)

/* For high-end processors */

far void * memcpy (far void * d, const void * s, size_t n)

Description

The memcpy() function copies n bytes of memory starting from the location pointed to by s to

the block of memory pointed to by d. The result of copying overlapping blocks is undefined. The

memcpy() function differs from strcpy() in that it copies a specified number of bytes, rather than all

bytes up to a null terminator.

Example

#include <string.h>

#include <stdio.h>

void

main (void)

{

char buf[80];

memset(buf, 0, sizeof buf);

memcpy(buf, "a partial string", 10);

printf("buf = ’%s’\n", buf);

}

See Also

strncpy(), strncmp(), strchr(), memset()

214

Library Functions

Return Value

The memcpy() routine returns its first argument.

215

Library Functions

MEMMOVE

Synopsis

#include <string.h>

/* For baseline and midrange processors */

void * memmove (void * s1, const void * s2, size_t n)

/* For high-end processors */

far void * memmove (far void * s1, const void * s2, size_t n)

Description

The memmove() function is similar to the function memcpy() except copying of overlapping blocks

is handled correctly. That is, it will copy forwards or backwards as appropriate to correctly copy one

block to another that overlaps it.

See Also

strncpy(), strncmp(), strchr(), memcpy()

Return Value

The function memmove() returns its first argument.

216

Library Functions

MEMSET

Synopsis

#include <string.h>

/* For baseline and midrange processors */

void * memset (void * s, int c, size_t n)

/* For high-end processors */

far void * memset (far void * s, int c, size_t n)

Description

The memset() function fills n bytes of memory starting at the location pointed to by s with the byte

c.

Example

#include <string.h>

#include <stdio.h>

void

main (void)

{

char abuf[20];

strcpy(abuf, "This is a string");

memset(abuf, ’x’, 5);

printf("buf = ’%s’\n", abuf);

}

See Also

strncpy(), strncmp(), strchr(), memcpy(), memchr()

217

Library Functions

MODF

Synopsis

#include <math.h>

double modf (double value, double * iptr)

Description

The modf() function splits the argument value into integral and fractional parts, each having the

same sign as value. For example, -3.17 would be split into the integral part (-3) and the fractional

part (-0.17).

The integral part is stored as a double in the object pointed to by iptr.

Example

#include <math.h>

#include <stdio.h>

void

main (void)

{

double i_val, f_val;

f_val = modf(-3.17, &i_val);

}

Return Value

The signed fractional part of value.

218

Library Functions

PERSIST_CHECK, PERSIST_VALIDATE

Synopsis

#include <sys.h>

int persist_check (int flag)

void persist_validate (void)

Description

The persist_check() function is used with non-volatile RAM variables, declared with the persistent

qualifier. It tests the nvram area, using a magic number stored in a hidden variable by a previous call

to persist_validate() and a checksum also calculated by persist_validate(). If the magic number and

checksum are correct, it returns true (non-zero). If either are incorrect, it returns zero. In this case it

will optionally zero out and re-validate the non-volatile RAM area (by calling persist_validate()).

This is done if the flag argument is true.

The persist_validate() routine should be called after each change to a persistent variable. It will

set up the magic number and recalculate the checksum.

Example

#include <sys.h>

#include <stdio.h>

persistent long reset_count;

void

main (void)

{

if(!persist_check(1))

printf("Reset count invalid - zeroed\n");

else

printf("Reset number %ld\n", reset_count);

reset_count++; /* update count */

persist_validate(); /* and checksum */

for(;;)

continue; /* sleep until next reset */

219

Library Functions

}

Return Value

FALSE (zero) if the NVRAM area is invalid; TRUE (non-zero) if the NVRAM area is valid.

220

Library Functions

POW

Synopsis

#include <math.h>

double pow (double f, double p)

Description

The pow() function raises its first argument, f, to the power p.

Example

#include <math.h>

#include <stdio.h>

void

main (void)

{

double f;

for(f = 1.0 ; f <= 10.0 ; f += 1.0)

printf("pow(2, %1.0f) = %f\n", f, pow(2, f));

}

See Also

log(), log10(), exp()

Return Value

f to the power of p.

221

Library Functions

PRINTF

Synopsis

#include <stdio.h>

unsigned char printf (const char * fmt, ...)

Description

The printf() function is a formatted output routine, operating on stdout. There are corresponding

routines operating into a string buffer (sprintf()). The printf() routine is passed a format string,

followed by a list of zero or more arguments. In the format string are conversion specifications, each

of which is used to print out one of the argument list values.

Each conversion specification is of the form %m.nc where the percent symbol % introduces

a conversion, followed by an optional width specification m. The n specification is an optional

precision specification (introduced by the dot) and c is a letter specifying the type of the conversion.

Field widths and precision are only supported on the midrange and high-end processors, with the

precision specification only applicable to %s.

If the character * is used in place of a decimal constant, e.g. in the format %*d, then one integer

argument will be taken from the list to provide that value. The types of conversion for the Baseline

series are:

o x X u d

Integer conversion - in radices 8, 16, 16, 10 and 10 respectively. The conversion is signed in the case

of d, unsigned otherwise. The precision value is the total number of digits to print, and may be used

to force leading zeroes. E.g. %8.4x will print at least 4 hex digits in an 8 wide field. The letter X

prints out hexadecimal numbers using the upper case letters A-F rather than a-f as would be printed

when using x. When the alternate format is specified, a leading zero will be supplied for the octal

format, and a leading 0x or 0X for the hex format.

s

Print a string - the value argument is assumed to be a character pointer. At most n characters from

the string will be printed, in a field m characters wide.

c

The argument is assumed to be a single character and is printed literally.

Any other characters used as conversion specifications will be printed. Thus % will produce a

single percent sign.

For the Midrange and High-end series, the types of conversions are as for the Baseline with the

addition of:

222

Library Functions

l

Long integer conversion - Preceding the integer conversion key letter with an l indicates that the

argument list is long.

f

Floating point - m is the total width and n is the number of digits after the decimal point. If n is

omitted it defaults to 6. If the precision is zero, the decimal point will be omitted unless the alternate

format is specified.

Example

printf("Total = %4d%", 23)

yields ’Total = 23%’

printf("Size is %lx" , size)

where size is a long, prints size

as hexadecimal.

Note that the precision number is only available when using Midrange

and High-end processors when using the %s placeholder.

printf("Name = %.8s", "a1234567890")

yields ’Name = a1234567’

Note that the variable width number is only available when using Midrange

and High-end processors placeholder.

printf("xx%*d", 3, 4)

yields ’xx 4’

/* vprintf example */

#include <stdio.h>

int

error (char * s, ...)

{

va_list ap;

va_start(ap, s);

printf("Error: ");

vprintf(s, ap);

223

Library Functions

putchar(’\n’);

va_end(ap);

}

void

main (void)

{

int i;

i = 3;

error("testing 1 2 %d", i);

}

See Also

sprintf()

Return Value

The printf() routine returns the number of characters written to stdout.

NB The return value is a char, NOT an int.

Note

Certain features of printf are only available for the midrange and high-end processors. Read the

description for details. Printing floating point numbers requires that the float to be printed be no

larger than the largest possible long integer. In order to use long or float formats, the appropriate

supplemental library must be included. See the description on the PICC -L option and the HPDPIC

Options/Long formats in printf menu for more details.

224

Library Functions

PUTCH

Synopsis

#include <conio.h>

void putch (char c)

Description

The putch() function outputs the character c to the console screen, prepending a carriage return if

the character is a newline. In a CP/M or MS-DOS system this will use one of the system I/O calls.

In an embedded system this routine, and associated others, will be defined in a hardware dependent

way. The standard putch() routines in the embedded library interface either to a serial port or to the

Lucifer Debugger.

Example

#include <conio.h>

char * x = "This is a string";

void

main (void)

{

char * cp;

cp = x;

while(*x)

putch(*x++);

putch(’\n’);

}

See Also

cgets(), cputs(), getch(), getche()

225

Library Functions

PUTCHAR

Synopsis

#include <stdio.h>

int putchar (int c)

Description

The putchar() function is a putc() operation on stdout, defined in stdio.h.

Example

#include <stdio.h>

char * x = "This is a string";

void

main (void)

{

char * cp;

cp = x;

while(*x)

putchar(*x++);

putchar(’\n’);

}

See Also

putc(), getc(), freopen(), fclose()

Return Value

The character passed as argument, or EOF if an error occurred.

226

Library Functions

Note

This routine is not usable in a ROM based system.

227

Library Functions

PUTS

Synopsis

#include <stdio.h>

int puts (const char * s)

Description

The puts() function writes the string s to the stdout stream, appending a newline. The null character

terminating the string is not copied.

Example

#include <stdio.h>

void

main (void)

{

puts("Hello, world!");

}

See Also

fputs(), gets(), freopen(), fclose()

Return Value

EOF is returned on error; zero otherwise.

228

Library Functions

QSORT

Synopsis

#include <stdlib.h>

void qsort (void * base, size_t nel, size_t width,

int (*func)(const void *, const void *))

Description

The qsort() function is an implementation of the quicksort algorithm. It sorts an array of nel items,

each of length width bytes, located contiguously in memory at base. The argument func is a pointer

to a function used by qsort() to compare items. It calls func with pointers to two items to be com-

pared. If the first item is considered to be greater than, equal to or less than the second then func

should return a value greater than zero, equal to zero or less than zero respectively.

Example

#include <stdio.h>

#include <stdlib.h>

int aray[] = {

567, 23, 456, 1024, 17, 567, 66

};

int

sortem (const void * p1, const void * p2)

{

return *(int *)p1 - *(int *)p2;

}

void

main (void)

{

register int i;

229

Library Functions

qsort(aray, sizeof aray/sizeof aray[0], sizeof aray[0], sortem);

for(i = 0 ; i != sizeof aray/sizeof aray[0] ; i++)

printf("%d\t", aray[i]);

putchar(’\n’);

}

Note

The function parameter must be a pointer to a function of type similar to:

int func (const void *, const void *)

i.e. it must accept two const void * parameters, and must be prototyped.

230

Library Functions

RAM_TEST_FAILED

Synopsis

void ram_test_failed (unsigned char errcode)

Description

The ram_test_failed() function is not intended to be called from within the general execution of

the program. This routine is called during execution of the generated runtime startup code if the

program is using a compiler generated RAM integrity test and the integrity test detects a bad cell.

Upon entry to this function, the working register contains an error code, the address that failed

can be determined from the FSR register and IRP bit. The failed value will still be accessable through

the INDF register. The default operation of this routine will halt program execution if a bad cell is

detected, however the user is free to enhance this functionality if required.

See Also

__ram_cell_test

Note

This routine is intended to be replaced by an equivalent routine to suit the user’s implementation.

Possible enhancements include logging the location of the dead cell and continuing to test if there

are any more more dead cells, or alerting the outside world that the device has a memory problem.

231

Library Functions

RAND

Synopsis

#include <stdlib.h>

int rand (void)

Description

The rand() function is a pseudo-random number generator. It returns an integer in the range 0

to 32767, which changes in a pseudo-random fashion on each call. The algorithm will produce a

deterministic sequence if started from the same point. The starting point is set using the srand() call.

The example shows use of the time() function to generate a different starting point for the sequence

each time.

Example

#include <stdlib.h>

#include <stdio.h>

#include <time.h>

void

main (void)

{

time_t toc;

int i;

time(&toc);

srand((int)toc);

for(i = 0 ; i != 10 ; i++)

printf("%d\t", rand());

putchar(’\n’);

}

See Also

srand()

232

Library Functions

Note

The example will require the user to provide the time() routine as one cannot be supplied with the

compiler. See time() for more detail.

233

Library Functions

SCANF, VSCANF

Synopsis

#include <stdio.h>

int scanf (const char * fmt, ...)

#include <stdio.h>

#include <stdarg.h>

int vscanf (const char *, va_list ap)

Description

The scanf() function performs formatted input ("de-editing") from the stdin stream. Similar func-

tions are available for streams in general, and for strings. The function vscanf() is similar, but takes

a pointer to an argument list rather than a series of additional arguments. This pointer should have

been initialised with va_start().

The input conversions are performed according to the fmt string; in general a character in the

format string must match a character in the input; however a space character in the format string will

match zero or more "white space" characters in the input, i.e. spaces, tabs or newlines.

A conversion specification takes the form of the character %, optionally followed by an assign-

ment suppression character (’*’), optionally followed by a numerical maximum field width, followed

by a conversion specification character. Each conversion specification, unless it incorporates the as-

signment suppression character, will assign a value to the variable pointed at by the next argument.

Thus if there are two conversion specifications in the fmt string, there should be two additional

pointer arguments.

The conversion characters are as follows:

o x d

Skip white space, then convert a number in base 8, 16 or 10 radix respectively. If a field width was

supplied, take at most that many characters from the input. A leading minus sign will be recognized.

f

Skip white space, then convert a floating number in either conventional or scientific notation. The

field width applies as above.

s

Skip white space, then copy a maximal length sequence of non-white-space characters. The pointer

234

Library Functions

argument must be a pointer to char. The field width will limit the number of characters copied. The

resultant string will be null terminated.

c

Copy the next character from the input. The pointer argument is assumed to be a pointer to char. If a

field width is specified, then copy that many characters. This differs from the s format in that white

space does not terminate the character sequence.

The conversion characters o, x, u, d and f may be preceded by an l to indicate that the corre-

sponding pointer argument is a pointer to long or double as appropriate. A preceding h will indicate

that the pointer argument is a pointer to short rather than int.

Example

scanf("%d %s", &a, &c)

with input " 12s"

will assign 12 to a, and "s" to s.

scanf("%3cd %lf", &c, &f)

with input " abcd -3.5"

will assign " abc" to c, and -3.5 to f.

See Also

fscanf(), sscanf(), printf(), va_arg()

Return Value

The scanf() function returns the number of successful conversions; EOF is returned if end-of-file

was seen before any conversions were performed.

235

Library Functions

SETJMP

Synopsis

#include <setjmp.h>

int setjmp (jmp_buf buf)

Description

The setjmp() function is used with longjmp() for non-local goto’s. See longjmp() for further infor-

mation.

Example

#include <stdio.h>

#include <setjmp.h>

#include <stdlib.h>

jmp_buf jb;

void

inner (void)

{

longjmp(jb, 5);

}

void

main (void)

{

int i;

if(i = setjmp(jb)) {

printf("setjmp returned %d\n", i);

exit(0);

}

printf("setjmp returned 0 - good\n");

printf("calling inner...\n");

236

Library Functions

inner();

printf("inner returned - bad!\n");

}

See Also

longjmp()

Return Value

The setjmp() function returns zero after the real call, and non-zero if it apparently returns after a call

to longjmp().

237

Library Functions

SIN

Synopsis

#include <math.h>

double sin (double f)

Description

This function returns the sine function of its argument.

Example

#include <math.h>

#include <stdio.h>

#define C 3.141592/180.0

void

main (void)

{

double i;

for(i = 0 ; i <= 180.0 ; i += 10)

printf("sin(%3.0f) = %f, cos = %f\n", i, sin(i*C), cos(i*C));

}

See Also

cos(), tan(), asin(), acos(), atan(), atan2()

Return Value

Sine vale of f.

238

Library Functions

SPRINTF

Synopsis

#include <stdio.h>

/* For baseline and midrange processors */

unsigned char sprintf (char *buf, const char * fmt, ...)

/* For high-end processors */

unsigned char sprintf (far char *buf, const char * fmt, ...)

Description

The sprintf() function operates in a similar fashion to printf(), except that instead of placing the

converted output on the stdout stream, the characters are placed in the buffer at buf. The resultant

string will be null terminated, and the number of characters in the buffer will be returned.

See Also

printf()

Return Value

The sprintf() routine returns the number of characters placed into the buffer.

NB: The return value is a char not an int.

Note

For High-end processors the buffer is accessed via a far pointer.

239

Library Functions

SQRT

Synopsis

#include <math.h>

double sqrt (double f)

Description

The function sqrt(), implements a square root routine using Newton’s approximation.

Example

#include <math.h>

#include <stdio.h>

void

main (void)

{

double i;

for(i = 0 ; i <= 20.0 ; i += 1.0)

printf("square root of %.1f = %f\n", i, sqrt(i));

}

See Also

exp()

Return Value

Returns the value of the square root.

Note

A domain error occurs if the argument is negative.

240

Library Functions

SRAND

Synopsis

#include <stdlib.h>

void srand (unsigned int seed)

Description

The srand() function initializes the random number generator accessed by rand() with the given

seed. This provides a mechanism for varying the starting point of the pseudo-random sequence

yielded by rand(). On the Z80, a good place to get a truly random seed is from the refresh register.

Otherwise timing a response from the console will do, or just using the system time.

Example

#include <stdlib.h>

#include <stdio.h>

#include <time.h>

void

main (void)

{

time_t toc;

int i;

time(&toc);

srand((int)toc);

for(i = 0 ; i != 10 ; i++)

printf("%d\t", rand());

putchar(’\n’);

}

See Also

rand()

241

Library Functions

STRCAT

Synopsis

#include <string.h>

/* For baseline and midrange processors */

char * strcat (char * s1, const char * s2)

/* For high-end processors */

far char * strcat (far char * s1, const char * s2)

Description

This function appends (contcatenates) string s2 to the end of string s1. The result will be null

terminated. The argument s1 must point to a character array big enough to hold the resultant string.

Example

#include <string.h>

#include <stdio.h>

void

main (void)

{

char buffer[256];

char * s1, * s2;

strcpy(buffer, "Start of line");

s1 = buffer;

s2 = " ... end of line";

strcat(s1, s2);

printf("Length = %d\n", strlen(buffer));

printf("string = \"%s\"\n", buffer);

}

See Also

strcpy(), strcmp(), strncat(), strlen()

242

Library Functions

Return Value

The value of s1 is returned.

243

Library Functions

STRCHR, STRICHR

Synopsis

#include <string.h>

/* For baseline and midrange processors */

const char * strchr (const char * s, int c)

const char * strichr (const char * s, int c)

/* For high-end processors */

char * strchr (const char * s, int c)

char * strichr (const char * s, int c)

Description

The strchr() function searches the string s for an occurrence of the character c. If one is found, a

pointer to that character is returned, otherwise NULL is returned.

The strichr() function is the case-insensitive version of this function.

Example

#include <strings.h>

#include <stdio.h>

void

main (void)

{

static char temp[] = "Here it is...";

char c = ’s’;

if(strchr(temp, c))

printf("Character %c was found in string\n", c);

else

printf("No character was found in string");

}

244

Library Functions

See Also

strrchr(), strlen(), strcmp()

Return Value

A pointer to the first match found, or NULL if the character does not exist in the string.

Note

The functions takes an integer argument for the character, only the lower 8 bits of the value are used.

245

Library Functions

STRCMP, STRICMP

Synopsis

#include <string.h>

int strcmp (const char * s1, const char * s2)

int stricmp (const char * s1, const char * s2)

Description

The strcmp() function compares its two, null terminated, string arguments and returns a signed

integer to indicate whether s1 is less than, equal to or greater than s2. The comparison is done with

the standard collating sequence, which is that of the ASCII character set.

The stricmp() function is the case-insensitive version of this function.

Example

#include <string.h>

#include <stdio.h>

void

main (void)

{

int i;

if((i = strcmp("ABC", "ABc")) < 0)

printf("ABC is less than ABc\n");

else if(i > 0)

printf("ABC is greater than ABc\n");

else

printf("ABC is equal to ABc\n");

}

See Also

strlen(), strncmp(), strcpy(), strcat()

246

Library Functions

Return Value

A signed integer less than, equal to or greater than zero.

Note

Other C implementations may use a different collating sequence; the return value is negative, zero

or positive, i.e. do not test explicitly for negative one (-1) or one (1).

247

Library Functions

STRCPY

Synopsis

#include <string.h>

/* For baseline and midrange processors */

char * strcpy (char * s1, const char * s2)

/* For high-end processors */

far char * strcpy (far char * s1, const char * s2)

Description

This function copies a null terminated string s2 to a character array pointed to by s1. The destination

array must be large enough to hold the entire string, including the null terminator.

Example

#include <string.h>

#include <stdio.h>

void

main (void)

{

char buffer[256];

char * s1, * s2;

strcpy(buffer, "Start of line");

s1 = buffer;

s2 = " ... end of line";

strcat(s1, s2);

printf("Length = %d\n", strlen(buffer));

printf("string = \"%s\"\n", buffer);

}

See Also

strncpy(), strlen(), strcat(), strlen()

248

Library Functions

Return Value

The destination buffer pointer s1 is returned.

249

Library Functions

STRCSPN

Synopsis

#include <string.h>

size_t strcspn (const char * s1, const char * s2)

Description

The strcspn() function returns the length of the initial segment of the string pointed to by s1 which

consists of characters NOT from the string pointed to by s2.

Example

#include <stdio.h>

#include <string.h>

void

main (void)

{

static char set[] = "xyz";

printf("%d\n", strcspn("abcdevwxyz", set));

printf("%d\n", strcspn("xxxbcadefs", set));

printf("%d\n", strcspn("1234567890", set));

}

See Also

strspn()

Return Value

Returns the length of the segment.

250

Library Functions

STRLEN

Synopsis

#include <string.h>

size_t strlen (const char * s)

Description

The strlen() function returns the number of characters in the string s, not including the null termina-

tor.

Example

#include <string.h>

#include <stdio.h>

void

main (void)

{

char buffer[256];

char * s1, * s2;

strcpy(buffer, "Start of line");

s1 = buffer;

s2 = " ... end of line";

strcat(s1, s2);

printf("Length = %d\n", strlen(buffer));

printf("string = \"%s\"\n", buffer);

}

Return Value

The number of characters preceding the null terminator.

251

Library Functions

STRNCAT

Synopsis

#include <string.h>

/* For baseline and midrange processors */

char * strncat (char * s1, const char * s2, size_t n)

/* For high-end processors */

far char * strncat (far char * s1, const char * s2, size_t n)

Description

This function appends (concatenates) string s2 to the end of string s1. At most n characters will be

copied, and the result will be null terminated. s1 must point to a character array big enough to hold

the resultant string.

Example

#include <string.h>

#include <stdio.h>

void

main (void)

{

char buffer[256];

char * s1, * s2;

strcpy(buffer, "Start of line");

s1 = buffer;

s2 = " ... end of line";

strncat(s1, s2, 5);

printf("Length = %d\n", strlen(buffer));

printf("string = \"%s\"\n", buffer);

}

252

Library Functions

See Also

strcpy(), strcmp(), strcat(), strlen()

Return Value

The value of s1 is returned.

253

Library Functions

STRNCMP, STRNICMP

Synopsis

#include <string.h>

int strncmp (const char * s1, const char * s2, size_t n)

int strnicmp (const char * s1, const char * s2, size_t n)

Description

The strncmp() function compares its two, null terminated, string arguments, up to a maximum of n

characters, and returns a signed integer to indicate whether s1 is less than, equal to or greater than s2.

The comparison is done with the standard collating sequence, which is that of the ASCII character

set.

The strnicmp() function is the case-insensitive version of this function.

Example

#include <stdio.h>

#include <string.h>

void

main (void)

{

int i;

i = strcmp("abcxyz", "abcxyz");

if(i == 0)

printf("Both strings are equal\n");

else if(i > 0)

printf("String 2 less than string 1\n");

else

printf("String 2 is greater than string 1\n");

}

See Also

strlen(), strcmp(), strcpy(), strcat()

254

Library Functions

Return Value

A signed integer less than, equal to or greater than zero.

Note

Other C implementations may use a different collating sequence; the return value is negative, zero

or positive, i.e. do not test explicitly for negative one (-1) or one (1).

255

Library Functions

STRNCPY

Synopsis

#include <string.h>

/* For baseline and midrange processors */

char * strncpy (char * s1, const char * s2, size_t n)

/* For high-end processors */

far char * strncpy (far char * s1, const char * s2, size_t n)

Description

This function copies a null terminated string s2 to a character array pointed to by s1. At most

n characters are copied. If string s2 is longer than n then the destination string will not be null

terminated. The destination array must be large enough to hold the entire string, including the null

terminator.

Example

#include <string.h>

#include <stdio.h>

void

main (void)

{

char buffer[256];

char * s1, * s2;

strncpy(buffer, "Start of line", 6);

s1 = buffer;

s2 = " ... end of line";

strcat(s1, s2);

printf("Length = %d\n", strlen(buffer));

printf("string = \"%s\"\n", buffer);

}

256

Library Functions

See Also

strcpy(), strcat(), strlen(), strcmp()

Return Value

The destination buffer pointer s1 is returned.

257

Library Functions

STRPBRK

Synopsis

#include <string.h>

/* For baseline and midrange processors */

const char * strpbrk (const char * s1, const char * s2)

/* For high-end processors */

char * strpbrk (const char * s1, const char * s2)

Description

The strpbrk() function returns a pointer to the first occurrence in string s1 of any character from

string s2, or a null pointer if no character from s2 exists in s1.

Example

#include <stdio.h>

#include <string.h>

void

main (void)

{

char * str = "This is a string.";

while(str != NULL) {

printf("%s\n", str);

str = strpbrk(str+1, "aeiou");

}

}

Return Value

Pointer to the first matching character, or NULL if no character found.

258

Library Functions

STRRCHR, STRRICHR

Synopsis

#include <string.h>

/* For baseline and midrange processors */

const char * strrchr (char * s, int c)

const char * strrichr (char * s, int c)

/* For high-end processors */

char * strrchr (char * s, int c)

char * strrichr (char * s, int c)

Description

The strrchr() function is similar to the strchr() function, but searches from the end of the string

rather than the beginning, i.e. it locates the last occurrence of the character c in the null terminated

string s. If successful it returns a pointer to that occurrence, otherwise it returns NULL.

The strrichr() function is the case-insensitive version of this function.

Example

#include <stdio.h>

#include <string.h>

void

main (void)

{

char * str = "This is a string.";

while(str != NULL) {

printf("%s\n", str);

str = strrchr(str+1, ’s’);

}

}

259

Library Functions

See Also

strchr(), strlen(), strcmp(), strcpy(), strcat()

Return Value

A pointer to the character, or NULL if none is found.

260

Library Functions

STRSPN

Synopsis

#include <string.h>

size_t strspn (const char * s1, const char * s2)

Description

The strspn() function returns the length of the initial segment of the string pointed to by s1 which

consists entirely of characters from the string pointed to by s2.

Example

#include <stdio.h>

#include <string.h>

void

main (void)

{

printf("%d\n", strspn("This is a string", "This"));

printf("%d\n", strspn("This is a string", "this"));

}

See Also

strcspn()

Return Value

The length of the segment.

261

Library Functions

STRSTR, STRISTR

Synopsis

#include <string.h>

/* For baseline and midrange processors */

const char * strstr (const char * s1, const char * s2)

const char * stristr (const char * s1, const char * s2)

/* For high-end processors */

char * strstr (const char * s1, const char * s2)

char * stristr (const char * s1, const char * s2)

Description

The strstr() function locates the first occurrence of the sequence of characters in the string pointed

to by s2 in the string pointed to by s1.

The stristr() routine is the case-insensitive version of this function.

Example

#include <stdio.h>

#include <string.h>

void

main (void)

{

printf("%d\n", strstr("This is a string", "str"));

}

Return Value

Pointer to the located string or a null pointer if the string was not found.

262

Library Functions

STRTOK

Synopsis

#include <string.h>

/* For baseline and midrange processors */

char * strtok (char * s1, const char * s2)

/* For high-end processors */

far char * strtok (far char * s1, const char * s2)

Description

A number of calls to strtok() breaks the string s1 (which consists of a sequence of zero or more text

tokens separated by one or more characters from the separator string s2) into its separate tokens.

The first call must have the string s1. This call returns a pointer to the first character of the first

token, or NULL if no tokens were found. The inter-token separator character is overwritten by a null

character, which terminates the current token.

For subsequent calls to strtok(), s1 should be set to a null pointer. These calls start searching

from the end of the last token found, and again return a pointer to the first character of the next token,

or NULL if no further tokens were found.

Example

#include <stdio.h>

#include <string.h>

void

main (void)

{

char * ptr;

char * buf = "This is a string of words.";

char * sep_tok = ".,?! ";

ptr = strtok(buf, sep_tok);

while(ptr != NULL) {

printf("%s\n", ptr);

263

Library Functions

ptr = strtok(NULL, sep_tok);

}

}

Return Value

Returns a pointer to the first character of a token, or a null pointer if no token was found.

Note

The separator string s2 may be different from call to call.

264

Library Functions

TAN

Synopsis

#include <math.h>

double tan (double f)

Description

The tan() function calculates the tangent of f.

Example

#include <math.h>

#include <stdio.h>

#define C 3.141592/180.0

void

main (void)

{

double i;

for(i = 0 ; i <= 180.0 ; i += 10)

printf("tan(%3.0f) = %f\n", i, tan(i*C));

}

See Also

sin(), cos(), asin(), acos(), atan(), atan2()

Return Value

The tangent of f.

265

Library Functions

TIME

Synopsis

#include <time.h>

time_t time (time_t * t)

Description

This function is not provided as it is dependant on the target system supplying the current time. This

function will be user implemented. When implemented, this function should return the current time

in seconds since 00:00:00 on Jan 1, 1970. If the argument t is not equal to NULL, the same value is

stored into the object pointed to by t.

Example

#include <stdio.h>

#include <time.h>

void

main (void)

{

time_t clock;

time(&clock);

printf("%s", ctime(&clock));

}

See Also

ctime(), gmtime(), localtime(), asctime()

Return Value

This routine when implemented will return the current time in seconds since 00:00:00 on Jan 1,

1970.

266

Library Functions

Note

The time() routine is not supplied, if required the user will have to implement this routine to the

specifications outlined above.

267

Library Functions

TOLOWER, TOUPPER, TOASCII

Synopsis

#include <ctype.h>

char toupper (int c)

char tolower (int c)

char toascii (int c)

Description

The toupper() function converts its lower case alphabetic argument to upper case, the tolower()

routine performs the reverse conversion and the toascii() macro returns a result that is guaranteed

in the range 0-0177. The functions toupper() and tolower() return their arguments if it is not an

alphabetic character.

Example

#include <stdio.h>

#include <ctype.h>

#include <string.h>

void

main (void)

{

char * array1 = "aBcDE";

int i;

for(i=0;i < strlen(array1); ++i) {

printf("%c", tolower(array1[i]));

}

printf("\n");

}

See Also

islower(), isupper(), isascii(), et. al.

268

Library Functions

UNGETCH

Synopsis

#include <conio.h>

void ungetch (char c)

Description

The ungetch() function will push back the character c onto the console stream, such that a subse-

quent getch() operation will return the character. At most one level of push back will be allowed.

See Also

getch(), getche()

269

Library Functions

VA_START, VA_ARG, VA_END

Synopsis

#include <stdarg.h>

void va_start (va_list ap, parmN)

type va_arg (ap, type)

void va_end (va_list ap)

Description

These macros are provided to give access in a portable way to parameters to a function represented in

a prototype by the ellipsis symbol (...), where type and number of arguments supplied to the function

are not known at compile time.

The rightmost parameter to the function (shown as parmN) plays an important role in these

macros, as it is the starting point for access to further parameters. In a function taking variable num-

bers of arguments, a variable of type va_list should be declared, then the macro va_start() invoked

with that variable and the name of parmN. This will initialize the variable to allow subsequent calls

of the macro va_arg() to access successive parameters.

Each call to va_arg() requires two arguments; the variable previously defined and a type name

which is the type that the next parameter is expected to be. Note that any arguments thus accessed

will have been widened by the default conventions to int, unsigned int or double. For example if a

character argument has been passed, it should be accessed by va_arg(ap, int) since the char will

have been widened to int.

An example is given below of a function taking one integer parameter, followed by a number

of other parameters. In this example the function expects the subsequent parameters to be pointers

to char, but note that the compiler is not aware of this, and it is the programmers responsibility to

ensure that correct arguments are supplied.

Example

#include <stdio.h>

#include <stdarg.h>

void

pf (int a, ...)

{

270

Library Functions

va_list ap;

va_start(ap, a);

while(a--)

puts(va_arg(ap, char *));

va_end(ap);

}

void

main (void)

{

pf(3, "Line 1", "line 2", "line 3");

}

271

Library Functions

XTOI

Synopsis

#include <stdlib.h>

unsigned xtoi (const char * s)

Description

The xtoi() function scans the character string passed to it, skipping leading blanks reading an optional

sign, and converts an ASCII representation of a hexadecimal number to an integer.

Example

#include <stdlib.h>

#include <stdio.h>

void

main (void)

{

char buf[80];

int i;

gets(buf);

i = xtoi(buf);

printf("Read %s: converted to %x\n", buf, i);

}

See Also

atoi()

Return Value

A signed integer. If no number is found in the string, zero will be returned.

272

Library Functions

273

Library Functions

274

Appendix B

Error and Warning Messages

This chapter lists most error, warning and advisory messages from all HI-TECH C compilers, with

an explanation of each message. Most messages have been assigned a unique number which appears

in brackets before each message in this chapter, and which is also printed by the compiler when the

message is issued. The messages shown here are sorted by their number. Un-numbered messages

appear toward the end and are sorted alphabetically.

The name of the application(s) that could have produced the messages are listed in brackets

opposite the error message. In some cases examples of code or options that could trigger the error

are given. The use of * in the error message is used to represent a string that the compiler will

substitute that is specific to that particular error.

Note that one problem in your C or assembler source code may trigger more than one error

message.

(100) unterminated #if[n][def] block from line * (Preprocessor)

A #if or similar block was not terminated with a matching #endif, e.g.:

#if INPUT /* error flagged here */

void main(void)

{

run();

} /* no #endif was found in this module */

275

Error and Warning Messages

(101) #* may not follow #else (Preprocessor)

A #else or #elif has been used in the same conditional block as a #else. These can only follow a

#if, e.g.:

#ifdef FOO

result = foo;

#else

result = bar;

#elif defined(NEXT) /* the #else above terminated the #if */

result = next(0);

#endif

(102) #* must be in an #if (Preprocessor)

The #elif, #else or #endif directive must be preceded by a matching #if line. If there is an

apparently corresponding #if line, check for things like extra #endif’s, or improperly terminated

comments, e.g.:

#ifdef FOO

result = foo;

#endif

result = bar;

#elif defined(NEXT) /* the #endif above terminated the #if */

result = next(0);

#endif

(103) #error: * (Preprocessor)

This is a programmer generated error; there is a directive causing a deliberate error. This is normally

used to check compile time defines etc. Remove the directive to remove the error, but first check as

to why the directive is there.

(104) preprocessor #assert failure (Preprocessor)

The argument to a preprocessor #assert directive has evaluated to zero. This is a programmer

induced error.

#assert SIZE == 4 /* size should never be 4 */

276

Error and Warning Messages

(105) no #asm before #endasm (Preprocessor)

A #endasm operator has been encountered, but there was no previous matching #asm, e.g.:

void cleardog(void)

{

clrwdt

#endasm /* this ends the in-line assembler, only where did it begin? */

}

(106) nested #asm directives (Preprocessor)

It is not legal to nest #asm directives. Check for a missing or misspelt #endasm directive, e.g.:

#asm

move r0, #0aah

#asm ; the previous #asm must be closed before opening another

sleep

#endasm

(107) illegal # directive "*" (Preprocessor, Parser)

The compiler does not understand the # directive. It is probably a misspelling of a pre-processor #

directive, e.g.:

#indef DEBUG /* woops -- that should be #undef DEBUG */

(108) #if[n][def] without an argument (Preprocessor)

The preprocessor directives #if, #ifdef and #ifndef must have an argument. The argument to #if

should be an expression, while the argument to #ifdef or #ifndef should be a single name, e.g.:

#if /* woops -- no argument to check */

output = 10;

#else

output = 20;

#endif

277

Error and Warning Messages

(109) #include syntax error (Preprocessor)

The syntax of the filename argument to #include is invalid. The argument to #include must be

a valid file name, either enclosed in double quotes "" or angle brackets < >. Spaces should not be

included, and the closing quote or bracket must be present. There should be nothing else on the line

other than comments, e.g.:

#include stdio.h /* woops -- should be: #include <stdio.h> */

(110) too many file arguments; usage: cpp [input [output]] (Preprocessor)

CPP should be invoked with at most two file arguments. Contact HI-TECH Support if the preproces-

sor is being executed by a compiler driver.

(111) redefining preprocessor macro "*" (Preprocessor)

The macro specified is being redefined, to something different to the original definition. If you want

to deliberately redefine a macro, use #undef first to remove the original definition, e.g.:

#define ONE 1

/* elsewhere: */

/* Is this correct? It will overwrite the first definition. */

#define ONE one

(112) #define syntax error (Preprocessor)

A macro definition has a syntax error. This could be due to a macro or formal parameter name that

does not start with a letter or a missing closing parenthesis ,), e.g.:

#define FOO(a, 2b) bar(a, 2b) /* 2b is not to be! */

(113) unterminated string in preprocessor macro body (Preprocessor, Assembler)

A macro definition contains a string that lacks a closing quote.

(114) illegal #undef argument (Preprocessor)

The argument to #undef must be a valid name. It must start with a letter, e.g.:

#undef 6YYY /* this isn’t a valid symbol name */

278

Error and Warning Messages

(115) recursive preprocessor macro definition of "*" defined by "*" (Preprocessor)

The named macro has been defined in such a manner that expanding it causes a recursive expansion

of itself!

(116) end of file within preprocessor macro argument from line * (Preprocessor)

A macro argument has not been terminated. This probably means the closing parenthesis has been

omitted from a macro invocation. The line number given is the line where the macro argument

started, e.g.:

#define FUNC(a, b) func(a+b)

FUNC(5, 6; /* woops -- where is the closing bracket? */

(117) misplaced constant in #if (Preprocessor)

A constant in a #if expression should only occur in syntactically correct places. This error is most

probably caused by omission of an operator, e.g.:

#if FOO BAR /* woops -- did you mean: #if FOO == BAR ? */

(118) stack overflow processing #if expression (Preprocessor)

The preprocessor filled up its expression evaluation stack in a #if expression. Simplify the expres-

sion — it probably contains too many parenthesized subexpressions.

(119) invalid expression in #if line (Preprocessor)

This is an internal compiler error. Contact HI-TECH Software technical support with details.

(120) operator "*" in incorrect context (Preprocessor)

An operator has been encountered in a #if expression that is incorrectly placed, e.g. two binary

operators are not separated by a value, e.g.:

#if FOO * % BAR == 4 /* what is “* %” ? */

#define BIG

#endif

279

Error and Warning Messages

(121) expression stack overflow at operator "*" (Preprocessor)

Expressions in #if lines are evaluated using a stack with a size of 128. It is possible for very complex

expressions to overflow this. Simplify the expression.

(122) unbalanced parenthesis at operator "*" (Preprocessor)

The evaluation of a #if expression found mismatched parentheses. Check the expression for correct

parenthesisation, e.g.:

#if ((A) + (B) /* woops -- a missing), I think */

#define ADDED

#endif

(123) misplaced "?" or ":"; previous operator is "*" (Preprocessor)

A colon operator has been encountered in a #if expression that does not match up with a corre-

sponding ? operator, e.g.:

#if XXX : YYY /* did you mean: #if COND ? XXX : YYY */

(124) illegal character "*" in #if (Preprocessor)

There is a character in a #if expression that has no business being there. Valid characters are the

letters, digits and those comprising the acceptable operators, e.g.:

#if ‘YYY‘ /* what are these characters doing here? */

int m;

#endif

(125) illegal character (* decimal) in #if (Preprocessor)

There is a non-printable character in a #if expression that has no business being there. Valid char-

acters are the letters, digits and those comprising the acceptable operators, e.g.:

#if ^SYYY /* what is this control characters doing here? */

int m;

#endif

280

Error and Warning Messages

(126) strings can’t be used in #if (Preprocessor)

The preprocessor does not allow the use of strings in #if expressions, e.g.:

/* no string operations allowed by the preprocessor */

#if MESSAGE > “hello”

#define DEBUG

#endif

(127) bad syntax for defined() in #[el]if (Preprocessor)

The defined() pseudo-function in a preprocessor expression requires its argument to be a single

name. The name must start with a letter and should be enclosed in parentheses, e.g.:

/* woops -- defined expects a name, not an expression */

#if defined(a&b)

input = read();

#endif

(128) illegal operator in #if (Preprocessor)

A #if expression has an illegal operator. Check for correct syntax, e.g.:

#if FOO = 6 /* woops -- should that be: #if FOO == 5 ? */

(129) unexpected "\" in #if (Preprocessor)

The backslash is incorrect in the #if statement, e.g.:

#if FOO == \34

#define BIG

#endif

(130) unknown type "*" in #[el]if sizeof() (Preprocessor)

An unknown type was used in a preprocessor sizeof(). The preprocessor can only evaluate

sizeof() with basic types, or pointers to basic types, e.g.:

#if sizeof(unt) == 2 /* woops -- should be: #if sizeof(int) == 2 */

i = 0xFFFF;

#endif

281

Error and Warning Messages

(131) illegal type combination in #[el]if sizeof() (Preprocessor)

The preprocessor found an illegal type combination in the argument to sizeof() in a #if expres-

sion, e.g.

#if sizeof(short long int) == 2 /* short or long? make up your mind */

i = 0xFFFF;

#endif

(132) no type specified in #[el]if sizeof() (Preprocessor)

Sizeof() was used in a preprocessor #if expression, but no type was specified. The argument to

sizeof() in a preprocessor expression must be a valid simple type, or pointer to a simple type, e.g.:

#if sizeof() /* woops -- size of what? */

i = 0;

#endif

(133) unknown type code (0x*) in #[el]if sizeof() (Preprocessor)

The preprocessor has made an internal error in evaluating a sizeof() expression. Check for a

malformed type specifier. This is an internal error. Contact HI-TECH Software technical support

with details.

(134) syntax error in #[el]if sizeof() (Preprocessor)

The preprocessor found a syntax error in the argument to sizeof, in a #if expression. Probable

causes are mismatched parentheses and similar things, e.g.:

#if sizeof(int == 2) /* woops -- should be: #if sizeof(int) == 2 */

i = 0xFFFF;

#endif

(135) unknown operator (*) in #if (Preprocessor)

The preprocessor has tried to evaluate an expression with an operator it does not understand. This is

an internal error. Contact HI-TECH Software technical support with details.

282

Error and Warning Messages

(137) strange character "*" after ## (Preprocessor)

A character has been seen after the token catenation operator ## that is neither a letter nor a digit.

Since the result of this operator must be a legal token, the operands must be tokens containing only

letters and digits, e.g.:

/* the ’ character will not lead to a valid token */

#define cc(a, b) a ## ’b

(138) strange character (*) after ## (Preprocessor)

An unprintable character has been seen after the token catenation operator ## that is neither a letter

nor a digit. Since the result of this operator must be a legal token, the operands must be tokens

containing only letters and digits, e.g.:

/* the ’ character will not lead to a valid token */

#define cc(a, b) a ## ’b

(139) end of file in comment (Preprocessor)

End of file was encountered inside a comment. Check for a missing closing comment flag, e.g.:

/* Here is the start of a comment. I’m not sure where I end, though

}

(140) can’t open * file "*": * (Driver, Preprocessor, Code Generator, Assembler)

The command file specified could not be opened for reading. Confirm the spelling and path of the

file specified on the command line, e.g.:

picc @communds

should that be:

picc @commands

(141) can’t open * file "*": * (Any)

An output file could not be created. Confirm the spelling and path of the file specified on the com-

mand line.

283

Error and Warning Messages

(144) too many nested #if blocks (Preprocessor)

#if, #ifdef etc. blocks may only be nested to a maximum of 32.

(146) #include filename too long (Preprocessor)

A filename constructed while looking for an include file has exceeded the length of an internal buffer.

Since this buffer is 4096 bytes long, this is unlikely to happen.

(147) too many #include directories specified (Preprocessor)

A maximum of 7 directories may be specified for the preprocessor to search for include files. The

number of directories specified with the driver is too great.

(148) too many arguments for preprocessor macro (Preprocessor)

A macro may only have up to 31 parameters, as per the C Standard.

(149) preprocessor macro work area overflow (Preprocessor)

The total length of a macro expansion has exceeded the size of an internal table. This table is

normally 8192 bytes long. Thus any macro expansion must not expand into a total of more than 8K

bytes.

(150) illegal "__" preprocessor macro "*" (Preprocessor)

This is an internal compiler error. Contact HI-TECH Software technical support with details.

(151) too many arguments in preprocessor macro expansion (Preprocessor)

There were too many arguments supplied in a macro invocation. The maximum number allowed is

31.

(152) bad dp/nargs in openpar(): c = * (Preprocessor)

This is an internal compiler error. Contact HI-TECH Software technical support with details.

(153) out of space in preprocessor macro "*" argument expansion (Preprocessor)

A macro argument has exceeded the length of an internal buffer. This buffer is normally 4096 bytes

long.

284

Error and Warning Messages

(155) work buffer overflow concatenating "*" (Preprocessor)

This is an internal compiler error. Contact HI-TECH Software technical support with details.

(156) work buffer "*" overflow (Preprocessor)

This is an internal compiler error. Contact HI-TECH Software technical support with details.

(157) can’t allocate * bytes of memory (Code Generator, Assembler, Optimiser)

This is an internal compiler error. Contact HI-TECH Software technical support with details.

(158) invalid disable in preprocessor macro "*" (Preprocessor)

This is an internal compiler error. Contact HI-TECH Software technical support with details.

(159) too many calls to unget() (Preprocessor)

This is an internal compiler error. Contact HI-TECH Software technical support with details.

(160) too many errors (Preprocessor, Parser, Code Generator, Assembler, Linker)

There were so many errors that the compiler has given up. Correct the first few errors and many of

the later ones will probably go away.

(161) control line "*" within preprocessor macro expansion (Preprocessor)

A preprocessor control line (one starting with a #) has been encountered while expanding a macro.

This should not happen.

(162) #warning: * (Preprocessor, Driver)

This warning is either the result of user-defined #warning preprocessor directive or the driver en-

countered a problem reading the the map file. If the latter then please HI-TECH Software technical

support with details

(163) unexpected text in control line ignored (Preprocessor)

This warning occurs when extra characters appear on the end of a control line, e.g. The extra text

will be ignored, but a warning is issued. It is preferable (and in accordance with Standard C) to

enclose the text as a comment, e.g.:

285

Error and Warning Messages

#if defined(END)

#define NEXT

#endif END /* END would be better in a comment here */

(164) #include filename "*" was converted to lower case (Preprocessor)

The #include file name had to be converted to lowercase before it could be opened, e.g.:

#include <STDIO.H> /* woops -- should be: #include <stdio.h> */

(165) #include filename "*" does not match actual name (check upper/lower case) (Prepro-

cessor)

In Windows versions this means the file to be included actually exists and is spelt the same way as

the #include filename, however the case of each does not exactly match. For example, specifying

#include “code.c” will include Code.c if it is found. In Linux versions this warning could occur

if the file wasn’t found.

(166) too few values specified with option "*" (Preprocessor)

The list of values to the preprocessor (CPP) -S option is incomplete. This should not happen if the

preprocessor is being invoked by the compiler driver. The values passes to this option represent the

sizes of char, short, int, long, float and double types.

(167) too many values specified with -S option; "*" unused (Preprocessor)

There were too many values supplied to the -S preprocessor option. See the Error Message -s, too

few values specified in * on page 286.

(168) unknown option "*" (Any)

This option given to the component which caused the error is not recognized.

(169) strange character (*) after ## (Preprocessor)

There is an unexpected character after #.

286

Error and Warning Messages

(170) symbol "*" in undef was never defined (Preprocessor)

The symbol supplied as argument to #undef was not already defined. This warning may be disabled

with some compilers. This warning can be avoided with code like:

#ifdef SYM

#undef SYM /* only undefine if defined */

#endif

(171) wrong number of preprocessor macro arguments for "*" (* instead of *)(Preprocessor)

A macro has been invoked with the wrong number of arguments, e.g.:

#define ADD(a, b) (a+b)

ADD(1, 2, 3) /* woops -- only two arguments required */

(172) formal parameter expected after # (Preprocessor)

The stringization operator # (not to be confused with the leading # used for preprocessor control

lines) must be followed by a formal macro parameter, e.g.:

#define str(x) #y /* woops -- did you mean x instead of y? */

If you need to stringize a token, you will need to define a special macro to do it, e.g.

#define __mkstr__(x) #x

then use __mkstr__(token) wherever you need to convert a token into a string.

(173) undefined symbol "*" in #if, 0 used (Preprocessor)

A symbol on a #if expression was not a defined preprocessor macro. For the purposes of this

expression, its value has been taken as zero. This warning may be disabled with some compilers.

Example:

#if FOO+BAR /* e.g. FOO was never #defined */

#define GOOD

#endif

287

Error and Warning Messages

(174) multi-byte constant "*" isn’t portable (Preprocessor)

Multi-byte constants are not portable, and in fact will be rejected by later passes of the compiler,

e.g.:

#if CHAR == ’ab’

#define MULTI

#endif

(175) division by zero in #if; zero result assumed (Preprocessor)

Inside a #if expression, there is a division by zero which has been treated as yielding zero, e.g.:

#if foo/0 /* divide by 0: was this what you were intending? */

int a;

#endif

(176) missing newline (Preprocessor)

A new line is missing at the end of the line. Each line, including the last line, must have a new line

at the end. This problem is normally introduced by editors.

(177) symbol "*" in -U option was never defined (Preprocessor)

A macro name specified in a -U option to the preprocessor was not initially defined, and thus cannot

be undefined.

(179) nested comments (Preprocessor)

This warning is issued when nested comments are found. A nested comment may indicate that a

previous closing comment marker is missing or malformed, e.g.:

output = 0; /* a comment that was left unterminated

flag = TRUE; /* another comment: hey, where did this line go? */

(180) unterminated comment in included file (Preprocessor)

Comments begun inside an included file must end inside the included file.

288

Error and Warning Messages

(181) non-scalar types can’t be converted to other types (Parser)

You can’t convert a structure, union or array to another type, e.g.:

struct TEST test;

struct TEST * sp;

sp = test; /* woops -- did you mean: sp = &test; ? */

(182) illegal conversion between types (Parser)

This expression implies a conversion between incompatible types, e.g. a conversion of a structure

type into an integer, e.g.:

struct LAYOUT layout;

int i;

layout = i; /* an int cannot be converted into a struct */

Note that even if a structure only contains an int, for example, it cannot be assigned to an int

variable, and vice versa.

(183) function or function pointer required (Parser)

Only a function or function pointer can be the subject of a function call, e.g.:

int a, b, c, d;

a = b(c+d); /* b is not a function -- did you mean a = b*(c+d) ? */

(184) calling an interrupt function is illegal (Parser)

A function qualified interrupt can’t be called from other functions. It can only be called by a

hardware (or software) interrupt. This is because an interrupt function has special function entry

and exit code that is appropriate only for calling from an interrupt. An interrupt function can call

other non-interrupt functions.

(185) function does not take arguments (Parser, Code Generator)

This function has no parameters, but it is called here with one or more arguments, e.g.:

int get_value(void);

void main(void)

{

289

Error and Warning Messages

int input;

input = get_value(6); /* woops -- the parameter should not be here */

}

(186) too many function arguments (Parser)

This function does not accept as many arguments as there are here.

void add(int a, int b);

add(5, 7, input); /* this call has too many arguments */

(187) too few function arguments (Parser)

This function requires more arguments than are provided in this call, e.g.:

void add(int a, int b);

add(5); /* this call needs more arguments */

(188) constant expression required (Parser)

In this context an expression is required that can be evaluated to a constant at compile time, e.g.:

int a;

switch(input) {

case a: /* woops! you cannot use a variable as part of a case label */

input++;

}

(189) illegal type for array dimension (Parser)

An array dimension must be either an integral type or an enumerated value.

int array[12.5]; /* woops -- twelve and a half elements, eh? */

(190) illegal type for index expression (Parser)

An index expression must be either integral or an enumerated value, e.g.:

int i, array[10];

i = array[3.5]; /* woops -- exactly which element do you mean? */

290

Error and Warning Messages

(191) cast type must be scalar or void (Parser)

A typecast (an abstract type declarator enclosed in parentheses) must denote a type which is either

scalar (i.e. not an array or a structure) or the type void, e.g.:

lip = (long [])input; /* woops -- maybe: lip = (long *)input */

(192) undefined identifier "*" (Parser)

This symbol has been used in the program, but has not been defined or declared. Check for spelling

errors if you think it has been defined.

(193) not a variable identifier "*" (Parser)

This identifier is not a variable; it may be some other kind of object, e.g. a label.

(194) ")" expected (Parser)

A closing parenthesis,), was expected here. This may indicate you have left out this character in an

expression, or you have some other syntax error. The error is flagged on the line at which the code

first starts to make no sense. This may be a statement following the incomplete expression, e.g.:

if(a == b /* the closing parenthesis is missing here */

b = 0; /* the error is flagged here */

(195) expression syntax (Parser)

This expression is badly formed and cannot be parsed by the compiler, e.g.:

a /=% b; /* woops -- maybe that should be: a /= b; */

(196) struct/union required (Parser)

A structure or union identifier is required before a dot ., e.g.:

int a;

a.b = 9; /* woops -- a is not a structure */

(197) struct/union member expected (Parser)

A structure or union member name must follow a dot (".") or arrow ("->").

291

Error and Warning Messages

(198) undefined struct/union "*" (Parser)

The specified structure or union tag is undefined, e.g.

struct WHAT what; /* a definition for WHAT was never seen */

(199) logical type required (Parser)

The expression used as an operand to if, while statements or to boolean operators like ! and &&

must be a scalar integral type, e.g.:

struct FORMAT format;

if(format) /* this operand must be a scaler type */

format.a = 0;

(200) taking the address of a register variable is illegal (Parser)

A variable declared register may not have storage allocated for it in memory, and thus it is illegal

to attempt to take the address of it by applying the & operator, e.g.:

int * proc(register int in)

{

int * ip = ∈ /* woops -- in may not have an address to take */

return ip;

}

(201) taking the address of this object is illegal (Parser)

The expression which was the operand of the & operator is not one that denotes memory storage ("an

lvalue") and therefore its address can not be defined, e.g.:

ip = &8; /* woops -- you can’t take the address of a literal */

(202) only lvalues may be assigned to or modified (Parser)

Only an lvalue (i.e. an identifier or expression directly denoting addressable storage) can be assigned

to or otherwise modified, e.g.:

int array[10];

int * ip;

char c;

array = ip; /* array is not a variable, it cannot be written to */

292

Error and Warning Messages

A typecast does not yield an lvalue, e.g.:

/* the contents of c cast to int is only a intermediate value */

(int)c = 1;

However you can write this using pointers:

*(int *)&c = 1

(203) illegal operation on bit variable (Parser)

Not all operations on bit variables are supported. This operation is one of those, e.g.:

bit b;

int * ip;

ip = &b; /* woops -- cannot take the address of a bit object */

(204) void function can’t return a value (Parser)

A void function cannot return a value. Any return statement should not be followed by an expres-

sion, e.g.:

void run(void)

{

step();

return 1; /* either run should not be void, or remove the 1 */

}

(205) integral type required (Parser)

This operator requires operands that are of integral type only.

(206) illegal use of void expression (Parser)

A void expression has no value and therefore you can’t use it anywhere an expression with a value

is required, e.g. as an operand to an arithmetic operator.

(207) simple type required for "*" (Parser)

A simple type (i.e. not an array or structure) is required as an operand to this operator.

293

Error and Warning Messages

(208) operands of "*" not same type (Parser)

The operands of this operator are of different pointer, e.g.:

int * ip;

char * cp, * cp2;

cp = flag ? ip : cp2; /* result of ? : will either be int * or char * */

Maybe you meant something like:

cp = flag ? (char *)ip : cp2;

(209) type conflict (Parser)

The operands of this operator are of incompatible types.

(210) bad size list (Parser)

This is an internal compiler error. Contact HI-TECH Software technical support with details.

(211) taking sizeof bit is illegal (Parser)

It is illegal to use the sizeof operator with the HI-TECH C bit type. When used against a type the

sizeof operator gives the number of bytes required to store an object that type. Therefore its usage

with the bit type make no sense and is an illegal operation.

(212) missing number after pragma "pack" (Parser)

The pragma pack requires a decimal number as argument. This specifies the alignment of each

member within the structure. Use this with caution as some processors enforce alignment and will

not operate correctly if word fetches are made on odd boundaries, e.g.:

#pragma pack /* what is the alignment value */

Maybe you meant something like:

#pragma pack 2

(214) missing number after pragma "interrupt_level" (Parser)

The pragma interrupt_level requires an argument from 0 to 7.

294

Error and Warning Messages

(215) missing argument to pragma "switch" (Parser)

The pragma switch requires an argument of auto, direct or simple, e.g.:

#pragma switch /* woops -- this requires a switch mode */

maybe you meant something like:

#pragma switch simple

(216) missing argument to pragma "psect" (Parser)

The pragma psect requires an argument of the form oldname=newname where oldname is an

existing psect name known to the compiler, and newname is the desired new name, e.g.:

#pragma psect /* woops -- this requires an psect to redirect */

maybe you meant something like:

#pragma psect text=specialtext

(218) missing name after pragma "inline" (Parser)

The inline pragma expects the name of a function to follow. The function name must be recognized

by the code generator for it to be expanded; other functions are not altered, e.g.:

#pragma inline /* what is the function name? */

maybe you meant something like:

#pragma inline memcpy

(219) missing name after pragma "printf_check" (Parser)

The printf_check pragma expects the name of a function to follow. This specifies printf-style

format string checking for the function, e.g.

#pragma printf_check /* what function is to be checked? */

Maybe you meant something like:

#pragma printf_check sprintf

Pragmas for all the standard printf-like function are already contained in <stdio.h>.

295

Error and Warning Messages

(220) exponent expected (Parser)

A floating point constant must have at least one digit after the e or E., e.g.:

float f;

f = 1.234e; /* woops -- what is the exponent? */

(221) hexadecimal digit expected (Parser)

After 0x should follow at least one of the hex digits 0-9 and A-F or a-f, e.g.:

a = 0xg6; /* woops -- was that meant to be a = 0xf6 ? */

(222) binary digit expected (Parser)

A binary digit was expected following the 0b format specifier, e.g.

i = 0bf000; /* wooops -- f000 is not a base two value */

(223) digit out of range (Parser, Assembler, Optimiser)

A digit in this number is out of range of the radix for the number, e.g. using the digit 8 in an octal

number, or hex digits A-F in a decimal number. An octal number is denoted by the digit string

commencing with a zero, while a hex number starts with "0X" or "0x". For example:

int a = 058; /* a leading 0 implies octal which has digits 0 thru 7 */

(224) illegal "#" directive (Parser)

An illegal # preprocessor has been detected. Likely a directive has been misspelt in your code

somewhere.

(225) missing character in character constant (Parser)

The character inside the single quotes is missing, e.g.:

char c = ”; /* the character value of what? */

(226) char const too long (Parser)

A character constant enclosed in single quotes may not contain more than one character, e.g.:

c = ’12’; /* woops -- only one character may be specified */

296

Error and Warning Messages

(227) "." expected after ".." (Parser)

The only context in which two successive dots may appear is as part of the ellipsis symbol, which

must have 3 dots. (An ellipsis is used in function prototypes to indicate a variable number of param-

eters.)

Either .. was meant to be an ellipsis symbol which would require you to add an extra dot, or it

was meant to be a structure member operator which would require you remove one dot.

(228) illegal character (*) (Parser)

This character is illegal in the C code. Valid characters are the letters, digits and those comprising

the acceptable operators, e.g.:

c = ‘a‘; /* woops -- did you mean c = ’a’; ? */

(229) unknown qualifier "*" given to -A (Parser)

This is an internal compiler error. Contact HI-TECH Software technical support with details.

(230) missing argument to -A (Parser)

This is an internal compiler error. Contact HI-TECH Software technical support with details.

(231) unknown qualifier "*" given to -I (Parser)

This is an internal compiler error. Contact HI-TECH Software technical support with details.

(232) missing argument to -I (Parser)

This is an internal compiler error. Contact HI-TECH Software technical support with details.

(233) bad -Q option "*" (Parser)

This is an internal compiler error. Contact HI-TECH Software technical support with details.

(234) close error (Parser)

This is an internal compiler error. Contact HI-TECH Software technical support with details.

297

Error and Warning Messages

(236) simple integer expression required (Parser)

A simple integral expression is required after the operator @, used to associate an absolute address

with a variable, e.g.:

int address;

char LOCK @ address;

(237) function "*" redefined (Parser)

More than one definition for a function has been encountered in this module. Function overloading

is illegal, e.g.:

int twice(int a)

{

return a*2;

}

long twice(long a) /* only one prototype & definition of rv can exist */

{

return a*2;

}

(238) illegal initialisation (Parser)

You can’t initialise a typedef declaration, because it does not reserve any storage that can be ini-

tialised, e.g.:

/* woops -- uint is a type, not a variable */

typedef unsigned int uint = 99;

(239) identifier "*" redefined (from line *) (Parser)

This identifier has already been defined in the same scope. It cannot be defined again, e.g.:

int a; /* a filescope variable called “a” */

int a; /* this attempts to define another with the same name */

Note that variables with the same name, but defined with different scopes are legal, but not recom-

mended.

298

Error and Warning Messages

(240) too many initializers (Parser)

There are too many initializers for this object. Check the number of initializers against the object

definition (array or structure), e.g.:

/* three elements, but four initializers */

int ivals[3] = { 2, 4, 6, 8};

(241) initialization syntax (Parser)

The initialisation of this object is syntactically incorrect. Check for the correct placement and num-

ber of braces and commas, e.g.:

int iarray[10] = {{’a’, ’b’, ’c’}; /* woops -- one two many {s */

(242) illegal type for switch expression (Parser)

A switch operation must have an expression that is either an integral type or an enumerated value,

e.g:

double d;

switch(d) { /* woops -- this must be integral */

case ’1.0’:

d = 0;

}

(243) inappropriate break/continue (Parser)

A break or continue statement has been found that is not enclosed in an appropriate control struc-

ture. A continue can only be used inside a while, for or do while loop, while break can only be

used inside those loops or a switch statement, e.g.:

switch(input) {

case 0:

if(output == 0)

input = 0xff;

} /* woops! this shouldn’t be here and closed the switch */

break; /* this should be inside the switch */

299

Error and Warning Messages

(244) "default" case redefined (Parser)

There is only allowed to be one default label in a switch statement. You have more than one, e.g.:

switch(a) {

default: /* if this is the default case... */

b = 9;

break;

default: /* then what is this? */

b = 10;

break;

(245) "default" case not in switch (Parser)

A label has been encountered called default but it is not enclosed by a switch statement. A

default label is only legal inside the body of a switch statement.

If there is a switch statement before this default label, there may be one too many closing

braces in the switch code which would prematurely terminate the switch statement. See example

for Error Message ’case’ not in switch on page 300.

(246) case label not in switch (Parser)

A case label has been encountered, but there is no enclosing switch statement. A case label may

only appear inside the body of a switch statement.

If there is a switch statement before this case label, there may be one too many closing braces

in the switch code which would prematurely terminate the switch statement, e.g.:

switch(input) {

case ’0’:

count++;

break;

case ’1’:

if(count>MAX)

count= 0;

} /* woops -- this shouldn’t be here */

break;

case ’2’: /* error flagged here */

300

Error and Warning Messages

(247) duplicate label "*" (Parser)

The same name is used for a label more than once in this function. Note that the scope of labels is

the entire function, not just the block that encloses a label, e.g.:

start:

if(a > 256)

goto end;

start: /* error flagged here */

if(a == 0)

goto start; /* which start label do I jump to? */

(248) inappropriate "else" (Parser)

An else keyword has been encountered that cannot be associated with an if statement. This may

mean there is a missing brace or other syntactic error, e.g.:

/* here is a comment which I have forgotten to close...

if(a > b) {

c = 0; /* ... that will be closed here, thus removing the “if” */

else /* my “if” has been lost */

c = 0xff;

(249) probable missing "}" in previous block (Parser)

The compiler has encountered what looks like a function or other declaration, but the preceding

function has not been ended with a closing brace. This probably means that a closing brace has been

omitted from somewhere in the previous function, although it may well not be the last one, e.g.:

void set(char a)

{

PORTA = a;

/* the closing brace was left out here */

void clear(void) /* error flagged here */

{

PORTA = 0;

}

301

Error and Warning Messages

(251) array dimension redeclared (Parser)

An array dimension has been declared as a different non-zero value from its previous declaration. It

is acceptable to redeclare the size of an array that was previously declared with a zero dimension,

but not otherwise, e.g.:

extern int array[5];

int array[10]; /* woops -- has it 5 or 10 elements? */

(252) argument * conflicts with prototype (Parser)

The argument specified (argument 0 is the left most argument) of this function definition does not

agree with a previous prototype for this function, e.g.:

extern int calc(int, int); /* this is supposedly calc’s prototype */

int calc(int a, long int b) /* hmmm -- which is right? */

{ /* error flagged here */

return sin(b/a);

}

(253) argument list conflicts with prototype (Parser)

The argument list in a function definition is not the same as a previous prototype for that function.

Check that the number and types of the arguments are all the same.

extern int calc(int); /* this is supposedly calc’s prototype */

int calc(int a, int b) /* hmmm -- which is right? */

{ /* error flagged here */

return a + b;

}

(254) undefined *: "*" (Parser)

This is an internal compiler error. Contact HI-TECH Software technical support with details.

(255) not a member of the struct/union "*" (Parser)

This identifier is not a member of the structure or union type with which it used here, e.g.:

302

Error and Warning Messages

struct {

int a, b, c;

} data;

if(data.d) /* woops -- there is no member d in this structure */

return;

(256) too much indirection (Parser)

A pointer declaration may only have 16 levels of indirection.

(257) only "register" storage class allowed (Parser)

The only storage class allowed for a function parameter is register, e.g.:

void process(static int input)

(258) duplicate qualifier (Parser)

There are two occurrences of the same qualifier in this type specification. This can occur either

directly or through the use of a typedef. Remove the redundant qualifier. For example:

typedef volatile int vint;

/* woops -- this results in two volatile qualifiers */

volatile vint very_vol;

(259) can’t be qualified both far and near (Parser)

It is illegal to qualify a type as both far and near, e.g.:

far near int spooky; /* woops -- choose either far or near, not both */

(260) undefined enum tag "*" (Parser)

This enum tag has not been defined, e.g.:

enum WHAT what; /* a definition for WHAT was never seen */

303

Error and Warning Messages

(261) struct/union member "*" redefined (Parser)

This name of this member of the struct or union has already been used in this struct or union, e.g.:

struct {

int a;

int b;

int a; /* woops -- a different name is required here */

} input;

(262) struct/union "*" redefined (Parser)

A structure or union has been defined more than once, e.g.:

struct {

int a;

} ms;

struct {

int a;

} ms; /* was this meant to be the same name as above? */

(263) members can’t be functions (Parser)

A member of a structure or a union may not be a function. It may be a pointer to a function, e.g.:

struct {

int a;

int get(int); /* this should be a pointer: int (*get)(int); */

} object;

(264) bad bitfield type (Parser)

A bitfield may only have a type of int (signed or unsigned), e.g.:

struct FREG {

char b0:1; /* woops -- these must be part of an int, not char */

char :6;

char b7:1;

} freg;

304

Error and Warning Messages

(265) integer constant expected (Parser)

A colon appearing after a member name in a structure declaration indicates that the member is a

bitfield. An integral constant must appear after the colon to define the number of bits in the bitfield,

e.g.:

struct {

unsigned first: /* woops -- should be: unsigned first; */

unsigned second;

} my_struct;

If this was meant to be a structure with bitfields, then the following illustrates an example:

struct {

unsigned first : 4; /* 4 bits wide */

unsigned second: 4; /* another 4 bits */

} my_struct;

(266) storage class illegal (Parser)

A structure or union member may not be given a storage class. Its storage class is determined by the

storage class of the structure, e.g.:

struct {

/* no additional qualifiers may be present with members */

static int first;

} ;

(267) bad storage class (Code Generator)

The code generator has encountered a variable definition whose storage class is invalid, e.g.:

auto int foo; /* auto not permitted with global variables */

int power(static int a) /* parameters may not be static */

{

return foo * a;

}

305

Error and Warning Messages

(268) inconsistent storage class (Parser)

A declaration has conflicting storage classes. Only one storage class should appear in a declaration,

e.g.:

extern static int where; /* so is it static or extern? */

(269) inconsistent type (Parser)

Only one basic type may appear in a declaration, e.g.:

int float if; /* is it int or float? */

(270) variable can’t have storage class "register" (Parser)

Only function parameters or auto variables may be declared using the register qualifier, e.g.:

register int gi; /* this cannot be qualified register */

int process(register int input) /* this is okay */

{

return input + gi;

}

(271) type can’t be long (Parser)

Only int and float can be qualified with long.

long char lc; /* what? */

(272) type can’t be short (Parser)

Only int can be modified with short, e.g.:

short float sf; /* what? */

(273) type can’t be both signed and unsigned (Parser)

The type modifiers signed and unsigned cannot be used together in the same declaration, as they

have opposite meaning, e.g.:

signed unsigned int confused; /* which is it? signed or unsigned? */

306

Error and Warning Messages

(274) type can’t be unsigned (Parser)

A floating point type cannot be made unsigned, e.g.:

unsigned float uf; /* what? */

(275) "..." illegal in non-prototype argument list (Parser)

The ellipsis symbol may only appear as the last item in a prototyped argument list. It may not

appear on its own, nor may it appear after argument names that do not have types, i.e. K&R-style

non-prototype function definitions. For example:

int kandr(a, b, ...) /* K&R-style non-prototyped function definition */

int a, b;

{

(276) type specifier required for prototyped argument (Parser)

A type specifier is required for a prototyped argument. It is not acceptable to just have an identifier.

(277) can’t mix prototyped and non-prototyped arguments (Parser)

A function declaration can only have all prototyped arguments (i.e. with types inside the parentheses)

or all K&R style args (i.e. only names inside the parentheses and the argument types in a declaration

list before the start of the function body), e.g.:

int plus(int a, b) /* woops -- a is prototyped, b is not */

int b;

{

return a + b;

}

(278) argument "*" redeclared (Parser)

The specified argument is declared more than once in the same argument list, e.g.

int calc(int a, int a) /* you cannot have two parameters called “a” */

307

Error and Warning Messages

(279) initialization of function arguments is illegal (Parser)

A function argument can’t have an initialiser in a declaration. The initialisation of the argument

happens when the function is called and a value is provided for the argument by the calling function,

e.g.:

/* woops -- a is initialized when proc is called */

extern int proc(int a = 9);

(280) arrays of functions are illegal (Parser)

You can’t define an array of functions. You can however define an array of pointers to functions,

e.g.:

int * farray[](); /* woops -- should be: int (* farray[])(); */

(281) functions can’t return functions (Parser)

A function cannot return a function. It can return a function pointer. A function returning a pointer

to a function could be declared like this: int (* (name()))(). Note the many parentheses that are

necessary to make the parts of the declaration bind correctly.

(282) functions can’t return arrays (Parser)

A function can return only a scalar (simple) type or a structure. It cannot return an array.

(283) dimension required (Parser)

Only the most significant (i.e. the first) dimension in a multi-dimension array may not be assigned a

value. All succeeding dimensions must be present as a constant expression, e.g.:

enum { one = 1, two };

int get_element(int array[two][]) /* should be, e.g.: int array[][7] */

{

return array[1][6];

}

(284) invalid dimension (Parser)

This is an internal compiler error. Contact HI-TECH Software technical support with details.

308

Error and Warning Messages

(285) no identifier in declaration (Parser)

The identifier is missing in this declaration. This error can also occur where the compiler has been

confused by such things as missing closing braces, e.g.:

void interrupt(void) /* what is the name of this function? */

{

}

(286) declarator too complex (Parser)

This declarator is too complex for the compiler to handle. Examine the declaration and find a way

to simplify it. If the compiler finds it too complex, so will anybody maintaining the code.

(287) arrays of bits or pointers to bit are illegal (Parser)

It is not legal to have an array of bits, or a pointer to bit variable, e.g.:

bit barray[10]; /* wrong -- no bit arrays */

bit * bp; /* wrong -- no pointers to bit variables */

(288) only functions may be void (Parser)

A variable may not be void. Only a function can be void, e.g.:

int a;

void b; /* this makes no sense */

(289) only functions may be qualified "interrupt" (Parser)

The qualifier interrupt may not be applied to anything except a function, e.g.:

interrupt int input; /* variables cannot be qualified interrupt */

(290) illegal function qualifier(s) (Parser)

A qualifier has been applied to a function which makes no sense in this context. Some qualifier

only make sense when used with an lvalue, e.g. const or volatile. This may indicate that you have

forgotten out a star * indicating that the function should return a pointer to a qualified object, e.g.

309

Error and Warning Messages

const char ccrv(void) /* woops! did you mean const * char ccrv(void) ? */

{ /* error flagged here */

return ccip;

}

(291) K&R identifier "*" not an argument (Parser)

This identifier that has appeared in a K&R style argument declarator is not listed inside the paren-

theses after the function name, e.g.:

int process(input)

int unput; /* woops -- that should be int input; */

{

}

(292) function parameter may not be a function (Parser)

A function parameter may not be a function. It may be a pointer to a function, so perhaps a "*" has

been omitted from the declaration.

(293) bad size in index_type() (Parser)

This is an internal compiler error. Contact HI-TECH Software technical support with details.

(294) can’t allocate * bytes of memory (Code Generator, Hexmate)

This is an internal compiler error. Contact HI-TECH Software technical support with details.

(295) expression too complex (Parser)

This expression has caused overflow of the compiler’s internal stack and should be re-arranged or

split into two expressions.

(296) out of memory (Objtohex)

This could be an internal compiler error. Contact HI-TECH Software technical support with details.

(297) bad argument (*) to tysize() (Parser)

This is an internal compiler error. Contact HI-TECH Software technical support with details.

310

Error and Warning Messages

(298) end of file in #asm (Preprocessor)

An end of file has been encountered inside a #asm block. This probably means the #endasm is

missing or misspelt, e.g.:

#asm

mov r0, #55

mov [r1], r0

} /* woops -- where is the #endasm */

(300) unexpected end of file (Parser)

An end-of-file in a C module was encountered unexpectedly, e.g.:

void main(void)

{

init();

run(); /* is that it? What about the close brace */

(301) end of file on string file (Parser)

This is an internal compiler error. Contact HI-TECH Software technical support with details.

(302) can’t reopen "*": * (Parser)

This is an internal compiler error. Contact HI-TECH Software technical support with details.

(303) can’t allocate * bytes of memory (line *) (Parser)

The parser was unable to allocate memory for the longest string encountered, as it attempts to sort

and merge strings. Try reducing the number or length of strings in this module.

(306) can’t allocate * bytes of memory for * (Code Generator)

This is an internal compiler error. Contact HI-TECH Software technical support with details.

(307) too many qualifier names (Parser)

This is an internal compiler error. Contact HI-TECH Software technical support with details.

311

Error and Warning Messages

(308) too many case labels in switch (Code Generator)

There are too many case labels in this switch statement. The maximum allowable number of case

labels in any one switch statement is 511.

(309) too many symbols (Assembler)

There are too many symbols for the assembler’s symbol table. Reduce the number of symbols in

your program.

(310) "]" expected (Parser)

A closing square bracket was expected in an array declaration or an expression using an array index,

e.g.

process(carray[idx); /* woops -- should be: process(carray[idx]); */

(311) closing quote expected (Parser)

A closing quote was expected for the indicated string.

(312) "*" expected (Parser)

The indicated token was expected by the parser.

(313) function body expected (Parser)

Where a function declaration is encountered with K&R style arguments (i.e. argument names but no

types inside the parentheses) a function body is expected to follow, e.g.:

/* the function block must follow, not a semicolon */

int get_value(a, b);

(314) ";" expected (Parser)

A semicolon is missing from a statement. A close brace or keyword was found following a statement

with no terminating semicolon, e.g.:

while(a) {

b = a-- /* woops -- where is the semicolon? */

} /* error is flagged here */

312

Error and Warning Messages

Note: Omitting a semicolon from statements not preceding a close brace or keyword typically results

in some other error being issued for the following code which the parser assumes to be part of the

original statement.

(315) "{" expected (Parser)

An opening brace was expected here. This error may be the result of a function definition missing

the opening brace, e.g.:

/* woops! no opening brace after the prototype */

void process(char c)

return max(c, 10) * 2; /* error flagged here */

}

(316) "}" expected (Parser)

A closing brace was expected here. This error may be the result of a initialized array missing the

closing brace, e.g.:

char carray[4] = { 1, 2, 3, 4; /* woops -- no closing brace */

(317) "(" expected (Parser)

An opening parenthesis, (, was expected here. This must be the first token after a while, for, if,

do or asm keyword, e.g.:

if a == b /* should be: if(a == b) */

b = 0;

(318) string expected (Parser)

The operand to an asm statement must be a string enclosed in parentheses, e.g.:

asm(nop); /* that should be asm(“nop”);

(319) while expected (Parser)

The keyword while is expected at the end of a do statement, e.g.:

313

Error and Warning Messages

do {

func(i++);

} /* do the block while what condition is true? */

if(i > 5) /* error flagged here */

end();

(320) ":" expected (Parser)

A colon is missing after a case label, or after the keyword default. This often occurs when a

semicolon is accidentally typed instead of a colon, e.g.:

switch(input) {

case 0; /* woops -- that should have been: case 0: */

state = NEW;

(321) label identifier expected (Parser)

An identifier denoting a label must appear after goto, e.g.:

if(a)

goto 20; /* this is not BASIC -- a valid C label must follow a goto */

(322) enum tag or "{" expected (Parser)

After the keyword enum must come either an identifier that is or will be defined as an enum tag, or

an opening brace, e.g.:

enum 1, 2; /* should be, e.g.: enum {one=1, two }; */

(323) struct/union tag or "{" expected (Parser)

An identifier denoting a structure or union or an opening brace must follow a struct or union

keyword, e.g.:

struct int a; /* this is not how you define a structure */

You might mean something like:

struct {

int a;

} my_struct;

314

Error and Warning Messages

(324) too many arguments for printf-style format string (Parser)

There are too many arguments for this format string. This is harmless, but may represent an incorrect

format string, e.g.:

/* woops -- missed a placeholder? */

printf(“%d - %d”, low, high, median);

(325) error in printf-style format string (Parser)

There is an error in the format string here. The string has been interpreted as a printf() style format

string, and it is not syntactically correct. If not corrected, this will cause unexpected behaviour at

run time, e.g.:

printf(“%l”, lll); /* woops -- maybe: printf(“%ld”, lll); */

(326) long int argument required in printf-style format string (Parser)

A long argument is required for this format specifier. Check the number and order of format speci-

fiers and corresponding arguments, e.g.:

printf(“%lx”, 2); /* woops -- maybe you meant: printf(“%lx”, 2L);

(327) long long int argument required in printf-style format string (Parser)

A long long argument is required for this format specifier. Check the number and order of format

specifiers and corresponding arguments, e.g.:

printf(“%llx”, 2); /* woops -- maybe you meant: printf(“%llx”, 2LL);

Note that not all HI-TECH C compilers provide support for a long long integer type.

(328) int argument required in printf-style format string (Parser)

An integral argument is required for this printf-style format specifier. Check the number and order

of format specifiers and corresponding arguments, e.g.:

printf(“%d”, 1.23); /* woops! either wrong number or wrong placeholder */

315

Error and Warning Messages

(329) double argument required in printf-style format string (Parser)

The printf format specifier corresponding to this argument is %f or similar, and requires a floating

point expression. Check for missing or extra format specifiers or arguments to printf.

printf(“%f”, 44); /* should be: printf(“%f”, 44.0); */

(330) pointer to * argument required in printf-style format string (Parser)

A pointer argument is required for this format specifier. Check the number and order of format

specifiers and corresponding arguments.

(331) too few arguments for printf-style format string (Parser)

There are too few arguments for this format string. This would result in a garbage value being printed

or converted at run time, e.g.:

printf(“%d - %d”, low); /* woops! where is the other value to print? */

(332) "interrupt_level" should be 0 to 7 (Parser)

The pragma interrupt_level must have an argument from 0 to 7, e.g.:

#pragma interrupt_level /* woops -- what is the level */

void interrupt isr(void)

{

/* isr code goes here */

}

(333) unrecognized qualifier name after "strings" (Parser)

The pragma strings was passed a qualifier that was not identified, e.g.:

/* woops -- should that be #pragma strings const ? */

#pragma strings cinst

(334) unrecognized qualifier name after "printf_check" (Parser)

The #pragma printf_check was passed a qualifier that could not be identified, e.g.:

/* woops -- should that be const not cinst? */

#pragma printf_check(printf) cinst

316

Error and Warning Messages

(335) unknown pragma "*" (Parser)

An unknown pragma directive was encountered, e.g.:

#pragma rugsused w /* I think you meant regsused */

(336) string concatenation across lines (Parser)

Strings on two lines will be concatenated. Check that this is the desired result, e.g.:

char * cp = “hi”

“there”; /* this is okay, but is it what you had intended? */

(337) line does not have a newline on the end (Parser)

The last line in the file is missing the newline (operating system dependent character) from the end.

Some editors will create such files, which can cause problems for include files. The ANSI C standard

requires all source files to consist of complete lines only.

(338) can’t create * file "*" (Any)

The application tried to create or open the named file, but it could not be created. Check that all file

pathnames are correct.

(339) initializer in extern declaration (Parser)

A declaration containing the keyword extern has an initialiser. This overrides the extern storage

class, since to initialise an object it is necessary to define (i.e. allocate storage for) it, e.g.:

extern int other = 99; /* if it’s extern and not allocated storage,

how can it be initialized? */

(340) string not terminated by null character. (Parser)

A char array is being initialized with a string literal larger than the array. Hence there is insufficient

space in the array to safely append a null terminating character, e.g.:

char foo[5] = “12345”; /* the string stored in foo won’t have a

null terminating, i.e.

foo = [’1’, ’2’, ’3’, ’4’, ’5’] */

317

Error and Warning Messages

(343) implicit return at end of non-void function (Parser)

A function which has been declared to return a value has an execution path that will allow it to reach

the end of the function body, thus returning without a value. Either insert a return statement with a

value, or if the function is not to return a value, declare it void, e.g.:

int mydiv(double a, int b)

{

if(b != 0)

return a/b; /* what about when b is 0? */

} /* warning flagged here */

(344) non-void function returns no value (Parser)

A function that is declared as returning a value has a return statement that does not specify a return

value, e.g.:

int get_value(void)

{

if(flag)

return val++;

return; /* what is the return value in this instance? */

}

(345) unreachable code (Parser)

This section of code will never be executed, because there is no execution path by which it could be

reached, e.g.:

while(1) /* how does this loop finish? */

process();

flag = FINISHED; /* how do we get here? */

(346) declaration of "*" hides outer declaration (Parser)

An object has been declared that has the same name as an outer declaration (i.e. one outside and

preceding the current function or block). This is legal, but can lead to accidental use of one variable

when the outer one was intended, e.g.:

int input; /* input has filescope */

void process(int a)

318

Error and Warning Messages

{

int input; /* local blockscope input */

a = input; /* this will use the local variable. Is this right? */

(347) external declaration inside function (Parser)

A function contains an extern declaration. This is legal but is invariably not desirable as it restricts

the scope of the function declaration to the function body. This means that if the compiler encounters

another declaration, use or definition of the extern object later in the same file, it will no longer have

the earlier declaration and thus will be unable to check that the declarations are consistent. This

can lead to strange behaviour of your program or signature errors at link time. It will also hide any

previous declarations of the same thing, again subverting the compiler’s type checking. As a general

rule, always declare extern variables and functions outside any other functions. For example:

int process(int a)

{

extern int away; /* this would be better outside the function */

return away + a;

}

(348) auto variable "*" should not be qualified (Parser)

An auto variable should not have qualifiers such as near or far associated with it. Its storage class

is implicitly defined by the stack organization. An auto variable may be qualified with static, but

it is then no longer auto.

(349) non-prototyped function declaration for "*" (Parser)

A function has been declared using old-style (K&R) arguments. It is preferable to use prototype

declarations for all functions, e.g.:

int process(input)

int input; /* warning flagged here */

{

}

This would be better written:

int process(int input)

{

}

319

Error and Warning Messages

(350) unused * "*" (from line *) (Parser)

The indicated object was never used in the function or module being compiled. Either this object is

redundant, or the code that was meant to use it was excluded from compilation or misspelt the name

of the object. Note that the symbols rcsid and sccsid are never reported as being unused.

(352) float parameter coerced to double (Parser)

Where a non-prototyped function has a parameter declared as float, the compiler converts this into

a double float. This is because the default C type conversion conventions provide that when a

floating point number is passed to a non-prototyped function, it will be converted to double. It is

important that the function declaration be consistent with this convention, e.g.:

double inc_flt(f) /* the parameter f will be converted to double type */

float f; /* warning flagged here */

{

return f * 2;

}

(353) sizeof external array "*" is zero (Parser)

The size of an external array evaluates to zero. This is probably due to the array not having an

explicit dimension in the extern declaration.

(354) possible pointer truncation (Parser)

A pointer qualified far has been assigned to a default pointer or a pointer qualified near, or a default

pointer has been assigned to a pointer qualified near. This may result in truncation of the pointer and

loss of information, depending on the memory model in use.

(355) implicit signed to unsigned conversion (Parser)

A signed number is being assigned or otherwise converted to a larger unsigned type. Under the

ANSI "value preserving" rules, this will result in the signed value being first sign-extended to a

signed number the size of the target type, then converted to unsigned (which involves no change

in bit pattern). Thus an unexpected sign extension can occur. To ensure this does not happen, first

convert the signed value to an unsigned equivalent, e.g.:

signed char sc;

unsigned int ui;

320

Error and Warning Messages

ui = sc; /* if sc contains 0xff, ui will contain 0xffff for example */

will perform a sign extension of the char variable to the longer type. If you do not want this to take

place, use a cast, e.g.:

ui = (unsigned char)sc;

(356) implicit conversion of float to integer (Parser)

A floating point value has been assigned or otherwise converted to an integral type. This could result

in truncation of the floating point value. A typecast will make this warning go away.

double dd;

int i;

i = dd; /* is this really what you meant? */

If you do intend to use an expression like this, then indicate that this is so by a cast:

i = (int)dd;

(357) illegal conversion of integer to pointer (Parser)

An integer has been assigned to or otherwise converted to a pointer type. This will usually mean you

have used the wrong variable, but if this is genuinely what you want to do, use a typecast to inform

the compiler that you want the conversion and the warning will be suppressed. This may also mean

you have forgotten the & address operator, e.g.:

int * ip;

int i;

ip = i; /* woops -- did you mean ip = &i ? */

If you do intend to use an expression like this, then indicate that this is so by a cast:

ip = (int *)i;

(358) illegal conversion of pointer to integer (Parser)

A pointer has been assigned to or otherwise converted to a integral type. This will usually mean you

have used the wrong variable, but if this is genuinely what you want to do, use a typecast to inform

the compiler that you want the conversion and the warning will be suppressed. This may also mean

you have forgotten the * dereference operator, e.g.:

321

Error and Warning Messages

int * ip;

int i;

i = ip; /* woops -- did you mean i = *ip ? */

If you do intend to use an expression like this, then indicate that this is so by a cast:

i = (int)ip;

(359) illegal conversion between pointer types (Parser)

A pointer of one type (i.e. pointing to a particular kind of object) has been converted into a pointer

of a different type. This will usually mean you have used the wrong variable, but if this is genuinely

what you want to do, use a typecast to inform the compiler that you want the conversion and the

warning will be suppressed, e.g.:

long input;

char * cp;

cp = &input; /* is this correct? */

This is common way of accessing bytes within a multi-byte variable. To indicate that this is the

intended operation of the program, use a cast:

cp = (char *)&input; /* that’s better */

This warning may also occur when converting between pointers to objects which have the same type,

but which have different qualifiers, e.g.:

char * cp;

/* yes, but what sort of characters? */

cp = “I am a string of characters”;

If the default type for string literals is const char *, then this warning is quite valid. This should

be written:

const char * cp;

cp = “I am a string of characters”; /* that’s better */

Omitting a qualifier from a pointer type is often disastrous, but almost certainly not what you intend.

322

Error and Warning Messages

(360) array index out of bounds (Parser)

An array is being indexed with a constant value that is less than zero, or greater than or equal to the

number of elements in the array. This warning will not be issued when accessing an array element

via a pointer variable, e.g.:

int i, * ip, input[10];

i = input[-2]; /* woops -- this element doesn’t exist */

ip = &input[5];

i = ip[-2]; /* this is okay */

(361) function declared implicit int (Parser)

Where the compiler encounters a function call of a function whose name is presently undefined, the

compiler will automatically declare the function to be of type int, with unspecified (K&R style)

parameters. If a definition of the function is subsequently encountered, it is possible that its type

and arguments will be different from the earlier implicit declaration, causing a compiler error. The

solution is to ensure that all functions are defined or at least declared before use, preferably with

prototyped parameters. If it is necessary to make a forward declaration of a function, it should be

preceded with the keywords extern or static as appropriate. For example:

/* I may prevent an error arising from calls below */

void set(long a, int b);

void main(void)

{

set(10L, 6); /* by here a prototype for set should have seen */

}

(362) redundant "&" applied to array (Parser)

The address operator & has been applied to an array. Since using the name of an array gives its

address anyway, this is unnecessary and has been ignored, e.g.:

int array[5];

int * ip;

/* array is a constant, not a variable; the & is redundant. */

ip = &array;

(363) redundant "&" applied to function (Parser)

The address operator "&" has been applied to a function. Since using the name of a function gives

its address anyway, this is unnecessary and has been ignored, e.g.:

323

Error and Warning Messages

extern void foo(void);

void main(void)

{

void(*bar)(void);

/* both assignments are equivalent */

bar = &foo;

bar = foo; /* the & is redundant */

}

(364) attempt to modify object qualified * (Parser)

Objects declared const or code may not be assigned to or modified in any other way by your

program. The effect of attempting to modify such an object is compiler-specific.

const int out = 1234; /* “out” is read only */

out = 0; /* woops -- writing to a read-only object */

(365) pointer to non-static object returned (Parser)

This function returns a pointer to a non-static (e.g. auto) variable. This is likely to be an error,

since the storage associated with automatic variables becomes invalid when the function returns,

e.g.:

char * get_addr(void)

{

char c;

/* returning this is dangerous; the pointer could be dereferenced */

return &c;

}

(366) operands of "*" not same pointer type (Parser)

The operands of this operator are of different pointer types. This probably means you have used

the wrong pointer, but if the code is actually what you intended, use a typecast to suppress the error

message.

(367) identifier is already extern; can’t be static (Parser)

This function was already declared extern, possibly through an implicit declaration. It has now

been redeclared static, but this redeclaration is invalid.

324

Error and Warning Messages

void main(void)

{

/* at this point the compiler assumes set is extern... */

set(10L, 6);

}

static void set(long a, int b) /* now it finds out otherwise */

{

PORTA = a + b;

}

(368) array dimension on "*[]" ignored (Preprocessor)

An array dimension on a function parameter has been ignored because the argument is actually

converted to a pointer when passed. Thus arrays of any size may be passed. Either remove the

dimension from the parameter, or define the parameter using pointer syntax, e.g.:

/* param should be: “int array[]” or “int *” */

int get_first(int array[10])

{ /* warning flagged here */

return array[0];

}

(369) signed bitfields not supported (Parser)

Only unsigned bitfields are supported. If a bitfield is declared to be type int, the compiler still

treats it as unsigned, e.g.:

struct {

signed int sign: 1; /* this must be unsigned */

signed int value: 15;

} ;

(370) illegal basic type; int assumed (Parser)

The basic type of a cast to a qualified basic type couldn’t not be recognised and the basic type was

assumed to be int, e.g.:

/* here ling is assumed to be int */

unsigned char bar = (unsigned ling) ’a’;

325

Error and Warning Messages

(371) missing basic type; int assumed (Parser)

This declaration does not include a basic type, so int has been assumed. This declaration is not

illegal, but it is preferable to include a basic type to make it clear what is intended, e.g.:

char c;

i; /* don’t let the compiler make assumptions, use : int i */

func(); /* ditto, use: extern int func(int); */

(372) "," expected (Parser)

A comma was expected here. This could mean you have left out the comma between two identifiers

in a declaration list. It may also mean that the immediately preceding type name is misspelled, and

has thus been interpreted as an identifier, e.g.:

unsigned char a;

/* thinks: chat & b are unsigned, but where is the comma? */

unsigned chat b;

(373) implicit signed to unsigned conversion (Parser)

An unsigned type was expected where a signed type was given and was implicitly cast to unsigned,

e.g.:

unsigned int foo = -1;

/* the above initialization is implicitly treated as:

unsigned int foo = (unsigned) -1; */

(374) missing basic type; int assumed (Parser)

The basic type of a cast to a qualified basic type was missing and assumed to be int., e.g.:

int foo = (signed) 2; /* here (signed) is assumed to be (signed int) */

(375) unknown FNREC type "*" (Linker)

This is an internal compiler error. Contact HI-TECH Software technical support with details.

326

Error and Warning Messages

(376) bad non-zero node in call graph (Linker)

The linker has encountered a top level node in the call graph that is referenced from lower down in

the call graph. This probably means the program has indirect recursion, which is not allowed when

using a compiled stack.

(378) can’t create * file "*" (Hexmate)

This type of file could not be created. Is the file or a file by this name already in use?

(379) bad record type "*" (Linker)

This is an internal compiler error. Ensure the object file is a valid HI-TECH object file. Contact

HI-TECH Software technical support with details.

(380) unknown record type (*) (Linker)

This is an internal compiler error. Contact HI-TECH Software technical support with details.

(381) record "*" too long (*) (Linker)

This is an internal compiler error. Contact HI-TECH Software technical support with details.

(382) incomplete record: type = *, length = * (Dump, Xstrip)

This message is produced by the DUMP or XSTRIP utilities and indicates that the object file is not

a valid HI-TECH object file, or that it has been truncated. Contact HI-TECH Support with details.

(383) text record has length (*) too small (Linker)

This is an internal compiler error. Contact HI-TECH Software technical support with details.

(384) assertion failed: file *, line *, expression * (Linker, Parser)

This is an internal compiler error. Contact HI-TECH Software technical support with details.

(387) illegal or too many -G options (Linker)

There has been more than one linker -g option, or the -g option did not have any arguments follow-

ing. The arguments specify how the segment addresses are calculated.

327

Error and Warning Messages

(388) duplicate -M option (Linker)

The map file name has been specified to the linker for a second time. This should not occur if you

are using a compiler driver. If invoking the linker manually, ensure that only one instance of this

option is present on the command line. See Section 5.9.9 for information on the correct syntax for

this option.

(389) illegal or too many -O options (Linker)

This linker -o flag is illegal, or another -o option has been encountered. A -o option to the linker

must be immediately followed by a filename with no intervening space.

(390) missing argument to -P (Linker)

There have been too many -p options passed to the linker, or a -p option was not followed by any

arguments. The arguments of separate -p options may be combined and separated by commas.

(391) missing argument to -Q (Linker)

The -Q linker option requires the machine type for an argument.

(392) missing argument to -U (Linker)

The -U (undefine) option needs an argument.

(393) missing argument to -W (Linker)

The -W option (listing width) needs a numeric argument.

(394) duplicate -D or -H option (Linker)

The symbol file name has been specified to the linker for a second time. This should not occur if you

are using a compiler driver. If invoking the linker manually, ensure that only one instance of either

of these options is present on the command line.

(395) missing argument to -J (Linker)

The maximum number of errors before aborting must be specified following the -j linker option.

328

Error and Warning Messages

(397) usage: hlink [-options] files.obj files.lib (Linker)

Improper usage of the command-line linker. If you are invoking the linker directly then please refer

to Section 5.9 for more details. Otherwise this may be an internal compiler error and you should

contact HI-TECH Software technical support with details.

(398) output file can’t be also an input file (Linker)

The linker has detected an attempt to write its output file over one of its input files. This cannot be

done, because it needs to simultaneously read and write input and output files.

(400) bad object code format (Linker)

This is an internal compiler error. The object code format of an object file is invalid. Ensure it is a

valid HI-TECH object file. Contact HI-TECH Software technical support with details.

(402) bad argument to -F (Objtohex)

The -F option for objtohex has been supplied an invalid argument. If you are invoking this

command-line tool directly then please refer to Section 5.13 for more details. Otherwise this may be

an internal compiler error and you should contact HI-TECH Software technical support with details.

(403) bad -E option: "*" (Objtohex)

This is an internal compiler error. Contact HI-TECH Software technical support with details.

(404) bad maximum length value to -<digits> (Objtohex)

The first value to the OBJTOHEX -n,m hex length/rounding option is invalid.

(405) bad record size rounding value to -<digits> (Objtohex)

The second value to the OBJTOHEX -n,m hex length/rounding option is invalid.

(406) bad argument to -A (Objtohex)

This is an internal compiler error. Contact HI-TECH Software technical support with details.

(407) bad argument to -U (Objtohex)

This is an internal compiler error. Contact HI-TECH Software technical support with details.

329

Error and Warning Messages

(408) bad argument to -B (Objtohex)

This option requires an integer argument in either base 8, 10 or 16. If you are invoking objtohex

directly then see Section 5.13 for more details. Otherwise this may be an internal compiler error and

you should contact HI-TECH Software technical support with details.

(409) bad argument to -P (Objtohex)

This option requires an integer argument in either base 8, 10 or 16. If you are invoking objtohex

directly then see Section 5.13 for more details. Otherwise this may be an internal compiler error and

you should contact HI-TECH Software technical support with details.

(410) bad combination of options (Objtohex)

The combination of options supplied to OBJTOHEX is invalid.

(412) text does not start at 0 (Objtohex)

Code in some things must start at zero. Here it doesn’t.

(413) write error on "*" (Assembler, Linker, Cromwell)

A write error occurred on the named file. This probably means you have run out of disk space.

(414) read error on "*" (Linker)

The linker encountered an error trying to read this file.

(415) text offset too low in COFF file (Objtohex)

This is an internal compiler error. Contact HI-TECH Software technical support with details.

(416) bad character (*) in extended TEKHEX line (Objtohex)

This is an internal compiler error. Contact HI-TECH Software technical support with details.

(417) seek error in "*" (Linker)

This is an internal compiler error. Contact HI-TECH Software technical support with details.

330

Error and Warning Messages

(418) image too big (Objtohex)

This is an internal compiler error. Contact HI-TECH Software technical support with details.

(419) object file is not absolute (Objtohex)

The object file passed to OBJTOHEX has relocation items in it. This may indicate it is the wrong object

file, or that the linker or OBJTOHEX have been given invalid options. The object output files from

the assembler are relocatable, not absolute. The object file output of the linker is absolute.

(420) too many relocation items (Objtohex)

This is an internal compiler error. Contact HI-TECH Software technical support with details.

(421) too many segments (Objtohex)

This is an internal compiler error. Contact HI-TECH Software technical support with details.

(422) no end record (Linker)

This object file has no end record. This probably means it is not an object file. Contact HI-TECH

Support if the object file was generated by the compiler.

(423) illegal record type (Linker)

There is an error in an object file. This is either an invalid object file, or an internal error in the linker.

Contact HI-TECH Support with details if the object file was created by the compiler.

(424) record too long (Objtohex)

This is an internal compiler error. Contact HI-TECH Software technical support with details.

(425) incomplete record (Objtohex, Libr)

The object file passed to OBJTOHEX or the librarian is corrupted. Contact HI-TECH Support with

details.

(427) syntax error in checksum list (Objtohex)

There is a syntax error in a checksum list read by OBJTOHEX. The checksum list is read from

standard input in response to an option.

331

Error and Warning Messages

(428) too many segment fixups (Objtohex)

This is an internal compiler error. Contact HI-TECH Software technical support with details.

(429) bad segment fixups (Objtohex)

This is an internal compiler error. Contact HI-TECH Software technical support with details.

(430) bad checksum specification (Objtohex)

A checksum list supplied to OBJTOHEX is syntactically incorrect.

(431) bad argument to -E (Objtoexe)

This option requires an integer argument in either base 8, 10 or 16. If you are invoking objtoexe

directly then check this argument. Otherwise this may be an internal compiler error and you should

contact HI-TECH Software technical support with details.

(432) usage: objtohex [-ssymfile] [object-file [exe-file]] (Objtohex)

Improper usage of the command-line tool objtohex. If you are invoking objtohex directly then

please refer to Section 5.13 for more details. Otherwise this may be an internal compiler error and

you should contact HI-TECH Software technical support with details.

(434) too many symbols (*) (Linker)

There are too many symbols in the symbol table, which has a limit of * symbols. Change some

global symbols to local symbols to reduce the number of symbols.

(435) bad segment selector "*" (Linker)

The segment specification option (-G) to the linker is invalid, e.g.:

-GA/f0+10

Did you forget the radix?

-GA/f0h+10

(436) psect "*" re-orged (Linker)

This psect has had its start address specified more than once.

332

Error and Warning Messages

(437) missing "=" in class spec (Linker)

A class spec needs an = sign, e.g. -Ctext=ROM See Section 5.9.9 for more information.

(438) bad size in -S option (Linker)

The address given in a -S specification is invalid: it should be a valid number, in decimal, octal or

hexadecimal radix. The radix is specified by a trailing O, for octal, or H for hex. A leading 0x may

also be used for hexadecimal. Case in not important for any number or radix. Decimal is the default,

e.g.:

-SCODE=f000

Did you forget the radix?

-SCODE=f000h

(439) bad -D spec: "*" (Linker)

The format of a -D specification, giving a delta value to a class, is invalid, e.g.:

-DCODE

What is the delta value for this class? Maybe you meant something like:

-DCODE=2

(440) bad delta value in -D spec (Linker)

The delta value supplied to a -D specification is invalid. This value should an integer of base 8, 10

or 16.

(441) bad -A spec: "*" (Linker)

The format of a -A specification, giving address ranges to the linker, is invalid, e.g.:

-ACODE

What is the range for this class? Maybe you meant:

-ACODE=0h-1fffh

333

Error and Warning Messages

(442) missing address in -A spec (Linker)

The format of a -A specification, giving address ranges to the linker, is invalid, e.g.:

-ACODE=

What is the range for this class? Maybe you meant:

-ACODE=0h-1fffh

(443) bad low address "*" in -A spec (Linker)

The low address given in a -A specification is invalid: it should be a valid number, in decimal, octal

or hexadecimal radix. The radix is specified by a trailing O (for octal) or H for hex. A leading

0x may also be used for hexadecimal. Case in not important for any number or radix. Decimal is

default, e.g.:

-ACODE=1fff-3fffh

Did you forget the radix?

-ACODE=1fffh-3fffh

(444) expected "-" in -A spec (Linker)

There should be a minus sign, -, between the high and low addresses in a -A linker option, e.g.

-AROM=1000h

maybe you meant:

-AROM=1000h-1fffh

(445) bad high address "*" in -A spec (Linker)

The high address given in a -A specification is invalid: it should be a valid number, in decimal, octal

or hexadecimal radix. The radix is specified by a trailing O, for octal, or H for hex. A leading 0x may

also be used for hexadecimal. Case in not important for any number or radix. Decimal is the default,

e.g.:

-ACODE=0h-ffff

Did you forget the radix?

-ACODE=0h-ffffh

See Section 5.9.20 for more information.

334

Error and Warning Messages

(446) bad overrun address "*" in -A spec (Linker)

The overrun address given in a -A specification is invalid: it should be a valid number, in decimal,

octal or hexadecimal radix. The radix is specified by a trailing O (for octal) or H for hex. A leading

0x may also be used for hexadecimal. Case in not important for any number or radix. Decimal is

default, e.g.:

-AENTRY=0-0FFh-1FF

Did you forget the radix?

-AENTRY=0-0FFh-1FFh

(447) bad load address "*" in -A spec (Linker)

The load address given in a -A specification is invalid: it should be a valid number, in decimal, octal

or hexadecimal radix. The radix is specified by a trailing O (for octal) or H for hex. A leading 0x may

also be used for hexadecimal. Case in not important for any number or radix. Decimal is default,

e.g.:

-ACODE=0h-3fffh/a000

Did you forget the radix?

-ACODE=0h-3fffh/a000h

(448) bad repeat count "*" in -A spec (Linker)

The repeat count given in a -A specification is invalid, e.g.:

-AENTRY=0-0FFhxf

Did you forget the radix?

-AENTRY=0-0FFhxfh

(449) syntax error in -A spec: * (Linker)

The -A spec is invalid. A valid -A spec should be something like:

-AROM=1000h-1FFFh

335

Error and Warning Messages

(450) psect "*" was never defined (Linker, Optimiser)

This psect has been listed in a -P option, but is not defined in any module within the program.

(451) bad psect origin format in -P option (Linker)

The origin format in a -p option is not a validly formed decimal, octal or hex number, nor is it the

name of an existing psect. A hex number must have a trailing H, e.g.:

-pbss=f000

Did you forget the radix?

-pbss=f000h

(452) bad "+" (minimum address) format in -P option (Linker)

The minimum address specification in the linker’s -p option is badly formatted, e.g.:

-pbss=data+f000

Did you forget the radix?

-pbss=data+f000h

(453) missing number after "%" in -P option (Linker)

The % operator in a -p option (for rounding boundaries) must have a number after it.

(454) link and load address can’t both be set to "." in -P option (Linker)

The link and load address of a psect have both been specified with a dot character. Only one of these

addresses may be specified in this manner, e.g.:

-Pmypsect=1000h/.

-Pmypsect=./1000h

Both of these options are valid and equivalent, however the following usage is ambiguous:

-Pmypsect=./.

What is the link or load address of this psect?

336

Error and Warning Messages

(455) psect "*" not relocated on 0x* byte boundary (Linker)

This psect is not relocated on the required boundary. Check the relocatability of the psect and correct

the -p option. if necessary.

(456) psect "*" not loaded on 0x* boundary (Linker)

This psect has a relocatability requirement that is not met by the load address given in a -p option.

For example if a psect must be on a 4K byte boundary, you could not start it at 100H.

(461) can’t create * file "*" (Assembler, Code Generator)

This is an internal compiler error. Contact HI-TECH Software technical support with details.

(464) missing key in avmap file (Linker)

This is an internal compiler error. Contact HI-TECH Software technical support with details.

(465) undefined symbol "*" in FNBREAK record (Linker)

The linker has found an undefined symbol in the FNBREAK record for a non-reentrant function. Con-

tact HI-TECH Support if this is not handwritten assembler code.

(466) undefined symbol "*" in FNINDIR record (Linker)

The linker has found an undefined symbol in the FNINDIR record for a non-reentrant function. Con-

tact HI-TECH Support if this is not handwritten assembler code.

(467) undefined symbol "*" in FNADDR record (Linker)

The linker has found an undefined symbol in the FNADDR record for a non-reentrant function.

Contact HI-TECH Support if this is not handwritten assembler code.

(468) undefined symbol "*" in FNCALL record (Linker)

The linker has found an undefined symbol in the FNCALL record for a non-reentrant function. Contact

HI-TECH Support if this is not handwritten assembler code.

(469) undefined symbol "*" in FNROOT record (Linker)

The linker has found an undefined symbol in the FNROOT record for a non-reentrant function. Contact

HI-TECH Support if this is not handwritten assembler code.

337

Error and Warning Messages

(470) undefined symbol "*" in FNSIZE record (Linker)

The linker has found an undefined symbol in the FNSIZE record for a non-reentrant function. Contact

HI-TECH Support if this is not handwritten assembler code.

(471) recursive function calls: (Linker)

These functions (or function) call each other recursively. One or more of these functions has stat-

ically allocated local variables (compiled stack). Either use the reentrant keyword (if supported

with this compiler) or recode to avoid recursion, e.g.:

int test(int a)

{

if(a == 5) {

/* recursion may not be supported by some compilers */

return test(a++);

}

return 0;

}

(472) non-reentrant function "*" appears in multiple call graphs: rooted at "*" and "*"

(Linker)

This function can be called from both main-line code and interrupt code. Use the reentrant key-

word, if this compiler supports it, or recode to avoid using local variables or parameters, or duplicate

the function, e.g.:

void interrupt my_isr(void)

{

scan(6); /* scan is called from an interrupt function */

}

void process(int a)

{

scan(a); /* scan is also called from main-line code */

}

(473) function "*" is not called from specified interrupt_level (Linker)

The indicated function is never called from an interrupt function of the same interrupt level, e.g.:

338

Error and Warning Messages

#pragma interrupt_level 1

void foo(void)

{

...

}

#pragma interrupt_level 1

void interrupt bar(void)

{

// this function never calls foo()

}

(474) no psect specified for function variable/argument allocation (Linker)

The FNCONF assembler directive which specifies to the linker information regarding the auto/parameter

block was never seen. This is supplied in the standard runtime files if necessary. This error may im-

ply that the correct run-time startup module was not linked. Ensure you have used the FNCONF

directive if the runtime startup module is hand-written.

(475) conflicting FNCONF records (Linker)

The linker has seen two conflicting FNCONF directives. This directive should only be specified once

and is included in the standard runtime startup code which is normally linked into every program.

(476) fixup overflow referencing * * (location 0x* (0x*+*), size *, value 0x*) (Linker)

The linker was asked to relocate (fixup) an item that would not fit back into the space after relocation.

See the following error message (477) for more information..

(477) fixup overflow in expression (location 0x* (0x*+*), size *, value 0x*) (Linker)

Fixup is the process conducted by the linker of replacing symbolic references to variables etc, in an

assembler instruction with an absolute value. This takes place after positioning the psects (program

sections or blocks) into the available memory on the target device. Fixup overflow is when the

value determined for a symbol is too large to fit within the allocated space within the assembler

instruction. For example, if an assembler instruction has an 8-bit field to hold an address and the

linker determines that the symbol that has been used to represent this address has the value 0x110,

then clearly this value cannot be inserted into the instruction.

The causes for this can be many, but hand-written assembler code is always the first suspect.

Badly written C code can also generate assembler that ultimately generates fixup overflow errors.

Consider the following error message.

339

Error and Warning Messages

main.obj: 8: Fixup overflow in expression (loc 0x1FD (0x1FC+1), size 1,

value 0x7FC)

This indicates that the file causing the problem was main.obj. This would be typically be the output

of compiling main.c or main.as. This tells you the file in which you should be looking. The next

number (8 in this example) is the record number in the object file that was causing the problem. If

you use the DUMP utility to examine the object file, you can identify the record, however you do not

normally need to do this.

The location (loc) of the instruction (0x1FD), the size (in bytes) of the field in the instruction

for the value (1) , and the value which is the actual value the symbol represents, is typically the only

information needed to track down the cause of this error. Note that a size which is not a multiple of

8 bits will be rounded up to the nearest byte size, i.e. a 7 bit space in an instruction will be shown as

1 byte.

Generate an assembler list file for the appropriate module. Look for the address specified in the

error message.

7 07FC 0E21 movlw 33

8 07FD 6FFC movwf _foo

9 07FE 0012 return

and to confirm, look for the symbol referenced in the assembler instruction at this address in the

symbol table at the bottom of the same file.

Symbol Table Fri Aug 12 13:17:37 2004

_foo 01FC _main 07FF

In this example, the instruction causing the problem takes an 8-bit offset into a bank of memory, but

clearly the address 0x1FC exceeds this size. Maybe the instruction should have been written as:

movwf (_foo&0ffh)

which masks out the top bits of the address containing the bank information.

If the assembler instruction that caused this error was generated by the compiler, in the assem-

bler list file look back up the file from the instruction at fault to determine which C statement has

generated this instruction. You will then need to examine the C code for possible errors. incorrectly

qualified pointers are an common trigger.

(478) * range check failed (location 0x* (0x*+*), value 0x* > limit 0x*) (Linker)

This is an internal compiler error. Contact HI-TECH Software technical support with details.

340

Error and Warning Messages

(479) circular indirect definition of symbol "*" (Linker)

The specified symbol has been equated to an external symbol which, in turn, has been equated to the

first symbol.

(480) function signatures do not match: * (*): 0x*/0x* (Linker)

The specified function has different signatures in different modules. This means it has been declared

differently, e.g. it may have been prototyped in one module and not another. Check what declarations

for the function are visible in the two modules specified and make sure they are compatible, e.g.:

extern int get_value(int in);

/* and in another module: */

/* this is different to the declaration */

int get_value(int in, char type)

{

(481) common symbol "*" psect conflict (Linker)

A common symbol has been defined to be in more than one psect.

(482) symbol "*" multiply defined in "*" (Assembler)

This symbol has been defined in more than one place. The assembler will issue this error if a symbol

is defined more than once in the same module, e.g.:

_next:

move r0, #55

move [r1], r0

_next: ; woops -- choose a different name

The linker will issue this warning if the symbol (C or assembler) was defined multiple times in

different modules. The names of the modules are given in the error message. Note that C identifiers

often have an underscore prepended to their name after compilation.

(483) symbol "*" can’t be global (Linker)

This is an internal compiler error. Contact HI-TECH Software technical support with details.

341

Error and Warning Messages

(484) psect "*" can’t be in classes "*" and "*" (Linker)

A psect cannot be in more than one class. This is either due to assembler modules with conflicting

class= options to the PSECT directive, or use of the -C option to the linker, e.g.:

psect final,class=CODE

finish:

/* elsewhere: */

psect final,class=ENTRY

(485) unknown "with" psect referenced by psect "*" (Linker)

The specified psect has been placed with a psect using the psect with flag. The psect it has been

placed with does not exist, e.g.:

psect starttext,class=CODE,with=rext ; was that meant to be with text?

(486) psect "*" selector value redefined (Linker)

The selector value for this psect has been defined more than once.

(487) psect "*" type redefined: */* (Linker)

This psect has had its type defined differently by different modules. This probably means you are

trying to link incompatible object modules, e.g. linking 386 flat model code with 8086 real mode

code.

(488) psect "*" memory space redefined: */* (Linker)

A global psect has been defined in two different memory spaces. Either rename one of the psects or,

if they are the same psect, place them in the same memory space using the space psect flag, e.g.:

psect spdata,class=RAM,space=0

ds 6

; elsewhere:

psect spdata,class=RAM,space=1

342

Error and Warning Messages

(489) psect "*" memory delta redefined: */* (Linker)

A global psect has been defined with two different delta values, e.g.:

psect final,class=CODE,delta=2

finish:

; elsewhere:

psect final,class=CODE,delta=1

(490) class "*" memory space redefined: */* (Linker)

A class has been defined in two different memory spaces. Either rename one of the classes or, if they

are the same class, place them in the same memory space.

(491) can’t find 0x* words for psect "*" in segment "*" (Linker)

One of the main tasks the linker performs is positioning the blocks (or psects) of code and data that

is generated from the program into the memory available for the target device. This error indicates

that the linker was unable to find an area of free memory large enough to accommodate one of the

psects. The error message indicates the name of the psect that the linker was attempting to position

and the segment name which is typically the name of a class which is defined with a linker -A option.

Section 3.9.1 lists each compiler-generated psect and what it contains. Typically psect names

which are, or include, text relate to program code. Names such as bss or data refer to variable

blocks. This error can be due to two reasons.

First, the size of the program or the program’s data has exceeded the total amount of space on

the selected device. In other words, some part of your device’s memory has completely filled. If this

is the case, then the size of the specified psect must be reduced.

The second cause of this message is when the total amount of memory needed by the psect being

positioned is sufficient, but that this memory is fragmented in such a way that the largest contiguous

block is too small to accommodate the psect. The linker is unable to split psects in this situation.

That is, the linker cannot place part of a psect at one location and part somewhere else. Thus, the

linker must be able to find a contiguous block of memory large enough for every psect. If this is the

cause of the error, then the psect must be split into smaller psects if possible.

To find out what memory is still available, generate and look in the map file, see Section 2.4.8 for

information on how to generate a map file. Search for the string UNUSED ADDRESS RANGES. Under

this heading, look for the name of the segment specified in the error message. If the name is not

present, then all the memory available for this psect has been allocated. If it is present, there will be

one address range specified under this segment for each free block of memory. Determine the size

of each block and compare this with the number of words specified in the error message.

343

Error and Warning Messages

Psects containing code can be reduced by using all the compiler’s optimizations, or restructuring

the program. If a code psect must be split into two or more small psects, this requires splitting a

function into two or more smaller functions (which may call each other). These functions may need

to be placed in new modules.

Psects containing data may be reduced when invoking the compiler optimizations, but the effect

is less dramatic. The program may need to be rewritten so that it needs less variables. Section

5.11.1 has information on interpreting the map file’s call graph if the compiler you are using uses

a compiled stack. (If the string Call graph: is not present in the map file, then the compiled

code uses a hardware stack.) If a data psect needs to be split into smaller psects, the definitions

for variables will need to be moved to new modules or more evenly spread in the existing modules.

Memory allocation for auto variables is entirely handled by the compiler. Other than reducing the

number of these variables used, the programmer has little control over their operation. This applies

whether the compiled code uses a hardware or compiled stack.

For example, after receiving the message:

Can’t find 0x34 words (0x34 withtotal) for psect text in segment CODE

(error)

look in the map file for the ranges of unused memory.

UNUSED ADDRESS RANGES

CODE 00000244-0000025F

00001000-0000102f

RAM 00300014-00301FFB

In the CODE segment, there is 0x1c (0x25f-0x244+1) bytes of space available in one block and 0x30

available in another block. Neither of these are large enough to accommodate the psect text which

is 0x34 bytes long. Notice, however, that the total amount of memory available is larger than 0x34

bytes.

(492) attempt to position absolute psect "*" is illegal (Linker)

This psect is absolute and should not have an address specified in a -P option. Either remove the

abs psect flag, or remove the -P linker option.

(493) origin of psect "*" multiply defined (Linker)

The origin of this psect is defined more than once. There is most likely more than one -p linker

option specifying this psect.

344

Error and Warning Messages

(494) bad -P format "*/*" (Linker)

The -P option given to the linker is malformed. This option specifies placement of a psect, e.g.:

-Ptext=10g0h

Maybe you meant:

-Ptext=10f0h

(497) psect "*" exceeds max size: *h > *h (Linker)

The psect has more bytes in it than the maximum allowed as specified using the size psect flag.

(498) psect "*" exceeds address limit: *h > *h (Linker)

The maximum address of the psect exceeds the limit placed on it using the limit psect flag. Either

the psect needs to be linked at a different location or there is too much code/data in the psect.

(499) undefined symbol: (Assembler, Linker)

The symbol following is undefined at link time. This could be due to spelling error, or failure to link

an appropriate module.

(500) undefined symbols: (Linker)

A list of symbols follows that were undefined at link time. These errors could be due to spelling

error, or failure to link an appropriate module.

(501) program entry point multiply defined (Linker)

There is more than one entry point defined in the object files given the linker. End entry point is

specified after the END directive. The runtime startup code defines the entry point, e.g.:

powerup:

goto start

END powerup ; end of file and define entry point

; other files that use END should not define another entry point

(502) incomplete * record body: length = * (Linker)

An object file contained a record with an illegal size. This probably means the file is truncated or

not an object file. Contact HI-TECH Support with details.

345

Error and Warning Messages

(503) ident records do not match (Linker)

The object files passed to the linker do not have matching ident records. This means they are for

different processor types.

(504) object code version is greater than *.* (Linker)

The object code version of an object module is higher than the highest version the linker is known

to work with. Check that you are using the correct linker. Contact HI-TECH Support if the object

file if you have not patched the linker.

(505) no end record found in object file (Linker)

An object file did not contain an end record. This probably means the file is corrupted or not an

object file. Contact HI-TECH Support if the object file was generated by the compiler.

(506) object file record too long: *+* (Linker)

This is an internal compiler error. Contact HI-TECH Software technical support with details.

(507) unexpected end of file in object file (Linker)

This is an internal compiler error. Contact HI-TECH Software technical support with details.

(508) relocation offset (*) out of range 0..*-*-1 (Linker)

This is an internal compiler error. Contact HI-TECH Software technical support with details.

(509) illegal relocation size: * (Linker)

There is an error in the object code format read by the linker. This either means you are using

a linker that is out of date, or that there is an internal error in the assembler or linker. Contact

HI-TECH Support with details if the object file was created by the compiler.

(510) complex relocation not supported for -R or -L options (Linker)

The linker was given a -R or -L option with file that contain complex relocation.

(511) bad complex range check (Linker)

This is an internal compiler error. Contact HI-TECH Software technical support with details.

346

Error and Warning Messages

(512) unknown complex operator 0x* (Linker)

This is an internal compiler error. Contact HI-TECH Software technical support with details.

(513) bad complex relocation (Linker)

The linker has been asked to perform complex relocation that is not syntactically correct. Probably

means an object file is corrupted.

(514) illegal relocation type: * (Linker)

An object file contained a relocation record with an illegal relocation type. This probably means the

file is corrupted or not an object file. Contact HI-TECH Support with details if the object file was

created by the compiler.

(515) unknown symbol type * (Linker)

This is an internal compiler error. Contact HI-TECH Software technical support with details.

(516) text record has bad length: *-*-(*+1) < 0 (Linker)

This is an internal compiler error. Contact HI-TECH Software technical support with details.

(520) function "*" is never called (Linker)

This function is never called. This may not represent a problem, but space could be saved by remov-

ing it. If you believe this function should be called, check your source code. Some assembler library

routines are never called, although they are actually execute. In this case, the routines are linked in

a special sequence so that program execution falls through from one routine to the next.

(521) call depth exceeded by function "*" (Linker)

The call graph shows that functions are nested to a depth greater than specified.

(522) library "*" is badly ordered (Linker)

This library is badly ordered. It will still link correctly, but it will link faster if better ordered.

(523) argument to -W option (*) illegal and ignored (Linker)

The argument to the linker option -w is out of range. This option controls two features. For warning

levels, the range is -9 to 9. For the map file width, the range is greater than or equal to 10.

347

Error and Warning Messages

(524) unable to open list file "*": * (Linker)

The named list file could not be opened. The linker would be trying to fixup the list file so that it will

contain absolute addresses. Ensure that an assembler list file was generated during the compilation

stage. Alternatively, remove the assembler list file generation option from the link step.

(525) too many address (memory) spaces; space (*) ignored (Linker)

The limit to the number of address spaces (specified with the PSECT assembler directive) is currently

16.

(526) psect "*" not specified in -P option (first appears in "*") (Linker)

This psect was not specified in a -P or -A option to the linker. It has been linked at the end of the

program, which is probably not where you wanted it.

(528) no start record; entry point defaults to zero (Linker)

None of the object files passed to the linker contained a start record. The start address of the program

has been set to zero. This may be harmless, but it is recommended that you define a start address in

your startup module by using the END directive.

(529) usage: objtohex [-Ssymfile] [object-file [hex-file]] (Objtohex)

Improper usage of the command-line tool objtohex. If you are invoking objtohex directly then

please refer to Section 5.13 for more details. Otherwise this may be an internal compiler error and

you should contact HI-TECH Software technical support with details.

(593) can’t find 0x* words (0x* withtotal) for psect "*" in segment "*" (Linker)

See error (491) on page 343.

(594) undefined symbol: (Linker)

The symbol following is undefined at link time. This could be due to spelling error, or failure to link

an appropriate module.

(595) undefined symbols: (Linker)

A list of symbols follows that were undefined at link time. These errors could be due to spelling

error, or failure to link an appropriate module.

348

Error and Warning Messages

(596) segment "*" (*-*) overlaps segment "*" (*-*) (Linker)

The named segments have overlapping code or data. Check the addresses being assigned by the -P

linker option.

(599) No psect classes given for COFF write (Cromwell)

Cromwell requires that the program memory psect classes be specified to produce a COFF file.

Ensure that you are using the -N option as per Section 5.15.2.

(600) No chip arch given for COFF write (Cromwell)

Cromwell requires that the chip architecture be specified to produce a COFF file. Ensure that you

are using the -P option as per Section 5.15.1.

(601) Unknown chip arch "*" for COFF write (Cromwell)

The chip architecture specified for producing a COFF file isn’t recognised by Cromwell. Ensure that

you are using the -P option as per Section 5.15.1 and that the architecture specified matches one of

those in Table 5.8.

(602) null file format name (Cromwell)

The -I or -O option to Cromwell must specify a file format.

(603) ambiguous file format name "*" (Cromwell)

The input or output format specified to Cromwell is ambiguous. These formats are specified with

the -ikey and -okey options respectively.

(604) unknown file format name "*" (Cromwell)

The output format specified to CROMWELL is unknown, e.g.:

cromwell -m -P16F877 main.hex main.sym -ocot

and output file type of cot, did you mean cof?

(605) did not recognize format of input file (Cromwell)

The input file to Cromwell is required to be COD, Intel HEX, Motorola HEX, COFF, OMF51, P&E

or HI-TECH.

349

Error and Warning Messages

(606) inconsistent symbol tables (Cromwell)

This is an internal compiler error. Contact HI-TECH Software technical support with details.

(607) inconsistent line number tables (Cromwell)

This is an internal compiler error. Contact HI-TECH Software technical support with details.

(608) bad path specification (Cromwell)

This is an internal compiler error. Contact HI-TECH Software technical support with details.

(609) missing processor spec after -P (Cromwell)

The -p option to cromwell must specify a processor name.

(610) missing psect classes after -N (Cromwell)

Cromwell requires that the -N option be given a list of the names of psect classes.

(611) too many input files (Cromwell)

To many input files have been specified to be converted by CROMWELL.

(612) too many output files (Cromwell)

To many output file formats have been specified to CROMWELL.

(613) no output file format specified (Cromwell)

The output format must be specified to CROMWELL.

(614) no input files specified (Cromwell)

CROMWELL must have an input file to convert.

(616) option -C is illegal with options -R or -L (Linker)

The linker option -Cbaseaddr cannot be used in conjunction with either the -R or -L linker options.

350

Error and Warning Messages

(618) error reading COD file data (Cromwell)

An error occurred reading the input COD file. Confirm the spelling and path of the file specified on

the command line.

(619) I/O error reading symbol table (Cromwell)

The COD file has an invalid format in the specified record.

(620) filename index out of range in line number record (Cromwell)

The COD file has an invalid value in the specified record.

(621) error writing ELF/DWARF section "*" on "*" (Cromwell)

An error occurred writing the indicated section to the given file. Confirm the spelling and path of

the file specified on the command line.

(622) too many type entries (Cromwell)

This is an internal compiler error. Contact HI-TECH Software technical support with details.

(623) bad class in type hashing (Cromwell)

This is an internal compiler error. Contact HI-TECH Software technical support with details.

(624) bad class in type compare (Cromwell)

This is an internal compiler error. Contact HI-TECH Software technical support with details.

(625) too many files in COFF file (Cromwell)

This is an internal compiler error. Contact HI-TECH Software technical support with details.

(626) string lookup failed in COFF: get_string() (Cromwell)

This is an internal compiler error. Contact HI-TECH Software technical support with details.

(627) missing "*" in SDB file "*" line * column * (Cromwell)

This is an internal compiler error. Contact HI-TECH Software technical support with details.

351

Error and Warning Messages

(629) bad storage class "*" in SDB file "*" line * column * (Cromwell)

This is an internal compiler error. Contact HI-TECH Software technical support with details.

(630) invalid syntax for prefix list in SDB file "*" (Cromwell)

This is an internal compiler error. Contact HI-TECH Software technical support with details.

(631) syntax error at token "*" in SDB file "*" line * column * (Cromwell)

This is an internal compiler error. Contact HI-TECH Software technical support with details.

(632) can’t handle address size (*) (Cromwell)

This is an internal compiler error. Contact HI-TECH Software technical support with details.

(633) unknown symbol class (*) (Cromwell)

Cromwell has encountered a symbol class in the symbol table of a COFF, Microchip COFF, or

ICOFF file which it can’t identify.

(634) error dumping "*" (Cromwell)

Either the input file to CROMWELL is of an unsupported type or that file cannot be dumped to the

screen.

(635) invalid HEX file "*" on line * (Cromwell)

The specified HEX file contains an invalid line. Contact HI-TECH Support if the HEX file was

generated by the compiler.

(636) checksum error in Intel HEX file "*" on line * (Cromwell, Hexmate)

A checksum error was found at the specified line in the specified Intel hex file. The HEX file may

be corrupt.

(637) unknown prefix "*" in SDB file "*" (Cromwell)

This is an internal compiler warning. Contact HI-TECH Software technical support with details.

352

Error and Warning Messages

(638) version mismatch: 0x* expected (Cromwell)

The input Microchip COFF file wasn’t produced using Cromwell.

(639) zero bit width in Microchip optional header (Cromwell)

The optional header in the input Microchip COFF file indicates that the program or data memory

spaces are zero bits wide.

(668) prefix list did not match any SDB types (Cromwell)

This is an internal compiler error. Contact HI-TECH Software technical support with details.

(669) prefix list matched more than one SDB type (Cromwell)

This is an internal compiler error. Contact HI-TECH Software technical support with details.

(673) missing filename after * option (Objtohex)

The indicated option requires a valid file name. Ensure that the filename argument supplied to this

option exists and is spelt correctly.

(674) too many references to "*" (Cref)

This is an internal compiler error. Contact HI-TECH Software technical support with details.

(677) set_fact_bit on pic17! (Code Generator)

This is an internal compiler error. Contact HI-TECH Software technical support with details.

(678) case 55 on pic17! (Code Generator)

This is an internal compiler error. Contact HI-TECH Software technical support with details.

(679) unknown extraspecial: * (Code Generator)

This is an internal compiler error. Contact HI-TECH Software technical support with details.

(680) bad format for -P option (Code Generator)

This is an internal compiler error. Contact HI-TECH Software technical support with details.

353

Error and Warning Messages

(681) bad common spec in -P option (Code Generator)

This is an internal compiler error. Contact HI-TECH Software technical support with details.

(685) bad putwsize() (Code Generator)

This is an internal compiler error. Contact HI-TECH Software technical support with details.

(686) bad switch size (*) (Code Generator)

This is an internal compiler error. Contact HI-TECH Software technical support with details.

(687) bad pushreg "*" (Code Generator)

This is an internal compiler error. Contact HI-TECH Software technical support with details. See

Section 5.9.2 for more information.

(688) bad popreg "*" (Code Generator)

This is an internal compiler error. Contact HI-TECH Software technical support with details.

(689) unknown predicate "*" (Code Generator)

This is an internal compiler error. Contact HI-TECH Software technical support with details.

(690) interrupt function requires address (Code Generator)

The Highend PIC devices support multiple interrupts. An @ address is required with the interrupt

definition to indicate with which vector this routine is associated, e.g.:

void interrupt isr(void) @ 0x10

{

/* isr code goes here */

}

This construct is not required for midrange PIC devices.

(691) interrupt functions not implemented for 12 bit PIC (Code Generator)

The 12-bit range of PIC processors do not support interrupts.

354

Error and Warning Messages

(692) interrupt function "*" may only have one interrupt level (Code Generator)

Only one interrupt level may be associated with an interrupt function. Check to ensure that only

one interrupt_level pragma has been used with the function specified. This pragma may be used

more than once on main-line functions that are called from interrupt functions. For example:

#pragma interrupt_level 0

#pragma interrupt_level 1 /* which is it to be: 0 or 1? */

void interrupt isr(void)

{

(693) interrupt level may only be 0 (default) or 1 (Code Generator)

The only possible interrupt levels are 0 or 1. Check to ensure that all interrupt_level pragmas

use these levels.

#pragma interrupt_level 2 /* woops -- only 0 or 1 */

void interrupt isr(void)

{

/* isr code goes here */

}

(694) no interrupt strategy available (Code Generator)

The processor does not support saving and subsequent restoring of registers during an interrupt

service routine.

(695) duplicate case label (*) (Code Generator)

There are two case labels with the same value in this switch statement, e.g.:

switch(in) {

case ’0’: /* if this is case ’0’... */

b++;

break;

case ’0’: /* then what is this case? */

b--;

break;

}

355

Error and Warning Messages

(696) out-of-range case label (*) (Code Generator)

This case label is not a value that the controlling expression can yield, and thus this label will never

be selected.

(697) non-constant case label (Code Generator)

A case label in this switch statement has a value which is not a constant.

(698) bit variables must be global or static (Code Generator)

A bit variable cannot be of type auto. If you require a bit variable with scope local to a block of

code or function, qualify it static, e.g.:

bit proc(int a)

{

bit bb; /* woops -- this should be: static bit bb; */

bb = (a > 66);

return bb;

}

(699) no case labels in switch (Code Generator)

There are no case labels in this switch statement, e.g.:

switch(input) {

} /* there is nothing to match the value of input */

(701) unreasonable matching depth (Code Generator)

This is an internal compiler error. Contact HI-TECH Software technical support with details.

(702) regused(): bad arg to G (Code Generator)

This is an internal compiler error. Contact HI-TECH Software technical support with details.

(703) bad GN (Code Generator)

This is an internal compiler error. Contact HI-TECH Software technical support with details. See

Section 5.9.2 for more information.

356

Error and Warning Messages

(704) bad RET_MASK (Code Generator)

This is an internal compiler error. Contact HI-TECH Software technical support with details.

(705) bad which (*) after I (Code Generator)

This is an internal compiler error. Contact HI-TECH Software technical support with details.

(706) bad which in expand() (Code Generator)

This is an internal compiler error. Contact HI-TECH Software technical support with details.

(707) bad SX (Code Generator)

This is an internal compiler error. Contact HI-TECH Software technical support with details.

(708) bad mod "+" for how = "*" (Code Generator)

This is an internal compiler error. Contact HI-TECH Software technical support with details.

(709) metaregister "*" can’t be used directly (Code Generator)

This is an internal compiler error. Contact HI-TECH Software technical support with details.

(710) bad U usage (Code Generator)

This is an internal compiler error. Contact HI-TECH Software technical support with details.

(711) bad how in expand() (Code Generator)

This is an internal compiler error. Contact HI-TECH Software technical support with details.

(712) can’t generate code for this expression (Code Generator)

This error indicates that a C expression is too difficult for the code generator to actually compile. For

successful code generation, the code generator must know how to compile an expression and there

must be enough resources (e.g. registers or temporary memory locations) available. Simplifying

the expression, e.g. using a temporary variable to hold an intermediate result, may get around this

message. Contact HI-TECH Support with details of this message.

This error may also be issued if the code being compiled is in some way unusual. For example

code which writes to a const-qualified object is illegal and will result in warning messages, but the

code generator may unsuccessfully try to produce code to perform the write.

357

Error and Warning Messages

(713) bad initialization list (Code Generator)

This is an internal compiler error. Contact HI-TECH Software technical support with details.

(714) bad intermediate code (Code Generator)

This is an internal compiler error. Contact HI-TECH Software technical support with details.

(715) bad pragma "*" (Code Generator)

The code generator has been passed a pragma directive that it does not understand. This implies that

the pragma you have used is a HI-TECH specific pragma, but the specific compiler you are using

has not implemented this pragma.

(716) bad argument to -M option "*" (Code Generator)

The code generator has been passed a -M option that it does not understand. This should not happen

if it is being invoked by a standard compiler driver.

(718) incompatible intermediate code version; should be *.* (Code Generator)

The intermediate code file produced by P1 is not the correct version for use with this code generator.

This is either that incompatible versions of one or more compilers have been installed in the same

directory, or a temporary file error has occurred leading to corruption of a temporary file. Check the

setting of the TEMP environment variable. If it refers to a long path name, change it to something

shorter. Contact HI-TECH Support with details if required.

(720) multiple free: * (Code Generator)

This is an internal compiler error. Contact HI-TECH Software technical support with details.

(721) element count must be constant expression (Code Generator)

This is an internal compiler error. Contact HI-TECH Software technical support with details.

(722) bad variable syntax in intermediate code (Code Generator)

This is an internal compiler error. Contact HI-TECH Software technical support with details.

358

Error and Warning Messages

(723) function definitions nested too deep (Code Generator)

This error is unlikely to happen with C code, since C cannot have nested functions! Contact HI-

TECH Support with details.

(724) bad op (*) in revlog() (Code Generator)

This is an internal compiler error. Contact HI-TECH Software technical support with details.

(726) bad op "*" in uconval() (Code Generator)

This is an internal compiler error. Contact HI-TECH Software technical support with details.

(727) bad op "*" in bconfloat() (Code Generator)

This is an internal code generator error. Contact HI-TECH technical support with details.

(728) bad op "*" in confloat() (Code Generator)

This is an internal compiler error. Contact HI-TECH Software technical support with details.

(729) bad op "*" in conval() (Code Generator)

This is an internal compiler error. Contact HI-TECH Software technical support with details.

(730) bad op "*" (Code Generator)

This is an internal compiler error. Contact HI-TECH Software technical support with details.

(731) expression error with reserved word (Code Generator)

This is an internal compiler error. Contact HI-TECH Software technical support with details.

(732) initialization of bit types is illegal (Code Generator)

Variables of type bit cannot be initialised, e.g.:

bit b1 = 1; /* woops! b1 must be assigned a value after its definition */

359

Error and Warning Messages

(733) bad string "*" in pragma "psect" (Code Generator)

The code generator has been passed a pragma psect directive that has a badly formed string, e.g.:

#pragma psect text /* redirect text psect into what? */

Maybe you meant something like:

#pragma psect text=special_text

(734) too many "psect" pragmas (Code Generator)

Too many #pragma psect directives have been used.

(737) unknown argument "*" to pragma "switch" (Code Generator)

The #pragma switch directive has been used with an invalid switch code generation method. Pos-

sible arguments are: auto, simple and direct.

(739) error closing output file (Code Generator, Optimiser)

The compiler detected an error when closing a file. Contact HI-TECH Support with details.

(740) zero dimension array is illegal (Code Generator)

The code generator has been passed a declaration that results in an array having a zero dimension.

(741) bitfield too large (* bits) (Code Generator)

The maximum number of bits in a bit field is the same as the number of bits in an int, e.g. assuming

an int is 16 bits wide:

struct {

unsigned flag : 1;

unsigned value : 12;

unsigned cont : 6; /* woops -- that makes a total of 19 bits */

} object;

360

Error and Warning Messages

(742) function "*" argument evaluation overlapped (Linker)

A function call involves arguments which overlap between two functions. This could occur with a

call like:

void fn1(void)

{

fn3(7, fn2(3), fn2(9)); /* Offending call */

}

char fn2(char fred)

{

return fred + fn3(5,1,0);

}

char fn3(char one, char two, char three)

{

return one+two+three;

}

where fn1 is calling fn3, and two arguments are evaluated by calling fn2, which in turn calls fn3.

The program structure should be modified to prevent this type of call sequence.

(743) divide by zero (Code Generator)

An expression involving a division by zero has been detected in your code.

(744) static object "*" has zero size (Code Generator)

A static object has been declared, but has a size of zero.

(745) nodecount = * (Code Generator)

This is an internal compiler error. Contact HI-TECH Software technical support with details.

(747) unrecognized option "*" to -Z (Code Generator)

This is an internal compiler error. Contact HI-TECH Software technical support with details.

(748) variable "*" may be used before set (Code Generator)

This variable may be used before it has been assigned a value. Since it is an auto variable, this will

result in it having a random value, e.g.:

361

Error and Warning Messages

void main(void)

{

int a;

if(a) /* woops -- a has never been assigned a value */

process();

}

(749) unknown register name "*" used with pragma (Linker)

This is an internal compiler error. Contact HI-TECH Software technical support with details.

(750) constant operand to || or && (Code Generator)

One operand to the logical operators || or && is a constant. Check the expression for missing or

badly placed parentheses. This message may also occur if the global optimizer is enabled and one of

the operands is an auto or static local variable whose value has been tracked by the code generator,

e.g.:

{

int a;

a = 6;

if(a || b) /* a is 6, therefore this is always true */

b++;

(751) arithmetic overflow in constant expression (Code Generator)

A constant expression has been evaluated by the code generator that has resulted in a value that is

too big for the type of the expression. The most common code to trigger this warning is assignments

to signed data types. For example:

signed char c;

c = 0xFF;

As a signed 8-bit quantity, c can only be assigned values -128 to 127. The constant is equal to 255

and is outside this range. If you mean to set all bits in this variable, then use either of:

c = ~0x0;

c = -1;

which will set all the bits in the variable regardless of the size of the variable and without warning.

This warning can also be triggered by intermediate values overflowing. For example:

362

Error and Warning Messages

unsigned int i; /* assume ints are 16 bits wide */

i = 240 * 137; /* this should be okay, right? */

A quick check with your calculator reveals that 240 * 137 is 32880 which can easily be stored in

an unsigned int, but a warning is produced. Why? Because 240 and 137 and both signed int

values. Therefore the result of the multiplication must also be a signed int value, but a signed

int cannot hold the value 32880. (Both operands are constant values so the code generator can

evaluate this expression at compile time, but it must do so following all the ANSI rules.) The

following code forces the multiplication to be performed with an unsigned result:

i = 240u * 137; /* force at least one operand to be unsigned */

(752) conversion to shorter data type (Code Generator)

Truncation may occur in this expression as the lvalue is of shorter type than the rvalue, e.g.:

char a;

int b, c;

a = b + c; /* conversion of int to char may result in truncation */

(753) undefined shift (* bits) (Code Generator)

An attempt has been made to shift a value by a number of bits equal to or greater than the number of

bits in the data type. This will produce an undefined result on many processors. This is non-portable

code and is flagged as having undefined results by the C Standard, e.g.:

int input;

input < <= 33; /* woops -- that shifts the entire value out of input */

(754) bitfield comparison out of range (Code Generator)

This is the result of comparing a bitfield with a value when the value is out of range of the bitfield.

For example, comparing a 2-bit bitfield to the value 5 will never be true as a 2-bit bitfield has a range

from 0 to 3, e.g.:

struct {

unsigned mask : 2; /* mask can hold values 0 to 3 */

} value;

int compare(void)

{

return (value.mask == 6); /* test can

}

363

Error and Warning Messages

(755) divide by zero (Code Generator)

A constant expression that was being evaluated involved a division by zero, e.g.:

a /= 0; /* divide by 0: was this what you were intending */

(757) constant conditional branch (Code Generator)

A conditional branch (generated by an if, for, while statement etc.) always follows the same path.

This will be some sort of comparison involving a variable and a constant expression. For the code

generator to issue this message, the variable must have local scope (either auto or static local) and

the global optimizer must be enabled, possibly at higher level than 1, and the warning level threshold

may need to be lower than the default level of 0.

The global optimizer keeps track of the contents of local variables for as long as is possible during

a function. For C code that compares these variables to constants, the result of the comparison can

be deduced at compile time and the output code hard coded to avoid the comparison, e.g.:

{

int a, b;

a = 5;

/* this can never be false; always perform the true statement */

if(a == 4)

b = 6;

will produce code that sets a to 5, then immediately sets b to 6. No code will be produced for the

comparison if(a == 4). If a was a global variable, it may be that other functions (particularly

interrupt functions) may modify it and so tracking the variable cannot be performed.

This warning may indicate more than an optimization made by the compiler. It may indicate an

expression with missing or badly placed parentheses, causing the evaluation to yield a value different

to what you expected.

This warning may also be issued because you have written something like while(1). To produce

an infinite loop, use for(;;).

A similar situation arises with for loops, e.g.:

{

int a, b;

for(a=0; a!=10; a++) /* this loop must iterate at least once */

b = func(a);

In this case the code generator can again pick up that a is assigned the value 0, then immediately

checked to see if it is equal to 10. Because a is modified during the for loop, the comparison

364

Error and Warning Messages

code cannot be removed, but the code generator will adjust the code so that the comparison is not

performed on the first pass of the loop; only on the subsequent passes. This may not reduce code

size, but it will speed program execution.

(758) constant conditional branch: possible use of "=" instead of "==" (Code Generator)

There is an expression inside an if or other conditional construct, where a constant is being assigned

to a variable. This may mean you have inadvertently used an assignment = instead of a compare ==,

e.g.:

int a, b;

/* this can never be false; always perform the true statement */

if(a = 4)

b = 6;

will assign the value 4 to a, then , as the value of the assignment is always true, the comparison can

be omitted and the assignment to b always made. Did you mean:

/* this can never be false; always perform the true statement */

if(a == 4)

b = 6;

which checks to see if a is equal to 4.

(759) expression generates no code (Code Generator)

This expression generates no output code. Check for things like leaving off the parentheses in a

function call, e.g.:

int fred;

fred; /* this is valid, but has no effect at all */

Some devices require that special function register need to be read to clear hardware flags. To

accommodate this, in some instances the code generator does produce code for a statement which

only consists of a variable ID. This may happen for variables which are qualified as volatile.

Typically the output code will read the variable, but not do anything with the value read.

(760) portion of expression has no effect (Code Generator)

Part of this expression has no side effects, and no effect on the value of the expression, e.g.:

int a, b, c;

a = b,c; /* “b” has no effect, was that meant to be a comma? */

365

Error and Warning Messages

(761) sizeof yields 0 (Code Generator)

The code generator has taken the size of an object and found it to be zero. This almost certainly

indicates an error in your declaration of a pointer, e.g. you may have declared a pointer to a zero

length array. In general, pointers to arrays are of little use. If you require a pointer to an array of

objects of unknown length, you only need a pointer to a single object that can then be indexed or

incremented.

(763) constant left operand to "? :" operator (Code Generator)

The left operand to a conditional operator ? is constant, thus the result of the tertiary operator ?:

will always be the same, e.g.:

a = 8 ? b : c; /* this is the same as saying a = b; */

(764) mismatched comparison (Code Generator)

A comparison is being made between a variable or expression and a constant value which is not in

the range of possible values for that expression, e.g.:

unsigned char c;

if(c > 300) /* woops -- how can this be true? */

close();

(765) degenerate unsigned comparison (Code Generator)

There is a comparison of an unsigned value with zero, which will always be true or false, e.g.:

unsigned char c;

if(c >= 0)

will always be true, because an unsigned value can never be less than zero.

(766) degenerate signed comparison (Code Generator)

There is a comparison of a signed value with the most negative value possible for this type, such

that the comparison will always be true or false, e.g.:

char c;

if(c >= -128)

will always be true, because an 8 bit signed char has a maximum negative value of -128.

366

Error and Warning Messages

(768) constant relational expression (Code Generator)

There is a relational expression that will always be true or false. This may be because e.g. you are

comparing an unsigned number with a negative value, or comparing a variable with a value greater

than the largest number it can represent, e.g.:

unsigned int a;

if(a == -10) /* if a is unsigned, how can it be -10? */

b = 9;

(769) no space for macro definition (Assembler)

The assembler has run out of memory.

(772) include files nested too deep (Assembler)

Macro expansions and include file handling have filled up the assembler’s internal stack. The maxi-

mum number of open macros and include files is 30.

(773) macro expansions nested too deep (Assembler)

Macro expansions in the assembler are nested too deep. The limit is 30 macros and include files

nested at one time.

(774) too many macro parameters (Assembler)

There are too many macro parameters on this macro definition.

(776) can’t allocate space for object "*" (offs: *) (Assembler)

The assembler has run out of memory.

(777) can’t allocate space for opnd structure within object "*", (offs: *) (Assembler)

The assembler has run out of memory.

(780) too many psects defined (Assembler)

There are too many psects defined! Boy, what a program!

367

Error and Warning Messages

(781) can’t enter abs psect (Assembler)

This is an internal compiler error. Contact HI-TECH Software technical support with details.

(782) REMSYM error (Assembler)

This is an internal compiler error. Contact HI-TECH Software technical support with details.

(783) "with" psects are cyclic (Assembler)

If Psect A is to be placed “with” Psect B, and Psect B is to be placed “with” Psect A, there is no

hierarchy. The with flag is an attribute of a psect and indicates that this psect must be placed in the

same memory page as the specified psect.

Remove a with flag from one of the psect declarations. Such an assembler declaration may look

like:

psect my_text,local,class=CODE,with=basecode

which will define a psect called my_text and place this in the same page as the psect basecode.

(784) overfreed (Assembler)

This is an internal compiler error. Contact HI-TECH Software technical support with details.

(785) too many temporary labels (Assembler)

There are too many temporary labels in this assembler file. The assembler allows a maximum of

2000 temporary labels.

(787) can’t handle "v_rtype" of * in copyexpr (Assembler)

This is an internal compiler error. Contact HI-TECH Software technical support with details.

(788) invalid character "*" in number (Assembler)

A number contained a character that was not part of the range 0-9 or 0-F.

(790) end of file inside conditional (Assembler)

END-of-FILE was encountered while scanning for an "endif" to match a previous "if".

368

Error and Warning Messages

(793) unterminated macro argument (Assembler)

An argument to a macro is not terminated. Note that angle brackets ("< >") are used to quote macro

arguments.

(794) invalid number syntax (Assembler, Optimiser)

The syntax of a number is invalid. This can be, e.g. use of 8 or 9 in an octal number, or other

malformed numbers.

(796) use of LOCAL outside macros is illegal (Assembler)

The LOCAL directive is only legal inside macros. It defines local labels that will be unique for each

invocation of the macro.

(797) syntax error in LOCAL argument (Assembler)

A symbol defined using the LOCAL assembler directive in an assembler macro is syntactically incor-

rect. Ensure that all symbols and all other assembler identifiers conform with the assembly language

of the target device.

(798) macro argument may not appear after LOCAL (Assembler)

The list of labels after the directive LOCAL may not include any of the formal parameters to the

macro, e.g.:

mmm macro a1

move r0, #a1

LOCAL a1 ; woops -- the macro parameter cannot be used with local

ENDM

(799) REPT argument must be >= 0 (Assembler)

The argument to a REPT directive must be greater than zero, e.g.:

rept -2 ; -2 copies of this code? */

move r0, [r1]++

endm

(800) undefined symbol "*" (Assembler)

The named symbol is not defined in this module, and has not been specified GLOBAL.

369

Error and Warning Messages

(801) range check too complex (Assembler)

This is an internal compiler error. Contact HI-TECH Software technical support with details.

(802) invalid address after END directive (Assembler)

The start address of the program which is specified after the assembler END directive must be a label

in the current file.

(803) undefined temporary label (Assembler)

A temporary label has been referenced that is not defined. Note that a temporary label must have a

number >= 0.

(804) write error on object file (Assembler)

The assembler failed to write to an object file. This may be an internal compiler error. Contact

HI-TECH Software technical support with details.

(806) attempted to get an undefined object (*) (Assembler)

This is an internal compiler error. Contact HI-TECH Software technical support with details.

(807) attempted to set an undefined object (*) (Assembler)

This is an internal compiler error. Contact HI-TECH Software technical support with details.

(808) bad size in add_reloc() (Assembler)

This is an internal compiler error. Contact HI-TECH Software technical support with details.

(809) unknown addressing mode (*) (Assembler, Optimiser)

An unknown addressing mode was used in the assembly file.

(814) processor type not defined (Assembler)

The processor must be defined either from the command line (eg. -16c84), via the PROCESSOR

assembler directive, or via the LIST assembler directive.

370

Error and Warning Messages

(815) syntax error in chipinfo file at line * (Assembler)

The chipinfo file contains non-standard syntax at the specified line.

(816) duplicate ARCH specification in chipinfo file "*" at line * (Assembler, Driver)

The chipinfo file has a processor section with multiple ARCH values. Only one ARCH value is

allowed. If you have not manually edited the chip info file, contact HI-TECH Support with details.

(817) unknown architecture in chipinfo file at line * (Assembler, Driver)

An chip architecture (family) that is unknown was encountered when reading the chip INI file.

(818) duplicate BANKS for "*" in chipinfo file at line * (Assembler)

The chipinfo file has a processor section with multiple BANKS values. Only one BANKS value is

allowed. If you have not manually edited the chip info file, contact HI-TECH Support with details.

(819) duplicate ZEROREG for "*" in chipinfo file at line * (Assembler)

The chipinfo file has a processor section with multiple ZEROREG values. Only one ZEROREG

value is allowed. If you have not manually edited the chip info file, contact HI-TECH Support with

details.

(820) duplicate SPAREBIT for "*" in chipinfo file at line * (Assembler)

The chipinfo file has a processor section with multiple SPAREBIT values. Only one SPAREBIT

value is allowed. If you have not manually edited the chip info file, contact HI-TECH Support with

details.

(822) duplicate ROMSIZE for "*" in chipinfo file at line * (Assembler)

The chipinfo file has a processor section with multiple ROMSIZE values. Only one ROMSIZE value

is allowed. If you have not manually edited the chip info file, contact HI-TECH Support with details.

(824) duplicate LIB for "*" in chipinfo file at line * (Assembler)

The chipinfo file has a processor section with multiple LIB values. Only one LIB value is allowed.

If you have not manually edited the chip info file, contact HI-TECH Support with details.

371

Error and Warning Messages

(825) too many RAMBANK lines in chipinfo file for "*" (Assembler)

The chipinfo file contains a processor section with too many RAMBANK fields. Reduce the number

of values.

(826) inverted ram bank in chipinfo file at line * (Assembler, Driver)

The second hex number specified in the RAM field in the chipinfo file must be greater in value than

the first.

(828) inverted common bank in chipinfo file at line * (Assembler, Driver)

The second hex number specified in the COMMON field in the chipinfo file must be greater in value

than the first. Contact HI-TECH Support if you have not modified the chipinfo INI file.

(829) unrecognized line in chipinfo file at line * (Assembler)

The chipinfo file contains a processor section with an unrecognised line. Contact HI-TECH Support

if the INI has not been edited.

(830) missing ARCH specification for "*" in chipinfo file (Assembler)

The chipinfo file has a processor section without an ARCH values. The architecture of the processor

must be specified. Contact HI-TECH Support if the chipinfo file has not been modified.

(832) empty chip info file "*" (Assembler)

The chipinfo file contains no data. If you have not manually edited the chip info file, contact HI-

TECH Support with details.

(833) no valid entries in chipinfo file (Assembler)

The chipinfo file contains no valid processor descriptions.

(834) page width must be >= 60 (Assembler)

The listing page width must be at least 60 characters. Any less will not allow a properly formatted

listing to be produced, e.g.:

LIST C=10 ; the page width will need to be wider than this

372

Error and Warning Messages

(835) form length must be >= 15 (Assembler)

The form length specified using the -Flength option must be at least 15 lines. Setting this length

to zero is allowed and turns off paging altogether. The default value is zero (pageless).

(836) no file arguments (Assembler)

The assembler has been invoked without any file arguments. It cannot assemble anything.

(839) relocation too complex (Assembler)

The complex relocation in this expression is too big to be inserted into the object file.

(840) phase error (Assembler)

The assembler has calculated a different value for a symbol on two different passes. This is probably

due to bizarre use of macros or conditional assembly.

(842) bad bit number (Assembler, Optimiser)

A bit number must be an absolute expression in the range 0-7.

(843) a macro name can’t also be an EQU/SET symbol (Assembler)

An EQU or SET symbol has been found with the same name as a macro. This is not allowed. For

example:

getval MACRO

mov r0, r1

ENDM

getval EQU 55h ; woops -- choose a different name to the macro

(844) lexical error (Assembler, Optimiser)

An unrecognized character or token has been seen in the input.

(845) multiply defined symbol "*" (Assembler)

This symbol has been defined in more than one place. The assembler will issue this error if a symbol

is defined more than once in the same module, e.g.:

373

Error and Warning Messages

_next:

move r0, #55

move [r1], r0

_next: ; woops -- choose a different name

The linker will issue this warning if the symbol (C or assembler) was defined multiple times in

different modules. The names of the modules are given in the error message. Note that C identifiers

often have an underscore prepended to their name after compilation.

(846) relocation error (Assembler, Optimiser)

It is not possible to add together two relocatable quantities. A constant may be added to a relocatable

value, and two relocatable addresses in the same psect may be subtracted. An absolute value must

be used in various places where the assembler must know a value at assembly time.

(847) operand error (Assembler, Optimiser)

The operand to this opcode is invalid. Check your assembler reference manual for the proper form

of operands for this instruction.

(849) illegal instruction for this processor (Assembler)

The instruction is not supported by this processor.

(852) radix must be from 2 - 16 (Assembler)

The radix specified using the RADIX assembler directive must be in the range from 2 (binary) to 16

(hexadecimal).

(853) invalid size for FNSIZE directive (Assembler)

The assembler FNSIZE assembler directive arguments must be positive constants.

(855) ORG argument must be a positive constant (Assembler)

An argument to the ORG assembler directive must be a positive constant or a symbol which has been

equated to a positive constant, e.g.:

ORG -10 /* this must a positive offset to the current psect */

374

Error and Warning Messages

(856) ALIGN argument must be a positive constant (Assembler)

The align assembler directive requires a non-zero positive integer argument.

(857) psect may not be local and global (Linker)

A local psect may not have the same name as a global psect, e.g.:

psect text,class=CODE ; text is implicitly global

move r0, r1

; elsewhere:

psect text,local,class=CODE

move r2, r4

The global flag is the default for a psect if its scope is not explicitly stated.

(859) argument to C option must specify a positive constant (Assembler)

The parameter to the LIST assembler control’s C= option (which sets the column width of the listing

output) must be a positive decimal constant number, e.g.:

LIST C=a0h ; constant must be decimal and positive, try: LIST C=80

(861) argument to N option must specify a positive constant (Assembler)

The parameter to the LIST assembler control’s N option (which sets the page length for the listing

output) must be a positive constant number, e.g.:

LIST N=-3 ; page length must be positive

(862) symbol is not external (Assembler)

A symbol has been declared as EXTRN but is also defined in the current module.

(863) symbol can’t be both extern and public (Assembler)

If the symbol is declared as extern, it is to be imported. If it is declared as public, it is to be exported

from the current module. It is not possible for a symbol to be both.

375

Error and Warning Messages

(864) argument to "size" psect flag must specify a positive constant (Assembler)

The parameter to the PSECT assembler directive’s size option must be a positive constant number,

e.g.:

PSECT text,class=CODE,size=-200 ; a negative size?

(865) psect flag "size" redefined (Assembler)

The size flag to the PSECT assembler directive is different from a previous PSECT directive, e.g.:

psect spdata,class=RAM,size=400

; elsewhere:

psect spdata,class=RAM,size=500

(866) argument to "reloc" psect flag must specify a positive constant (Assembler)

The parameter to the PSECT assembler directive’s reloc option must be a positive constant number,

e.g.:

psect test,class=CODE,reloc=-4 ; the reloc must be positive

(867) psect flag "reloc" redefined (Assembler)

The reloc flag to the PSECT assembler directive is different from a previous PSECT directive, e.g.:

psect spdata,class=RAM,reloc=4

; elsewhere:

psect spdata,class=RAM,reloc=8

(868) argument to "delta" psect flag must specify a positive constant (Assembler)

The parameter to the PSECT assembler directive’s DELTA option must be a positive constant number,

e.g.:

PSECT text,class=CODE,delta=-2 ; a negative delta value does not make sense

(869) psect flag "delta" redefined (Assembler)

The ’DELTA’ option of a psect has been redefined more than once in the same module.

376

Error and Warning Messages

(870) argument to "pad" psect flag must specify a positive constant (Assembler)

The parameter to the PSECT assembler directive’s ’PAD’ option must be a non-zero positive integer.

(871) argument to "space" psect flag must specify a positive constant (Assembler)

The parameter to the PSECT assembler directive’s space option must be a positive constant number,

e.g.:

PSECT text,class=CODE,space=-1 ; space values start at zero

(872) psect flag "space" redefined (Assembler)

The space flag to the PSECT assembler directive is different from a previous PSECT directive, e.g.:

psect spdata,class=RAM,space=0

; elsewhere:

psect spdata,class=RAM,space=1

(873) a psect may only be in one class (Assembler)

You cannot assign a psect to more than one class. The psect was defined differently at this point than

when it was defined elsewhere. A psect’s class is specified via a flag as in the following:

psect text,class=CODE

Look for other psect definitions that specify a different class name.

(874) a psect may only have one "with" option (Assembler)

A psect can only be placed with one other psect. A psect’s with option is specified via a flag as in

the following:

psect bss,with=data

Look for other psect definitions that specify a different with psect name.

(875) bad character constant in expression (Assembler,Optimizer)

The character constant was expected to consist of only one character, but was found to be greater

than one character or none at all. An assembler specific example:

mov r0, #’12’ ; ’12’ specifies two characters

377

Error and Warning Messages

(876) syntax error (Assembler, Optimiser)

A syntax error has been detected. This could be caused a number of things.

(877) yacc stack overflow (Assembler)

This is an internal compiler error. Contact HI-TECH Software technical support with details.

(878) -S option used: "*" ignored (Driver)

The indicated assembly file has been supplied to the driver in conjunction with the -S option. The

driver really has nothing to do since the file is already an assembly file.

(880) invalid number of parameters. Use "* –HELP" for help (Driver)

Improper command-line usage of the of the compiler’s driver.

(881) setup succeeded (Driver)

The compiler has been successfully setup using the --setup driver option.

(883) setup failed (Driver)

The compiler was not successfully setup using the --setup driver option. Ensure that the directory

argument to this option is spelt correctly, is syntactically correct for your host operating system and

it exists.

(884) please ensure you have write permissions to the configuration file (Driver)

The compiler was not successfully setup using the --setup driver option because the driver was

unable to access the XML configuration file. Ensure that you have write permission to this file. The

driver will search the following configuration files in order:

• the file specified by the environment variable HTC_XML

• the file /etc/htsoft.xml if the directory ’/etc’ is writable and there is no .htsoft.xml file

in your home directory

• the file .htsoft.xml file in your home directory

If none of the files can be located then the above error will occur.

378

Error and Warning Messages

(890) contact HI-TECH Software to purchase and re-activate this compiler (Driver)

The evaluation period of this demo installation of the compiler has expired. You will need to pur-

chase the compiler to re-activate it. If however you sincerely believe the evaluation period has ended

prematurely please contact HI-TECH technical support.

(891) can’t open psect usage map file "*": * (Driver)

The driver was unable to open the indicated file. The psect usage map file is generated by the

driver when the driver option --summary=file is used. Ensure that the file is not open in another

application.

(892) can’t open memory usage map file "*": * (Driver)

The driver was unable to open the indicated file. The memory usage map file is generated by the

driver when the driver option --summary=file is used. Ensure that the file is not open in another

application.

(893) can’t open HEX usage map file "*": * (Driver)

The driver was unable to open the indicated file. The HEX usage map file is generated by the

driver when the driver option --summary=file is used. Ensure that the file is not open in another

application.

(894) unknown source file type "*" (Driver)

The extension of the indicated input file could not be determined. Only files with the extensions as,

c, obj, usb, p1, lib or hex are identified by the driver.

(895) can’t request and specify options in the one command (Driver)

The usage of the driver options --getoption and --setoption is mutually exclusive.

(899) can’t open option file "*" for application "*": * (Driver)

An option file specified by a --getoption or --setoption driver option could not be opened. If

you are using the --setoption option ensure that the name of the file is spelt correctly and that

it exists. If you are using the --getoption option ensure that this file can be created at the given

location or that it is not in use by any other application.

379

Error and Warning Messages

(900) exec failed: * (Driver)

The subcomponent listed failed to execute. Does the file exist? Try re-installing the compiler.

(902) no chip name specified; use "* –CHIPINFO" to see available chip names (Driver)

The driver was invoked without selecting what chip to build for. Running the driver with the –

CHIPINFO option will display a list of all chips that could be selected to build for.

(904) illegal format specified in "*" option (Driver)

The usage of this option was incorrect. Confirm correct usage with –HELP or refer to the part of the

manual that discusses this option.

(905) illegal application specified in "*" option (Driver)

The application given to this option is not understood or does not belong to the compiler.

(907) unknown memory space tag "*" in "*" option specification (Driver)

A parameter to this memory option was a string but did not match any valid tags. Refer to the section

of this manual that describes this option to see what tags (if any) are valid for this device.

(908) exit status = * (Driver)

One of the subcomponents being executed encountered a problem and returned an error code. Other

messages should have been reported by the subcomponent to explain the problem that was encoun-

tered.

(913) "*" option may cause compiler errors in some standard header files (Driver)

Using this option will invalidate some of the qualifiers used in the standard header files resulting in

errors. This issue and its solution are detailed in the section of this manual that specifically discusses

this option.

(915) no room for arguments (Preprocessor, Parser, Code Generator, Linker, Objtohex)

The code generator could not allocate any more memory.

380

Error and Warning Messages

(917) argument too long (Preprocessor, Parser)

This is an internal compiler error. Contact HI-TECH Software technical support with details.

(918) *: no match (Preprocessor, Parser)

This is an internal compiler error. Contact HI-TECH Software technical support with details.

(920) empty chipinfo file (Driver, Assembler)

The chip configuration file was able to be opened but it was empty. Try re-installing the compiler.

(922) chip "*" not present in chipinfo file "*" (Driver)

The chip selected does not appear in the compiler’s chip configuration file. You may need to contact

HI-TECH Software to see if support for this device is available or upgrade the version of your

compiler.

(923) unknown suboption "*" (Driver)

This option can take suboptions, but this suboption is not understood. This may just be a simple

spelling error. If not, –HELP to look up what suboptions are permitted here.

(924) missing argument to "*" option (Driver)

This option expects more data but none was given. Check the usage of this option.

(925) extraneous argument to "*" option (Driver)

This option does not accept additional data, yet additional data was given. Check the usage of this

option.

(926) duplicate "*" option (Driver)

This option can only appear once, but appeared more than once.

(928) bad "*" option value (Driver, Assembler)

The indicated option was expecting a valid hexadecimal integer argument.

381

Error and Warning Messages

(929) bad "*" option ranges (Driver)

This option was expecting a parameter in a range format (start_of_range-end_of_range), but the

parameter did not conform to this syntax.

(930) bad "*" option specification (Driver)

The parameters to this option were not specified correctly. Run the driver with –HELP or refer to

the driver’s chapter in this manual to verify the correct usage of this option.

(931) command file not specified (Driver)

Command file to this application, expected to be found after ’@’ or ’<’ on the command line was

not found.

(939) no file arguments (Driver)

The driver has been invoked with no input files listed on its command line. If you are getting this

message while building through a third party IDE, perhaps the IDE could not verify the source files

to compile or object files to link and withheld them from the command line.

(940) *-bit checksum * placed at * (Objtohex)

Presenting the result of the requested checksum calculation.

(941) bad "*" assignment; USAGE: ** (Hexmate)

An option to Hexmate was incorrectly used or incomplete. Follow the usage supplied by the message

and ensure that that the option has been formed correctly and completely.

(942) unexpected character on line * of file "*" (Hexmate)

File contains a character that was not valid for this type of file, the file may be corrupt. For example,

an Intel hex file is expected to contain only ASCII representations of hexadecimal digits, colons (:)

and line formatting. The presence of any other characters will result in this error.

(944) data conflict at address *h between * and * (Hexmate)

Sources to Hexmate request differing data to be stored to the same address. To force one data source

to override the other, use the ’+’ specifier. If the two named sources of conflict are the same source,

then the source may contain an error.

382

Error and Warning Messages

(945) checksum range (*h to *h) contained an indeterminate value (Hexmate)

The range for this checksum calculation contained a value that could not be resolved. This can

happen if the checksum result was to be stored within the address range of the checksum calculation.

(948) checksum result width must be between 1 and 4 bytes (Hexmate)

The requested checksum byte size is illegal. Checksum results must be within 1 to 4 bytes wide.

Check the parameters to the -CKSUM option.

(949) start of checksum range must be less than end of range (Hexmate)

The -CKSUM option has been given a range where the start is greater than the end. The parameters

may be incomplete or entered in the wrong order.

(951) start of fill range must be less than end of range (Hexmate)

The -FILL option has been given a range where the start is greater than the end. The parameters may

be incomplete or entered in the wrong order.

(953) unknown -HELP sub-option: * (Hexmate)

Invalid sub-option passed to -HELP. Check the spelling of the sub-option or use -HELP with no

sub-option to list all options.

(956) -SERIAL value must be between 1 and * bytes long (Hexmate)

The serial number being stored was out of range. Ensure that the serial number can be stored in the

number of bytes permissible by this option.

(958) too many input files specified; * file maximum (Hexmate)

Too many file arguments have been used. Try merging these files in several stages rather than in one

command.

(960) unexpected record type (*) on line * of "*" (Hexmate)

Intel hex file contained an invalid record type. Consult the Intel hex format specification for valid

record types.

383

Error and Warning Messages

(962) forced data conflict at address *h between * and * (Hexmate)

Sources to Hexmate force differing data to be stored to the same address. More than one source

using the ’+’ specifier store data at the same address. The actual data stored there may not be what

you expect.

(963) checksum range includes voids or unspecified memory locations (Hexmate)

Checksum range had gaps in data content. The runtime calculated checksum is likely to differ from

the compile-time checksum due to gaps/unused byes within the address range that the checksum is

calculated over. Filling unused locations with a known value will correct this.

(964) unpaired nibble in -FILL value will be truncated (Hexmate)

The hexadecimal code given to the FILL option contained an incomplete byte. The incomplete byte

(nibble) will be disregarded.

(965) -STRPACK option not yet implemented, option will be ignored (Hexmate)

This option currently is not available and will be ignored.

(966) no END record for HEX file "*" (Hexmate)

Intel hex file did not contain a record of type END. The hex file may be incomplete.

(967) unused function definition "*" (from line *) (Parser)

The indicated static function was never called in the module being compiled. Being static, the

function cannot be called from other modules so this warning implies the function is never used.

Either the function is redundant, or the code that was meant to call it was excluded from compilation

or misspelt the name of the function.

(968) unterminated string (Assembler, Optimiser)

A string constant appears not to have a closing quote missing.

(969) end of string in format specifier (Parser)

The format specifier for the printf() style function is malformed.

384

Error and Warning Messages

(970) character not valid at this point in format specifier (Parser)

The printf() style format specifier has an illegal character.

(971) type modifiers not valid with this format (Parser)

Type modifiers may not be used with this format.

(972) only modifiers "h" and "l" valid with this format (Parser)

Only modifiers h (short) and l (long) are legal with this printf format specifier.

(973) only modifier "l" valid with this format (Parser)

The only modifier that is legal with this format is l (for long).

(974) type modifier already specified (Parser)

This type modifier has already be specified in this type.

(975) invalid format specifier or type modifier (Parser)

The format specifier or modifier in the printf-style string is illegal for this particular format.

(976) field width not valid at this point (Parser)

A field width may not appear at this point in a printf() type format specifier.

(978) this identifier is already an enum tag (Parser)

This identifier following a struct or union keyword is already the tag for an enumerated type, and

thus should only follow the keyword enum, e.g.:

enum IN {ONE=1, TWO};

struct IN { /* woops -- IN is already defined */

int a, b;

};

385

Error and Warning Messages

(979) this identifier is already a struct tag (Parser)

This identifier following a union or enum keyword is already the tag for a structure, and thus should

only follow the keyword struct, e.g.:

struct IN {

int a, b;

};

enum IN {ONE=1, TWO}; /* woops -- IN is already defined */

(980) this identifier is already a union tag (Parser)

This identifier following a struct or enum keyword is already the tag for a union, and thus should

only follow the keyword union, e.g.:

union IN {

int a, b;

};

enum IN {ONE=1, TWO}; /* woops -- IN is already defined */

(981) pointer required (Parser)

A pointer is required here, e.g.:

struct DATA data;

data->a = 9; /* data is a structure, not a pointer to a structure */

(982) unknown op "*" in nxtuse() (Optimiser,Assembler)

This is an internal compiler error. Contact HI-TECH Software technical support with details.

(983) storage class redeclared (Parser)

A variable previously declared as being static, has now be redeclared as extern.

(984) type redeclared (Parser)

The type of this function or object has been redeclared. This can occur because of two incompatible

declarations, or because an implicit declaration is followed by an incompatible declaration, e.g.:

int a;

char a; /* woops -- what is the correct type? */

386

Error and Warning Messages

(985) qualifiers redeclared (Parser)

This function or variable has different qualifiers in different declarations.

(986) enum member redeclared (Parser)

A member of an enumeration is defined twice or more with differing values. Does the member

appear twice in the same list or does the name of the member appear in more than one enum list?

(987) arguments redeclared (Parser)

The data types of the parameters passed to this function do not match its prototype.

(988) number of arguments redeclared (Parser)

The number of arguments in this function declaration does not agree with a previous declaration of

the same function.

(989) module has code below file base of *h (Linker)

This module has code below the address given, but the -C option has been used to specify that a

binary output file is to be created that is mapped to this address. This would mean code from this

module would have to be placed before the beginning of the file! Check for missing psect directives

in assembler files.

(990) modulus by zero in #if; zero result assumed (Preprocessor)

A modulus operation in a #if expression has a zero divisor. The result has been assumed to be zero,

e.g.:

#define ZERO 0

#if FOO%ZERO /* this will have an assumed result of 0 */

#define INTERESTING

#endif

(991) integer expression required (Parser)

In an enum declaration, values may be assigned to the members, but the expression must evaluate to

a constant of type int, e.g.:

enum {one = 1, two, about_three = 3.12}; /* no non-int values allowed */

387

Error and Warning Messages

(992) can’t find op (Assembler, Optimiser)

This is an internal compiler error. Contact HI-TECH Software technical support with details.

(1005) a macro name can’t also be a label (Assembler)

The name of an assembler macro has also been used as an assembler label.

(1015) missing "*" specification in chipinfo file "*" at line * (Driver)

This attribute was expected to appear at least once but was not defined for this chip.

(1016) missing argument* to "*" specification in chipinfo file "*" at line * (Driver)

This value of this attribute is blank in the chip configuration file.

(1018) illegal number of "*" specification* (* found; * expected) in chipinfo file "*" at line *

(Driver)

This attribute was expected to appear a certain number of times but it did not for this chip.

(1019) duplicate "*" specification in chipinfo file "*" at line * (Driver)

This attribute can only be defined once but has been defined more than once for this chip.

(1020) unknown attribute "*" in chipinfo file "*" at line * (Driver)

The chip configuration file contains an attribute that is not understood by this version of the com-

piler. Has the chip configuration file or the driver been replaced with an equivalent component from

another version of this compiler?

(1021) syntax error reading "*" value in chipinfo file "*" at line * (Driver)

The chip configuration file incorrectly defines the specified value for this device. If you are modify-

ing this file yourself, take care and refer to the comments at the beginning of this file for a description

on what type of values are expected here.

(1022) syntax error reading "*" range in chipinfo file "*" at line * (Driver)

The chip configuration file incorrectly defines the specified range for this device. If you are modify-

ing this file yourself, take care and refer to the comments at the beginning of this file for a description

on what type of values are expected here.

388

Error and Warning Messages

(1024) syntax error in chipinfo file "*" at line * (Driver)

The chip configuration file contains a syntax error at the line specified.

(1025) unknown architecture in chipinfo file "*" at line * (Driver)

The attribute at the line indicated defines an architecture that is unknown to this compiler.

(1026) missing architecture in chipinfo file "*" at line * (Assembler)

The chipinfo file has a processor section without an ARCH values. The architecture of the processor

must be specified. Contact HI-TECH Support if the chipinfo file has not been modified.

(1029) compiler not installed correctly - error code (*) (Driver)

This compiler has failed to find any activation information and cannot proceed to execute. The com-

piler may have been installed incorrectly or incompletely. The error code quoted can help diagnose

the reason for this failure. You may be asked for this failure code if contacting HI-TECH Software

for assistance with this problem.

(1030) HEXMATE - Intel hex editing utility (Build 1.%i) (Hexmate)

Indicating the version number of the Hexmate being executed.

(1031) USAGE: * [input1.hex] [input2.hex]... [inputN.hex] [options] (Hexmate)

The suggested usage of Hexmate.

(1032) use –HELP=<option> for usage of these command line options (Hexmate)

More detailed information is available for a specific option by passing that option to the HELP

option.

(1033) available command-line options: (Hexmate)

This is a simple heading that appears before the list of available options for this application.

(1034) type "*" for available options (Hexmate)

It looks like you need help. This advisory suggests how to get more information about the options

available to this application or the usage of these options.

389

Error and Warning Messages

(1036) bad "*" optional header length (0x* expected) (Cromwell)

The length of the optional header in this COFF file was of an incorrect length.

(1037) short read on * (Cromwell)

When reading the type of data indicated in this message, it terminated before reaching its specified

length.

(1038) string table length too short (Cromwell)

The specified length of the COFF string table is less than the minimum.

(1039) inconsistent symbol count (Cromwell)

The number of symbols in the symbol table has exceeded the number indicated in the COFF header.

(1040) bad checksum: record 0x*, checksum 0x* (Cromwell)

A record of the type specified failed to match its own checksum value.

(1041) short record (Cromwell)

While reading a file, one of the file’s records ended short of its specified length.

(1042) unknown * record type 0x* (Cromwell)

The type indicator of this record did not match any valid types for this file format.

(1043) unknown optional header (Cromwell)

When reading this Microchip COFF file, the optional header within the file header was of an incor-

rect length.

(1044) end of file encountered (Cromwell, Linker)

The end of the file was found while more data was expected. Has this input file been truncated?

(1045) short read on block of * bytes (Cromwell)

A while reading a block of byte data from a UBROF record, the block ended before the expected

length.

390

Error and Warning Messages

(1046) short string read (Cromwell)

A while reading a string from a UBROF record, the string ended before the specified length.

(1047) bad type byte for UBROF file (Cromwell)

This UBROF file did not begin with the correct record.

(1048) bad time/date stamp (Cromwell)

This UBROF file has a bad time/date stamp.

(1049) wrong CRC on 0x* bytes; should be * (Cromwell)

An end record has a mismatching CRC value in this UBROF file.

(1050) bad date in 0x52 record (Cromwell)

A debug record has a bad date component in this UBROF file.

(1051) bad date in 0x01 record (Cromwell)

A start of program record or segment record has a bad date component in this UBROF file.

(1052) unknown record type (Cromwell)

A record type could not be determined when reading this UBROF file.

(1053) additional RAM ranges larger than bank size (Driver)

A block of additional RAM being requested exceeds the size of a bank. Try breaking the block into

multiple ranges that do not cross bank boundaries.

(1054) additional RAM range out of bounds (Driver)

The RAM memory range as defined through custom RAM configuration is out of range.

(1055) RAM range out of bounds (*) (Driver)

The RAM memory range as defined in the chip configuration file or through custom configuration is

out of range.

391

Error and Warning Messages

(1056) unknown chip architecture (Driver)

The compiler is attempting to compile for a device of an architecture that is either unsupported or

disabled.

(1057) fast double option only available on 17 series processors (Driver)

The fast double library cannot be selected for this device. These routines are only available for

PIC17 devices.

(1058) assertion (Code Generator)

This is an internal error. Contact HI-TECH Software.

(1059) rewrite loop (Code Generator)

This is an internal error. Contact HI-TECH Software.

(1060) unknown memory model type "*"; using small. (Driver)

The memory model selected is invalid. The build will default to small memory model and continue.

Check your usage of the -B option.

(1081) static initialization of persistent variable "*" (Parser, Code Generator)

A persistent variable has been assigned an initial value. This is somewhat contradictory as the initial

value will be assigned to the variable during execution of the compiler’s startup code, however the

persistent qualifier requests that this variable shall be unchanged by the compiler’s startup code.

(1090) variable "*" is not used (Code Generator)

This variable is declared but has not been used by the program. Consider removing it from the

program.

(1091) main function "*" not defined (Code Generator)

The main function has not been defined. Every C program must have a function called main.

(1118) bad string "*" in getexpr(J) (Code Generator)

This is an internal error. Contact HI-TECH Software.

392

Error and Warning Messages

(1119) bad string "*" in getexpr(LRN) (Code Generator)

This is an internal error. Contact HI-TECH Software.

(1137) match() error: * (Code Generator)

This is an internal error. Contact HI-TECH Software.

(1138) attempt to return bit object on the stack (Code Generator)

A bit type cannot be returned from a function.

(1139) function’s parameter area too large; must be less than 1024 bytes (Code Generator)

The amount of data used by this function for parameters has exceeded its maximum limit. Reduce

the amount of data passed to this function through parameters.

(1141) bad interrupt vector address for "*": 0x* (Code Generator)

An invalid vector address was assigned to this function. It was possibly out of range or not an even

address.

(1142) missing interrupt vector address for function "*" (Code Generator)

This function was qualified as an interrupt function but has not been assigned a vector address.

Assign a vector address to this function.

(1143) function’s auto area too large, must be less than 65536 bytes (Code Generator)

The amount of data used by this function for auto variables has exceeded its maximum limit. Reduce

the number of auto variables.

(1146) unknown register index (Assembler)

This is an internal error. Contact HI-TECH Software.

(1147) unknown opbase (Assembler)

The op-code for this instruction has not been defined. This is an internal error. Contact HI-TECH

Software.

393

Error and Warning Messages

(1148) unknown status bit (*) in nxtuse() (Assembler)

This is an internal error. Contact HI-TECH Software.

(1150) constant operand must be one of: -6, -4, -2, 2, 4, 6 (Assembler)

An illegal value was used in this increment/decrement of this instruction. Only values of -6, -4, -2,

2, 4 and 6 are permitted.

(1151) write back register must be W13 (Assembler)

The working register W13 must be selected as the write back destination.

(1152) increment must be a constant (Assembler)

An invalid increment value was used in this instruction. Negative values are not permitted.

(1153) increment must be 2 (Assembler)

An invalid increment value was used in this instruction. The value 2 was expected.

(1154) prefetch W register must be W8 or W9 (Assembler)

An illegal working register was selected as a prefetch destination register. For this prefetch, valid

destinations are W8 or W9.

(1155) prefetch W register must be W10 or W11 (Assembler)

An illegal working register was selected as a prefetch destination register. For this prefetch, valid

destinations are W10 or W11.

(1156) prefetch destination register must be one of: W4, W5, W6, W7 (Assembler)

An illegal working register was selected as a prefetch destination register. For this prefetch, valid

destinations are W4, W5, W6 or W7.

(1158) W register must be W12 (Assembler)

The working register required here has to be W12, but an other working register was selected.

394

Error and Warning Messages

(1160) invalid W register (Assembler)

An incorrect working register was selected for this instruction. Some instructions have restrictions

on which working registers they can use in certain modes. Refer to the device’s programming guide

to learn more about what working registers can be used here.

(1161) invalid addressing mode (Assembler)

The addressing mode used is not suitable for this instruction. Refer to the device’s programming

guide to find what addressing modes are permitted for this instruction.

(1162) byte operation not permitted (Assembler)

This instruction does not have a byte mode but a byte mode was requested.

(1163) invalid writeback mode (Assembler)

This instruction used an access mode which is not supported in the write back feature.

(1164) psect flag "width" must specify a positive constant 1,2,3 (Assembler)

The width flag used when declaring or resuming this psect has an invalid value.

(1165) psect width redefined (Assembler)

The value of a psect’s width flag differs between declarations of a given psect. All values of width

should be the same for all declarations of a given psect.

(1166) psect flag "pad" redefined (Assembler)

The value of a psect’s pad flag differs between declarations of a given psect. All values of pad

should be the same for all declarations of a given psect.

(1168) unknown conditional type * (Assembler)

A conditional branch instruction tests an unknown condition. This is an internal error. Contact

HI-TECH Software.

(1169) constant out of range (Assembler)

The literal value used in this instruction exceeds the valid range that is expected.

395

Error and Warning Messages

(1170) unknown operand type in emobj() (Assembler)

This is an internal error. Contact HI-TECH Software.

(1171) unknown constant size in emobj() (Assembler)

This is an internal error. Contact HI-TECH Software.

(1172) * constant out of range (Assembler)

The literal value used in this instruction exceeds the valid range that is expected. For example using

the value 300h in an instruction that accepts an 8 bit value would exceed the expected range for this

instruction.

(1173) phase error * != * (Assembler)

This is an internal error. Contact HI-TECH Software.

(1174) invalid psect width size, must be 0, 1 or 2 (Assembler)

The width flag used when declaring or resuming this psect has an invalid value. A valid values of

width are 0, 1 or 2.

(1175) branch out of range (Assembler)

The destination or the offset given to this branch instruction exceeds the maximum range of a branch

instruction. If this instruction is branching to a label, move the label within the reach of the branch

instruction.

(1176) call address must be even (Assembler)

The destination of a call or goto instruction has been declared absolute and is not an even address.

Adjust the address value so that it is an even number.

(1177) invalid register combination (Assembler)

The source and destination operands for this instruction did not conform to an expected relationship.

For example, in this mode:

mov [Ws + Wb],[Wd + Wb] ; expects the same Wb in both source and destination

396

Error and Warning Messages

(1178) the "*" option has been removed and has no effect (Driver)

This option no longer exists in this version of the compiler and has been ignored. Use the compiler’s

–help option or refer to the manual to find a replacement option.

(1180) directory "*" does not exist (Driver)

The directory specified in the setup option does not exist. Create the directory and try again.

(1182) near variables must be global or static (Code Generator)

A variable qualified as near must also be qualified with static or made global. An auto variable

cannot be qualified as near.

(1189) only interrupt functions may be qualified "fast" (Code Generator)

The fast qualifier can only be used on a function that is also qualified with interrupt. As this qualifier

affects the context switching code used by an interrupt function, it serves no purpose in any other

function.

(1190) FAE license only - not for use in commercial applications (Driver)

Indicates that this compiler has been activated with an FAE licence. This licence does not permit the

product to be used for the development of commercial applications.

(1191) licensed for educational use only (Driver)

Indicates that this compiler has been activated with an education licence. The educational licence is

only available to educational facilities and does not permit the product to be used for the development

of commercial applications.

(1192) licensed for evaluation purposes only (Driver)

Indicates that this compiler has been activated with an evaluation licence.

(1193) this licence will expire on * (Driver)

The compiler has been installed as a time-limited trial. This trial will end on the date specified.

397

Error and Warning Messages

(1195) invalid syntax for "*" option (Driver)

A command line option that accepts additional parameters was given inappropriate data or insuffi-

cient data. For example an option may expect two parameters with both being integers. Passing a

string as one of these parameters or supplying only one parameter could result in this error.

(1198) too many "*" specifications; * maximum (Hexmate)

This option has been specified too many times. If possible, try performing these operations over

several command lines.

(1199) compiler has not been activated (Driver)

The trial period for this compiler has expired. The compiler is now inoperable until activated with

a valid serial number. Contact HI-TECH Software to purchase this software and obtain a serial

number.

(1200) Found %0*lXh at address *h (Hexmate)

The code sequence specified in a -FIND option has been found at this address.

(1201) all FIND/REPLACE code specifications must be of equal width (Hexmate)

All find, replace and mask attributes in this option must be of the same byte width. Check the

parameters supplied to this option. For example finding 1234h (2 bytes) masked with FFh (1 byte)

will result in an error, but masking with 00FFh (2 bytes) will be Ok.

(1202) unknown format requested in -FORMAT: * (Hexmate)

An unknown or unsupported INHX format has been requested. Refer to documentation for supported

INHX formats.

(1203) unpaired nibble in * value will be truncated (Hexmate)

Data to this option was not entered as whole bytes. Perhaps the data was incomplete or a leading

zero was omitted. For example the value Fh contains only four bits of significant data and is not a

whole byte. The value 0Fh contains eight bits of significant data and is a whole byte.

398

Error and Warning Messages

(1204) * value must be between 1 and * bytes long (Hexmate)

An illegal length of data was given to this option. The value provided to this option exceeds the

maximum or minimum bounds required by this option.

(1205) using the configuration file *; you may override this with the environment variable

HTC_XML (Driver)

This is the compiler configuration file selected during compiler setup. This can be changed via

the HTC_XML environment variable. This file is used to determine where the compiler has been

installed.

(1207) some of the command line options you are using are now obsolete (Driver)

Some of the command line options passed to the driver have now been discontinued in this version

of the compiler, however during a grace period these old options will still be processed by the driver.

(1208) use –help option or refer to the user manual for option details (Driver)

An obsolete option was detected. Use –help or refer to the manual to find a replacement option that

will not result in this advisory message.

(1209) An old MPLAB tool suite plug-in was detected. (Driver)

The options passed to the driver resemble those that the Microchip MPLAB IDE would pass to a

previous version of this compiler. Some of these options are now obsolete, however they were still

interpreted. It is recommended that you install an updated HI-TECH options plug-in for the MPLAB

IDE.

(1210) Visit the HI-TECH Software website (www.htsoft.com) for a possible update (Driver)

Visit our website to see if an update is available to address the issue(s) listed in the previous compiler

message. Please refer to the on-line self-help facilities such as the Frequently asked Questions or

search the On-line forums. In the event of no details being found here, contact HI-TECH Software

for further information.

(1212) Found * (%0*lXh) at address *h (Hexmate)

The code sequence specified in a -FIND option has been found at this address.

399

Error and Warning Messages

(1213) duplicate ARCH for * in chipinfo file at line * (Assembler, Driver)

The chipinfo file has a processor section with multiple ARCH values. Only one ARCH value is

allowed. If you have not manually edited the chip info file, contact HI-TECH Support with details.

(1218) can’t create cross reference file * (Assembler)

The assembler attempted to create a cross reference file, but it could not be created. Check that the

file’s pathname is correct.

(1226) invalid instruction or instruction mode for this architecture: "*" (Assembler)

An instruction or instruction mode has been used that is not implemented in this particular device.

This may be because code has been ported to a lesser device that does not implement all of the

features of the original device. Rewrite the section of code that is affected to avoid the use of this

instruction or select another device.

(1227) support for device * in this compiler version is * (Driver)

The chip selected may have a limited or preliminary level of support. Contact HI-TECH Software

for specific details of the limitations to the compiler’s support of this device.

(1228) unable to locate installation directory (Driver)

The compiler cannot determine the directory where it has been installed.

(1229) only vec_reset or vec_func may be selected (Driver)

The --RUNTIME sub-options vec_reset and vec_func are considered mutually exclusive and can-

not be used simultaneously.

(1230) dereferencing uninitialized pointer "*" (Code Generator)

A pointer that has not yet been assigned a value has been dereferenced. This can result in erroneous

behaviour at runtime.

(1236) invalid argument to *: * (Driver)

An option that can take additional parameters was given an invalid parameter value. Check the usage

of the option or the syntax or range of the expected parameter.

400

Error and Warning Messages

(1240) can’t create error file "*" (Driver)

The error file specified after the -Efile or -E+file options could not be opened. Check to ensure

that the file or directory is valid and that has read only access.

delete what ? (Libr)

The librarian requires one or more modules to be listed for deletion when using the d key, e.g.:

libr d c:\ht-pic\lib\pic704-c.lib

does not indicate which modules to delete. try something like:

libr d c:\ht-pic\lib\pic704-c.lib wdiv.obj

incomplete ident record (Libr)

The IDENT record in the object file was incomplete. Contact HI-TECH Support with details.

incomplete symbol record (Libr)

The SYM record in the object file was incomplete. Contact HI-TECH Support with details.

library file names should have .lib extension: * (Libr)

Use the .lib extension when specifying a library filename.

module * defines no symbols (Libr)

No symbols were found in the module’s object file. This may be what was intended, or it may mean

that part of the code was inadvertently removed or commented.

replace what ? (Libr)

The librarian requires one or more modules to be listed for replacement when using the r key, e.g.:

libr r lcd.lib

This command needs the name of a module (.obj file) after the library name.

401

Error and Warning Messages

402

Appendix C

Chip Information

The following table lists all devices currently supported by HI-TECH PICC STD.

Table C.1: Devices supported by HI-TECH PICC STD

DEVICE ARCH ROMSIZE RAMBANK EEPROMSIZE

10F200 PIC12 100 10-1F

10F202 PIC12 200 08-1F

10F204 PIC12 100 10-1F

10F206 PIC12 200 08-1F

10F220 PIC12 100 10-1F

10F222 PIC12 200 09-1F

12C508 PIC12 200 07-1F

12F508 PIC12 200 07-1F

12C509 PIC12 400 07-1F,30-3F

12F509 PIC12 400 07-1F,30-3F

12F510 PIC12 400 0A-1F,30-3F

12F519 PIC12 400 07-1F,30-3F

12C508A PIC12 200 07-1F

12C509A PIC12 400 07-1F,30-3F

12C509AG PIC12 400 07-1F,30-3F

RF509AG PIC12 400 07-1F,30-3F

12C509AF PIC12 400 07-1F,30-3F

RF509AF PIC12 400 07-1F,30-3F

12CR509A PIC12 400 07-1F,30-3F

12CE518 PIC12 200 07-1F

12CE519 PIC12 400 07-1F,30-3F

16C505 PIC12 400 08-1F,30-3F,50-5F,70-7F

16F505 PIC12 400 08-1F,30-3F,50-5F,70-7F

16F506 PIC12 400 0D-1F,30-3F,50-5F,70-7F

continued. . .

403

Chip Information

Table C.1: Devices supported by HI-TECH PICC STD

DEVICE ARCH ROMSIZE RAMBANK EEPROMSIZE

16F526 PIC12 400 0D-1F,30-3F,50-5F,70-7F

16C52 PIC12 180 07-1F

16C54 PIC12 200 07-1F

16CR54A PIC12 200 07-1F

16CR54B PIC12 200 07-1F

16CR54C PIC12 200 07-1F

16HV540 PIC12 200 08-1F

16C54A PIC12 200 07-1F

16C54B PIC12 200 07-1F

16C54C PIC12 200 07-1F

16F54 PIC12 200 07-1F

16C55 PIC12 200 08-1F

16C55A PIC12 200 08-1F

16C56 PIC12 400 07-1F

16C56A PIC12 400 07-1F

16CR56A PIC12 400 07-1F

16C57 PIC12 800 08-1F,30-3F,50-5F,70-7F

16C57C PIC12 800 08-1F,30-3F,50-5F,70-7F

16CR57B PIC12 800 08-1F,30-3F,50-5F,70-7F

16CR57C PIC12 800 08-1F,30-3F,50-5F,70-7F

16F57 PIC12 800 08-1F,30-3F,50-5F,70-7F

16C58 PIC12 800 07-1F,30-3F,50-5F,70-7F

16C58A PIC12 800 07-1F,30-3F,50-5F,70-7F

16C58B PIC12 800 07-1F,30-3F,50-5F,70-7F

16CR58A PIC12 800 07-1F,30-3F,50-5F,70-7F

16CR58B PIC12 800 07-1F,30-3F,50-5F,70-7F

16F59 PIC12 800 0A-1F,30-3F,50-5F,70-7F

MCV08A PIC12 400 0A-1F,30-3F

MCV14A PIC12 400 0D-1F,30-3F,50-5F,70-7F

MCV18A PIC12 200 07-1F

MCV28A PIC12 800 08-1F,30-3F,50-5F,70-7F

12F609 PIC14 400 40-7F

12HV609 PIC14 400 40-7F

12F615 PIC14 400 40-7F

12HV615 PIC14 400 40-7F

12F629 PIC14 3FF 20-5F 80

12F635 PIC14 400 40-7F 80

12C671 PIC14 3FF 20-7F,A0-BF

12C672 PIC14 7FF 20-7F,A0-BF

12CE673 PIC14 3FF 20-7F,A0-BF

12CE674 PIC14 7FF 20-7F,A0-BF

12F675 PIC14 3FF 20-5F 80

12F675F PIC14 3FF 20-5F 80

12F675H PIC14 3FF 20-5F 80

12F675K PIC14 3FF 20-5F 80

continued. . .

404

Chip Information

Table C.1: Devices supported by HI-TECH PICC STD

DEVICE ARCH ROMSIZE RAMBANK EEPROMSIZE

12F683 PIC14 800 20-7F,A0-BF 100

14000 PIC14 FC0 20-7F,A0-FF

16C432 PIC14 800 20-7F,A0-BF

16C433 PIC14 800 20-7F,A0-BF

16C554 PIC14 200 20-6F

16C554A PIC14 200 20-6F

16C556 PIC14 400 20-6F

16C556A PIC14 400 20-6F

16C557 PIC14 800 20-7F,A0-BF

16C558 PIC14 800 20-7F,A0-BF

16C558A PIC14 800 20-7F,A0-BF

16C61 PIC14 400 0C-2F

16C62 PIC14 800 20-7F,A0-BF

16C62A PIC14 800 20-7F,A0-BF

16C62B PIC14 800 20-7F,A0-BF

16CR62 PIC14 800 20-7F,A0-BF

16C63 PIC14 1000 20-7F,A0-FF

16C63A PIC14 1000 20-7F,A0-FF

16CR63 PIC14 1000 20-7F,A0-FF

16C64 PIC14 800 20-7F,A0-BF

16C64A PIC14 800 20-7F,A0-BF

16CR64 PIC14 800 20-7F,A0-BF

16C65 PIC14 1000 20-7F,A0-FF

16CR65 PIC14 1000 20-7F,A0-FF

16C65A PIC14 1000 20-7F,A0-FF

16C65B PIC14 1000 20-7F,A0-FF

16C66 PIC14 2000 20-7F,A0-EF,110-16F,190-1EF

16C67 PIC14 2000 20-7F,A0-EF,110-16F,190-1EF

16C620 PIC14 200 20-6F

16C620A PIC14 200 20-7F

16CR620A PIC14 200 20-7F

16C621 PIC14 400 20-6F

16C621A PIC14 400 20-7F

16C622 PIC14 800 20-7F,A0-BF

16C622A PIC14 800 20-7F,A0-BF

16CE623 PIC14 200 20-7F

16CE624 PIC14 400 20-7F

16CE625 PIC14 800 20-7F,A0-BF

16F610 PIC14 400 40-7F

16HV610 PIC14 400 40-7F

16F616 PIC14 800 A0-BF

16HV616 PIC14 800 A0-BF

16F630 PIC14 3FF 20-5F 80

16F631 PIC14 400 40-7F 80

16F636 PIC14 800 20-7F,A0-BF 100

continued. . .

405

Chip Information

Table C.1: Devices supported by HI-TECH PICC STD

DEVICE ARCH ROMSIZE RAMBANK EEPROMSIZE

16F639 PIC14 800 20-7F,A0-BF 100

16C641 PIC14 800 20-7F,A0-BF

16C642 PIC14 1000 20-7F,A0-EF

16C661 PIC14 800 20-7F,A0-BF

16C662 PIC14 1000 20-7F,A0-EF

16F676 PIC14 3FF 20-5F 80

16F677 PIC14 800 20-7F,A0-BF 100

16F684 PIC14 800 20-7F,A0-BF 100

16F685 PIC14 1000 20-7F,A0-EF,120-16F 100

16F687 PIC14 800 20-7F,A0-BF 100

16F688 PIC14 1000 20-7F,A0-EF,120-16F 100

16F689 PIC14 1000 20-7F,A0-EF,120-16F 100

16F690 PIC14 1000 20-7F,A0-EF,120-16F 100

16C710 PIC14 200 0C-2F

16C71 PIC14 400 0C-2F

16C711 PIC14 400 0C-4F

16C712 PIC14 400 20-7F,A0-BF

16C715 PIC14 800 20-7F,A0-BF

16C716 PIC14 800 20-7F,A0-BF

16C717 PIC14 800 20-7F,A0-EF,120-16F

16C72 PIC14 800 20-7F,A0-BF

16C72A PIC14 800 20-7F,A0-BF

16CR72 PIC14 800 20-7F,A0-BF

16F72 PIC14 800 20-7F,A0-BF

16C73 PIC14 1000 20-7F,A0-FF

16F73 PIC14 1000 20-7F,A0-FF

16F722 PIC14 800 20-7F,A0-BF

16F723 PIC14 1000 20-7F,A0-EF,120-12F

16F724 PIC14 1000 20-7F,A0-EF,120-12F

16F726 PIC14 2000 20-7F,A0-EF,110-16F,190-1EF

16F727 PIC14 2000 20-7F,A0-EF,110-16F,190-1EF

16F737 PIC14 1000 20-7F,A0-EF,110-16F,190-1EF

16C73A PIC14 1000 20-7F,A0-FF

16C73B PIC14 1000 20-7F,A0-FF

16C74 PIC14 1000 20-7F,A0-FF

16F74 PIC14 1000 20-7F,A0-FF

16F747 PIC14 1000 20-7F,A0-EF,110-16F,190-1EF

16C74A PIC14 1000 20-7F,A0-FF

16C74B PIC14 1000 20-7F,A0-FF

16LC74B PIC14 1000 20-7F,A0-FF

16C76 PIC14 2000 20-7F,A0-EF,110-16F,190-1EF

16F76 PIC14 2000 20-7F,A0-EF,110-16F,190-1EF

16F767 PIC14 2000 20-7F,A0-EF,110-16F,190-1EF

16C77 PIC14 2000 20-7F,A0-EF,110-16F,190-1EF

16F77 PIC14 2000 20-7F,A0-EF,110-16F,190-1EF

continued. . .

406

Chip Information

Table C.1: Devices supported by HI-TECH PICC STD

DEVICE ARCH ROMSIZE RAMBANK EEPROMSIZE

16F777 PIC14 2000 20-7F,A0-EF,110-16F,190-1EF

16C770 PIC14 800 20-7F,A0-EF,120-16F

16C771 PIC14 1000 20-7F,A0-EF,120-16F

16C773 PIC14 1000 20-7F,A0-EF,120-16F

16C774 PIC14 1000 20-7F,A0-EF,120-16F

16C745 PIC14 2000 20-7F,A0-EF,120-16F

16C765 PIC14 2000 20-7F,A0-EF,120-16F

16C781 PIC14 400 20-7F,A0-BF

16C782 PIC14 800 20-7F,A0-BF

16F785 PIC14 800 20-7F,A0-BF 100

16HV785 PIC14 800 20-7F,A0-BF 100

16F818 PIC14 400 20-7F,A0-BF 80

16F819 PIC14 800 20-7F,A0-EF,120-16F 100

16F83 PIC14 200 0C-2F 40

16CR83 PIC14 200 0C-2F 40

16C84 PIC14 400 0C-2F 40

16F84 PIC14 400 0C-4F 40

16F84A PIC14 400 0C-4F 40

16CR84 PIC14 400 0C-4F 40

16F627 PIC14 400 20-7F,A0-EF,120-14F 80

16F627A PIC14 400 20-7F,A0-EF,120-14F 80

16F628 PIC14 800 20-7F,A0-EF,120-14F 80

16F628A PIC14 800 20-7F,A0-EF,120-14F 80

16F648A PIC14 1000 20-7F,A0-EF,120-16F 100

16F716 PIC14 800 20-7F,A0-BF

16F87 PIC14 1000 20-7F,A0-EF,110-16F,190-1EF 100

16F870 PIC14 800 20-7F,A0-BF 40

16F871 PIC14 800 20-7F,A0-BF 40

16F872 PIC14 800 20-7F,A0-BF 40

16F873 PIC14 1000 20-7F,A0-FF 80

16F873A PIC14 1000 20-7F,A0-FF 80

16F874 PIC14 1000 20-7F,A0-FF 80

16F874A PIC14 1000 20-7F,A0-FF 80

16F876 PIC14 2000 20-7F,A0-EF,110-16F,190-1EF 100

16F876A PIC14 2000 20-7F,A0-EF,110-16F,190-1EF 100

16F877 PIC14 2000 20-7F,A0-EF,110-16F,190-1EF 100

16F877A PIC14 2000 20-7F,A0-EF,110-16F,190-1EF 100

16F88 PIC14 1000 20-7F,A0-EF,110-16F,190-1EF 100

16F882 PIC14 800 20-7F,A0-BF 80

16F883 PIC14 1000 20-7F,A0-EF,120-16F 100

16F884 PIC14 1000 20-7F,A0-EF,120-16F 100

16F886 PIC14 2000 20-7F,A0-EF,110-16F,190-1EF 100

16F887 PIC14 2000 20-7F,A0-EF,110-16F,190-1EF 100

16F913 PIC14 1000 20-7F,A0-EF,120-16F 100

16F914 PIC14 1000 20-7F,A0-EF,120-16F 100

continued. . .

407

Chip Information

Table C.1: Devices supported by HI-TECH PICC STD

DEVICE ARCH ROMSIZE RAMBANK EEPROMSIZE

16F916 PIC14 2000 20-7F,A0-EF,120-16F,190-1EF 100

16F917 PIC14 2000 20-7F,A0-EF,120-16F,190-1EF 100

16C923 PIC14 1000 20-7F,A0-EF

16C924 PIC14 1000 20-7F,A0-EF

16C925 PIC14 1000 20-7F,A0-EF

16C926 PIC14 2000 20-7F,A0-EF,120-16F,1A0-1EF

16F946 PIC14 2000 20-7F,A0-EF,120-16F,1A0-1EF 100

16C99 PIC14 4000 18C-1FF

16F99 PIC14 4000 18C-1FF 40

16C99C PIC14 4000 18C-1EF

16F99C PIC14 4000 18C-1EF 40

16C999 PIC14 8000 18C-1FF

16F999 PIC14 8000 18C-1FF 40

16C999C PIC14 8000 18C-1EF

16F999C PIC14 8000 18C-1EF 40

17C42 PIC16 800 18-FF

17C42A PIC16 800 1A-FF,120-1FF

17CR42 PIC16 800 1A-FF,120-1FF

17C43 PIC16 1000 1A-FF,120-1FF

17CR43 PIC16 1000 1A-FF,120-1FF

17C44 PIC16 2000 1A-FF,120-1FF

17C752 PIC16 2000 1A-FF,120-1FF,220-2FF

17C756 PIC16 4000 1A-FF,120-1FF,220-2FF,320-3FF

17C756A PIC16 4000 1A-FF,120-1FF,220-2FF,320-3FF

17C762 PIC16 2000 1A-FF,120-1FF,220-2FF

17C766 PIC16 4000 1A-FF,120-1FF,220-2FF,320-3FF

408

Index

! macro quote character, 100

. psect address symbol, 129

... symbol, 54

.as files, 37

.c files, 37

.cmd files, 138

.crf files, 15, 83

.lib files, 37, 38, 137, 138

.lnk files, 133

.lst files, 14

.obj files, 37, 129, 138

.opt files, 83

.pro files, 21

.sdb files, 37

.sym files, 37, 128, 131

/ psect address symbol, 129

;; comment suppression characters, 100

<> macro quote characters, 100

? character

in assembler labels, 86

??_xxxx type symbols, 110

??nnnn type symbols, 87, 101

?_xxxx type symbols, 110, 134

?a_xxxx type symbols, 110, 134

#asm directive, 68

#define, 8

#endasm directive, 68

#pragma directives, 70

#undef, 13

$ character

in assembler labels, 86

$ location counter symbol, 87

% macro argument prefix, 100

& assembly macro concatenation character, 100

_ character

in assembler labels, 86

BANKBITS, 72

COMMON, 72

_EEPROMSIZE, 33, 72

GPRBITS, 72

_HTC_EDITION_, 72

_HTC_VER_MAJOR_, 72

_HTC_VER_MINOR_, 72

_HTC_VER_PATCH_, 72

MPC, 72

_PIC12, 72

_PIC14, 72

_PIC16, 72

_READ_OSCCAL_DATA, 36

_ROMSIZE, 72

__Bxxxx type symbols, 79

__CONFIG, 30

__CONFIG macro, 158

__DATE__, 72

__EEPROM_DATA, 31, 32

__EEPROM_DATA macro, 159

__FILE__, 72

__Hxxxx type symbols, 79

__IDLOC, 30

__IDLOC macro, 160

409

INDEX INDEX

__IDLOC7, 30

__IDLOC7 macro, 161

__LINE__, 72

__Lxxxx type symbols, 79

__MPLAB_ICD__, 72

__PICC__, 72

__TIME__, 72

__ram_cell_test, 162

ASPIC

expressions, 89

special characters, 85

ASPIC controls, 103

COND, 103

EXPAND, 103

INCLUDE, 104

LIST, 104

NOCOND, 104

NOEXPAND, 105

NOLIST, 105

NOXREF, 105

PAGE, 105

SPACE, 105

SUBTITLE, 105

TITLE, 106

XREF, 106

ASPIC directives

ALIGN, 101

DB, 96

DS, 96

DW, 96

ELSE, 99

ELSIF, 99

END, 91

ENDIF, 99

ENDM, 99

EQU, 95

GLOBAL, 88, 91

IF, 99

IRP, 102

IRPC, 102

LOCAL, 87, 100

MACRO, 99

PROCESSOR, 103

PSECT, 89, 93

REPT, 101

SET, 95

SIGNAT, 103

SIGNAT directive, 78

ASPIC operators, 89

24-bit doubles, 16

32-bit doubles, 16

abs function, 163

abs PSECT flag, 93

absolute object files, 129

absolute psects, 93, 94

absolute variables, 53, 74

accessing SFRs, 69

acos function, 164

additional memory ranges, 23, 24

addresses

byte, 150

link, 109, 129

load, 109, 129

word, 150

addressing unit, 93

ALIGN directive, 101

alignment

within psects, 101

ANSI standard

conformance, 26

implementation-defined behaviour, 29

argument passing, 54

ASCII characters, 44

asctime function, 165

asin function, 167

asm() C directive, 68

ASPIC

410

INDEX INDEX

directives, 91

ASPIC directives

org, 95

ASPIC options, 82

-A, 83

-C, 83

-Cchipinfo, 83

-E, 83

-Flength, 83

-H, 83

-I, 83

-Llistfile, 83

-O, 83

-Ooutfile, 84

-Twidth, 84

-V, 84

-X, 84

-processor, 84

assembler, 81

accessing C objects, 69

comments, 84

controls, 103

directives, 91

label field, 84

line numbers, 84

mixing with C, 66

pseudo-ops, 91

assembler code

called by C, 66

assembler files

preprocessing, 21

assembler listings, 14

expanding macros, 83

generating, 83

hexadecimal constants, 83

page length, 83

page width, 84

assembler optimizer

enabling, 83

assembler options, see ASPIC options

assembler-generated symbols, 87

assembly, 81

character constants, 86

character set, 85

conditional, 99

constants, 86

default radix, 86

delimiters, 85

expressions, 89

generating from C, 13

identifiers, 86

data typing, 87

include files, 104

initializing

bytes, 96

words, 96

location counter, 87

multi-character constants, 86

radix specifiers, 86

relative jumps, 87

relocatable expression, 89

repeating macros, 101

reserving

locations, 96

special characters, 85

special comment strings, 85

strings, 86

volatile locations, 85

assembly labels, 88

scope, 88, 91

assembly listings

blank lines, 105

disabling macro expansion, 105

enabling, 104

excluding conditional code, 104

expanding macros, 103

including conditional code, 103

new page, 105

411

INDEX INDEX

subtitles, 105

titles, 106

assembly macros, 99

! character, 100

% character, 100

& symbol, 100

concatenation of arguments, 100

quoting characters, 100

suppressing comments, 100

assembly statements

format of, 84

assert function, 168

atan function, 169

atof function, 170

atoi function, 171

atol function, 172

auto variables, 53

Avocet symbol file, 132

bank1 keyword, 49

bank1 qualifier, 49

bank2 keyword, 49

bank2 qualifier, 49

bank3 keyword, 49

bank3 qualifier, 49

base specifier, see radix specifier

baseline PIC special instructions, 35

bases

C source, 41

batch files, 18

biased exponent, 45

big endian format, 150

binary constants

assembly, 86

C, 41

bit

PSECT flag, 93

bit clear instruction, 31

Bit instructions, 31

bit manipulation macros, 31

bit set instruction, 31

bit types

in assembly, 93

bit-fields, 46

initializing, 47

unamed, 47

bitwise complement operator, 58

blocks, see psects

bootloader, 24, 25, 147, 154

bootloaders, 152

bsearch function, 173

bss psect, 40, 108

clearing, 108

btemp, 76

byte addresses, 150

calibration data

PIC14000, 36

call graph, 115, 134

can’t generate code, 32

ceil function, 175

cgets function, 176

char types, 14, 44

char variables, 14

character constants, 42

assembly, 86

checksum endianism, 14, 150

checksum psect, 60

checksum specifications, 141

checksums, 14, 146, 147, 150

algorithms, 15, 151

endianism, 14, 150

chipinfo files, 83

class PSECT flag, 93

classes, 126

address ranges, 126

boundary argument, 131

upper address limit, 131

412

INDEX INDEX

clrtext psect, 60

CLRWDT macro, 178

COD file, 21

command line driver, 3

command lines

HLINK, long command lines, 133

long, 4, 138

verbose option, 14

compiled stack, 115, 134

compiler

options, 5

compiler errors

format, 17

compiler generated psects, 60

compiling

to assembly file, 13

to object file, 7

COND assembler control, 103

conditional assembly, 99

config psect, 60

Configuration Bits, 30

Configuration Fuses, 30

Configuration Word, 30

console I/O functions, 79

const qualifier, 48

constants

assembly, 86

C specifiers, 41

character, 42

string, see string literals

context retrieval, 64

context saving, 63

highend processors, 64

in-line assembly, 75

midrange processors, 63

copyright notice, 13

cos function, 179

cosh function, 180

cputs function, 181

creating

libraries, 138

creating new, 60

CREF, 83

CREF application, 141

CREF option

-Fprefix, 142

-Hheading, 142

-Llen, 142

-Ooutfile, 142

-Pwidth, 143

-Sstoplist, 143

-Xprefix, 143

CREF options, 141

cromwell application, 143

cromwell option

-B, 146

-C, 145

-D, 145

-E, 146

-F, 145

-Ikey, 146

-L, 146

-M, 146

-N, 145

-Okey, 146

-P, 143

-V, 146

cromwell options, 143

cross reference

disabling, 105

generating, 141

list utility, 141

cross reference file, 83

generation, 83

cross reference listings, 15

excluding header symbols, 142

excluding symbols, 143

headers, 142

413

INDEX INDEX

output name, 142

page length, 142

page width, 143

cross referencing

enabling, 106

cstrings psect, 60

ctime function, 182

data psect, 108

copying, 109

data psects, 39

data types, 41

16-bit integer, 44

8-bit integer, 44

assembly, 87

char, 44

floating point, 45

int, 44

short, 44

DB directive, 96

debug information, 9, 37

assembler, 84

optimizers and, 83

debugger requirements, 16

debugger selection, 16

default libraries, 4

default psect, 91

default radix

assembly, 86

delta PSECT flag, 93

delta psect flag, 127

dependencies, 24

device selection, 15

DI macro, 183

di(), 66

directives

asm, C, 68

assembler, 91

EQU, 88

disabling interrupts, 66

div function, 184

divide by zero

result of, 59

double type, 16

driver option

–ERRFORMAT=format, 16

–ERRORS=number, 18

–LANG=language, 19

–MSGFORMAT=format, 16

–OUTPUT=type, 21

–WARN=level, 28

–WARNFORMAT=format, 16

-Efile, 8

-G, 9

-I, 9

-L, 10

-M, 12

-S, 13

driver options

–WARNFORMAT=format, 28

DS directive, 96

DW directive, 96

EEPROM Data, 32

eeprom memory

initializing, 32

reading, 33

writing, 33

eeprom qualifier, 31, 50

eeprom variables, 31

eeprom_data psect, 32, 60

EEPROM_READ, 34

eeprom_read, 33

eeprom_read function, 185

EEPROM_WRITE, 33

eeprom_write, 33

eeprom_write function, 185

EI macro, 183

414

INDEX INDEX

ei(), 66

ellipsis symbol, 54

ELSE directive, 99

ELSIF directive, 99

embedding serial numbers, 155

enabling interrupts, 66

END directive, 91

end_init psect, 60

ENDIF directive, 99

ENDM directive, 99

enhanced symbol files, 128

environment variable

HTC_ERR_FORMAT, 17

HTC_WARN_FORMAT, 17

EQU directive, 88, 95

equ directive, 84

equating assembly symbols, 95

error files

creating, 127

error messages, 8

formatting, 17

LIBR, 139

eval_poly function, 186

exceptions, 62

exp function, 187

EXPAND assembler control, 103

exponent, 45

expressions

assembly, 89

relocatable, 89

extern keyword, 66

fabs function, 188

far pointers, 51

fast doubles, 16

fast floating point library, 46

file formats

assembler listing, 14

Avocet symbol, 132

command, 138

creating with cromwell, 143

cross reference, 83, 141

cross reference listings, 15

dependency, 24

DOS executable, 129

enhanced symbol, 128

library, 37, 137, 138

link, 133

object, 7, 129, 138

preprocessor, 21

prototype, 21

specifying, 21

symbol, 128

symbol files, 37

TOS executable, 129

files

intermediate, 20, 21

output, 21

source, 37

temporary, 20

fill memory, 147

filling unused memory, 15, 18, 151

flash memory

erasing, 35

reading, 34, 35

writing, 34, 35

flash_copy, 35

flash_copy function, 189

flash_erase, 35

flash_erase function, 191

FLASH_READ, 34

flash_read, 35

flash_read function, 191

FLASH_WRITE, 34

float_text psect, 60

floating point data types, 45

biased exponent, 45

exponent, 45

415

INDEX INDEX

format, 45

mantissa, 45

floating suffix, 41

floor function, 193

fnconf directive, 135

fnroot directive, 135

frexp function, 194

fsr, 76

function prototypes, 78, 103

ellipsis, 54

function return values, 55

function signatures, 103

functions

argument passing, 54

bank selection on return, 57

calling convention, 56

fastcall, 57

getch, 79

interrupt, 62

interrupt qualifier, 62

kbhit, 79

putch, 79

return values, 55

signatures, 78

stack usage, 56

structure return values, 56

written in assembler, 66

get_cal_data, 36

get_cal_data function, 198

getch function, 79, 195

getchar function, 196

getche function, 195

gets function, 197

GLOBAL directive, 88, 91

global PSECT flag, 93

global symbols, 108

gmtime function, 199

hardware

initialization, 40

header files

problems in, 27

HEX file format, 153

HEX file map, 155

hex files

address alignment, 18, 152

address map, 147

calculating check sums, 146

converting to other Intel formats, 147

data alignment, 25

data padding, 25

data record, 150

detecting instruction sequences, 147

embedding serial numbers, 147

extended address record, 154

filling unused memory, 18, 147

find and replacing instructions, 147

for bootloaders, 25

merging multiple, 147

multiple, 127

record length, 18, 147, 152, 153

hexadecimal constants

assembly, 86

hexmate application, 146

hexmate option

+prefix, 149

-CK, 150

-FILL, 151, 154

-FIND, 152

-FIND...,DELETE, 153

-FIND...,REPLACE, 153

-FORMAT, 153

-HELP, 154

-LOGFILE, 155

-O, 155

-SERIAL, 26, 155

-SIZE, 156

-STRING, 156

416

INDEX INDEX

-STRPACK, 156

-addressing, 150

-break, 150

file specifications, 149

hexmate options, 147

HI-TIDE, 19

HI_TECH_C, 72

htc.h, 69

HTC_ERR_FORMAT, 17

HTC_WARN_FORMAT, 17

I/O

console I/O functions, 79

serial, 79

STDIO, 79

ID Locations, 30

idata psect, 25

idata_n psect, 60

identifier length, 12

identifiers

assembly, 86

IDLOC, 30

idloc psect, 60

IEEE floating point format, 45

IF directive, 99

Implementation-defined behaviour

division and modulus, 59

shifts, 59

implementation-defined behaviour, 29

INCLUDE assembler control, 104

include files

assembly, 104

INHX32, 147, 154

INHX8M, 147, 154

init psect, 60

int data types, 44

intcode psect, 60

integer suffix

long, 41

unsigned, 41

integral constants, 41

integral promotion, 57

intentry psect, 60

interrupt context saving

highend processors, 64

midrange processors, 63

interrupt functions, 62

context retrieval, 64

context saving, 63, 75

highend processors, 63

levels, 64

midrange processors, 62

interrupt keyword, 62

interrupt level pragma, 64

interrupt levels, 64

interrupt qualifier, 62

interrupt service routines, 62

interrupts

handling in C, 62

intret psect, 61

intsave psect, 61

intsave_n psect, 61

IRP directive, 102

IRPC directive, 102

isalnum function, 201

isalpha function, 201

isdigit function, 201

islower function, 201

Japanese character handling, 73

JIS character handling, 73

jis pragma directive, 73

jmp_tab psect, 61

kbhit function, 79

keyword

auto, 53

bank1, 49

417

INDEX INDEX

bank2, 49

bank3, 49

control, 35

eeprom, 31

interrupt, 62

persistent, 49

keywords

disabling non-ANSI, 26

label field, 84

labels

assembly, 88

local, 100

ldexp function, 203

ldiv function, 204

LIBR, 136, 137

command line arguments, 137

error messages, 139

listing format, 139

long command lines, 138

module order, 139

librarian, 136

command files, 138

command line arguments, 137, 138

error messages, 139

listing format, 139

long command lines, 138

module order, 139

libraries, 40

adding files to, 138

creating, 138

default, 4

deleting files from, 138

excluding, 25

format of, 137

linking, 132

listing modules in, 138

module order, 139

scanning additional, 10

standard, 37

used in executable, 129

library

difference between object file, 136

manager, 136

library function

__CONFIG, 158

__EEPROM_DATA, 159

__IDLOC, 160

__IDLOC7, 161

__ram_cell_test, 162

abs, 163

acos, 164

asctime, 165

asin, 167

assert, 168

atan, 169

atof, 170

atoi, 171

atol, 172

bsearch, 173

ceil, 175

cgets, 176

cos, 179

cosh, 180

cputs, 181

ctime, 182

div, 184

eeprom_read, 185

eeprom_write, 185

eval_poly, 186

exp, 187

fabs, 188

flash_copy, 189

flash_erase, 191

flash_read, 191

floor, 193

frexp, 194

get_cal_data, 198

418

INDEX INDEX

getch, 195

getchar, 196

getche, 195

gets, 197

gmtime, 199

isalnum, 201

isalpha, 201

isdigit, 201

islower, 201

ldexp, 203

ldiv, 204

localtime, 205

log, 207

log10, 207

longjmp, 208

memchr, 210

memcmp, 212

memcpy, 214

memmove, 216

memset, 217

modf, 218

persist_check, 219

persist_validate, 219

pow, 221

printf, 222

putch, 225

putchar, 226

puts, 228

qsort, 229

ram_test_failed, 231

rand, 232

scanf, 234

setjmp, 236

sin, 238

sinh, 180

sprintf, 239

sqrt, 240

srand, 241

strcat, 242

strchr, 244

strcmp, 246

strcpy, 248

strcspn, 250

strichr, 244

stricmp, 246

stristr, 262

strlen, 251

strncat, 252

strncmp, 254

strncpy, 256

strnicmp, 254

strpbrk, 258

strrchr, 259

strrichr, 259

strspn, 261

strstr, 262

strtok, 263

tan, 265

tanh, 180

time, 266

toascii, 268

tolower, 268

toupper, 268

ungetch, 269

va_arg, 270

va_end, 270

va_start, 270

vscanf, 234

xtoi, 272

library macro

CLRWDT, 178

DI, 183

EI, 183

limit PSECT flag, 94

limiting number of error messages, 18

link addresses, 109, 129

linker, 107

command files, 133

419

INDEX INDEX

command line arguments, 124, 133

invoking, 133

long command lines, 133

passes, 137

symbols handled, 108

linker defined symbols, 79

linker errors

aborting, 128

undefined symbols, 129

linker option

-Aclass=low-high, 126, 131

-Cpsect=class, 126

-Dsymfile, 127

-Eerrfile, 127

-F, 127

-Gspec, 127

-H+symfile, 128

-Hsymfile, 128

-I, 129

-Jerrcount, 128

-K, 128

-L, 129

-LM, 129

-Mmapfile, 129

-N, 129

-Nc, 129

-Ns, 129

-Ooutfile, 129

-Pspec, 129

-Qprocessor, 131

-Sclass=limit[,bound], 131

-Usymbol, 132

-Vavmap, 132

-Wnum, 132

-X, 132

-Z, 132

linker options, 124

adjusting use driver, 10

numbers in, 126

linking programs, 77

LIST assembler control, 104

list files, see assembler listings

assembler, 14

little endian format, 44, 150

load addresses, 109, 129

LOCAL directive, 87, 100

local PSECT flag, 94

local psects, 108

local symbols, 14

suppressing, 84, 132

local variables, 52

auto, 53

static, 53

localtime function, 205

location counter, 87, 95

log function, 207

LOG10 function, 207

long data types, 44

long integer suffix, 41

longjmp function, 208

MACRO directive, 99

macro directive, 84

macros

disabling in listing, 105

expanding in listings, 83, 103

nul operator, 100

predefined, 70

repeat with argument, 102

undefining, 13

unnamed, 101

maintext psect, 61

mantissa, 45

map files, 129

call graph, 115

call graphs, 134

generating, 12

processor selection, 131

420

INDEX INDEX

segments, 113, 133

symbol tables in, 129

width of, 132

maximum number of errors, 18

memchr function, 210

memcmp function, 212

memcpy function, 214

memmove function, 216

memory

reserving, 23, 24

specifying, 23, 24

specifying ranges, 126

unused, 18, 129

memory pages, 94

memory summary, 27

memset function, 217

merging hex files, 149

messages

disabling, 20

warning, 20

Microchip COF file, 21

modf function, 218

modules

in library, 137

list format, 139

order in library, 139

used in executable, 129

moving code, 15

MPLAB, 19

build options, 10

MPLAB ICD, 16

multi-character constants

assembly, 86

multiple hex files, 127

NOCOND assembler control, 104

NOEXPAND assembler control, 105

nojis pragma directive, 73

NOLIST assembler control, 105

non-volatile RAM, 48

NOXREF assembler control, 105

numbers

C source, 41

in linker options, 126

nvbit_n psect, 61

nvram psect, 49

nvram_n psect, 61

object code, version number, 129

object files, 7

absolute, 129

relocatable, 107

specifying name of, 84

suppressing local symbols, 84

symbol only, 127

OBJTOHEX, 139

command line arguments, 139

offsetting code, 15

optimizations

assembler, 20, see assembler optimizer

code generator, 20

debugging, 20

global, 20

space, 20

speed, 20

option instruction, 35

options

ASPIC, see ASPIC options

ORG directive, 95

osccal runtime option, 25

oscillator calibration constants, 36

oscillator constant, 25

oscillator initialization, 25

output

specifying name of, 12

output file, 12

output file formats, 129

American Automation HEX, 21

421

INDEX INDEX

Binary, 21

Bytecraft COD, 21

COFF, 21

ELF, 21

Intel HEX, 21

library, 21

Microchip COFF, 21

Motorola S19 HEX, 21

specifying, 21, 139

Tektronic, 21

UBROF, 21

overlaid memory areas, 128

overlaid psects, 94

ovrld PSECT flag, 94

pack pragma directive, 73

PAGE assembler control, 105

parameter passing, 54, 66

persist_check function, 219

persist_validate function, 219

persistent keyword, 49

persistent qualifier, 49

pic.h, 69

PIC14000 calibration space, 36

PICC

command format, 3

file types, 3

long command lines, 4

options, 5

predefined macros, 70

supported data types, 41

version number, 27

PICC options

–ASMLIST, 14

–CHAR, 14, 44

–CHECKSUM, 14

–CHIP=processor, 15

–CHIPINFO, 15

–CODEOFFSET, 15

–CR=file, 15

–DEBUGGER=type, 16

–DOUBLE=type, 16

–ECHO, 16

–ERRFORMAT=format, 16

–ERRORS, 18

–FILL, 18

–GETOPTION, 18

–HELP, 19

–IDE, 19

–LANG, 19

–MEMMAP, 19

–MSGDISABLE, 20

–MSGFORMAT, 20

–NODEL, 20

–NOEXEC, 20

–OPT=type, 20

–OUTDIR, 20

–OUTPUT, 21

–PRE, 21

–PROTO, 21

–RAM, 23

–ROM, 23

–RUNTIME=type, 24, 39

–SCANDEP, 24

–SERIAL, 24

–SETOPTION=app,file, 26

–SETUP, 26

–STRICT, 26

–SUMMARY, 27

–SUMMARY=type, 77

–TIME, 27

–VER, 27

–WARN, 27

–WARNFORMAT, 28

–WARNFORMAT=format, 16

-C, 7, 77

-D, 7

-E, 8

422

INDEX INDEX

-G, 9, 37

-I, 9

-L, 10

-M, 12

-Nsize, 12

-Ofile, 12

-P, 13

-Q, 13

-S, 13, 77

-U, 13

-V, 13

-X, 14

PIC assembly language

functions, 66

PIC MCU assembly language, 84

pointer

qualifiers, 50

pointers, 50

16bit, 50

32 bit, 50

baseline, 50

highend, 51

midrange, 51

to functions, 50

pow function, 221

power-down status bit, 25

powerup, 39

powerup psect, 61

powerup routine, 4, 40

pragma directives, 70

predefined symbols

preprocessor, 70

preprocessing, 13

assembler files, 13

preprocessor

macros, 8

path, 9

preprocessor directives, 70

#asm, 68

#endasm, 68

in assembly files, 84

preprocessor symbols

predefined, 70

preserving power-down and time-out status bits,

25

printf

format checking, 74

printf function, 222

printf_check pragma directive, 74

processor ID data, 30

processor range

double type, 38

libraries, 37

printf type, 38

RAM banks, 38

ROM pages, 37

processor selection, 15, 103, 131

program sections, 89

psect

bss, 40, 108

checksum, 60

clrtext, 60

config, 60

cstrings, 60

data, 108

eeprom_data, 32, 60

end_init, 60

float_text, 60

idata, 25

idata_n, 60

idloc, 60

init, 60

intcode, 60

intentry, 60

intret, 61

intsave, 61

intsave_n, 61

jmp_tab, 61

423

INDEX INDEX

maintext, 61

nvbit_n, 61

nvram, 49

nvram_n, 61

powerup, 61

pstrings, 61

ramdata, 39

rbit_n, 62

rbss, 25

rbss_n, 62

rdata_n, 62

reset_vec, 61

reset_wrap, 61

romdata, 39

strings, 61

stringtable, 61

struct, 62

temp, 62

text, 61

textn, 61

xtemp, 62

PSECT directive, 89, 93

PSECT directive flag

limit, 131

PSECT flags

abs, 93

bit, 93

class, 93

delta, 93

global, 93

limit, 94

local, 94

ovrld, 94

pure, 94

reloc, 94

size, 94

space, 94

with, 94

psect flags, 93

psect pragma directive, 11, 74

psects, 60, 89, 108

absolute, 93, 94

aligning within, 101

alignment of, 94

basic kinds, 108

class, 126, 131

compiler generated, 60

default, 91

delta value of, 127

differentiating ROM and RAM, 94

linking, 107

listing, 27

local, 108

maximum size of, 94

page boundaries and, 94

renaming, 74

specifying address ranges, 131

specifying addresses, 126, 129

user defined, 74

pseudo-ops

assembler, 91

pstrings psect, 61

pure PSECT flag, 94

putch function, 79, 225

putchar function, 226

puts function, 228

qsort function, 229

qualifier

bank1, 49

bank2, 49

bank3, 49

interrupt, 62

persistent, 49

volatile, 85

qualifiers, 48

and auto variables, 53

auto, 53

424

INDEX INDEX

const, 48

pointer, 50

special, 48

volatile, 48

quiet mode, 13

radix specifiers

assembly, 86

binary, 41

C source, 41

decimal, 41

hexadecimal, 41

octal, 41

RAM integrity test, 25, 162, 231

ram_test_failed function, 231

ramdata psect, 39

rand function, 232

rbit_n psect, 62

rbss psect, 25

rbss_n psect, 62

rdata_n psect, 62

read-only variables, 48

redirecting errors, 8

reference, 113, 125, 133

registers

special function, see special function regis-

ters

regsused pragma directive, 75

relative jump, 87

RELOC, 127, 129

reloc PSECT flag, 94

relocatable

object files, 107

relocation, 107

relocation information

preserving, 129

renaming psects, 74

REPT directive, 101

reserving memory, 23, 24

reset, 40

code executed after, 40

reset_vec psect, 61

reset_wrap psect, 61

resetbits runtime option, 25

return values, 55

romdata psect, 39

runtime environment, 24

runtime module, 4

RUNTIME option

clear, 25

clib, 25

download, 25

init, 25

keep, 25

osccal, 25

ramtest, 25

resetbits, 25

runtime startup

variable initialization, 39

runtime startup code, 38

runtime startup module, 25

scale value, 93

scanf function, 234

search path

header files, 9

segment selector, 127

segments, see psects, 113, 127, 133

serial I/O, 79

serial numbers, 26, 155

SET directive, 95

set directive, 84

setjmp function, 236

shift operations

result of, 59

shifting code, 15

sign extension when shifting, 59

SIGNAT directive, 103

425

INDEX INDEX

signat directive, 78

signature checking, 78

signatures, 103

sin function, 238

sinh function, 180

size of doubles, 16

size PSECT flag, 94

skipping applications, 26

source file

extensions, 37

source files, 37

SPACE assembler control, 105

space PSECT flag, 94

special characters, 85

special function registers, 69

in assembly code, 88

special type qualifiers, 48

sports cars, 87

sprintf function, 239

sqrt function, 240

srand function, 241

stack, 29

stack pointer, 29

standard libraries, 37

standard type qualifiers, 48

startup module, 4, 25

clearing bss, 108

data copying, 109

startup.as, 39

static variables, 53

STDIO, 79

storage class, 52

strcat function, 242

strchr function, 244

strcmp function, 246

strcpy function, 248

strcspn function, 250

strichr function, 244

stricmp function, 246

string literals, 42, 156

concatenation, 42

String packing, 156

strings

assembly, 86

storage location, 42, 156

type of, 42

strings psect, 61

stringtable psect, 61

stristr function, 262

strlen function, 251

strncat function, 252

strncmp function, 254

strncpy function, 256

strnicmp function, 254

strpbrk function, 258

strrchr function, 259

strrichr function, 259

strspn function, 261

strstr function, 262

strtok function, 263

struct psect, 62

structures

alignment,padding, 73

bit-fields, 46

qualifiers, 47

SUBTITLE assembler control, 105

SUMMARY option

file, 27

hex, 27

mem, 27

psect, 27

switch pragma directive, 76

switch type

auto, 76

direct table lookup, 76

symbol files, 9, 37

Avocet format, 132

enhanced, 128

426

INDEX INDEX

generating, 128

local symbols in, 132

old style, 127

removing local symbols from, 14

removing symbols from, 131

source level, 9

symbol tables, 129, 132

sorting, 129

symbols

assembler-generated, 87

global, 108, 138

linker defined, 79

undefined, 132

tablreg, 76

tan function, 265

tanh function, 180

temp psect, 62

text psect, 61

textn psect, 61

time function, 266

time-out status bit, 25

TITLE assembler control, 106

toascii function, 268

tolower function, 268

toupper function, 268

tris instruction, 35

type qualifiers, 48

typographic conventions, 1

unamed structure members, 47

ungetch function, 269

unnamed psect, 91

unsigned integer suffix, 41

unused memory

filling, 15, 147

utilities, 107

va_arg function, 270

va_end function, 270

va_start function, 270

variable argument list, 54

variable initialization, 39

variables

absolute, 53

accessing from assembler, 69

auto, 53

char types, 44

floating point types, 45

int types, 44

local, 52

static, 53

unique length of, 12

verbose, 14

version number, 27

volatile qualifier, 48, 85

vscanf function, 234

W register, 76

warning level, 28

setting, 132

warning message format, 28

warnings

level displayed, 28

suppressing, 132

with PSECT flag, 94

word addresses, 150

word boundaries, 94

XREF assembler control, 106

xtemp psect, 62

xtoi function, 272

427

INDEX INDEX

428

PICC Command-line Options

Option Meaning

-C Compile to object files only

-Dmacro Define preprocessor macro

-E+file Redirect and optionally append errors to a file

-Gfile Generate source-level debugging information

-Ipath Specify a directory pathname for include files

-Llibrary Specify a library to be scanned by the linker

-L-option Specify -option to be passed directly to the linker

-Mfile Request generation of a MAP file

-Nsize Specify identifier length

-Ofile Set basename for output files

-P Preprocess assembler files

-Q Specify quiet mode

-S Compile to assembler source files only

-Usymbol Undefine a predefined preprocessor symbol

-V Verbose: display compiler pass command lines

-X Eliminate local symbols from symbol table

--ASMLIST Generate assembler .LST file for each compilation

--CHAR=type Make the default char signed or unsigned

--CHECKSUM=start-end@dest Calculate a checksum over an address range

--CHIP=processor Selects which processor to compile for

--CHIPINFO Displays a list of supported processors

--CODEOFFSET=address Offset program code to address

--CR=file Generate cross-reference listing

--DEBUGGER=type Select the debugger that will be used

--DOUBLE=type Selects size/kind of double types

--ECHO Echo the PICC command line

--ERRFORMAT<=format> Format error message strings to the given style

--ERRORS=number Sets the maximun number of errors displayed

--FILL=opcode Fill unused program locations with this hexadecimal

code

--GETOPTION=app,file Get the command line options for the named applica-

tion

--HELP<=option> Display the compiler’s command line options

--IDE=ide Configure the compiler for use by the named IDE

continued. . .

PICC Command-line Options

Option Meaning

--LANG=language Specify language for compiler messages

--MEMMAP=file Display memory summary information for the map

file

--MSGFORMAT<=format> Format general message strings to the given style

--MSGDISABLE<=numbers> Disable these warning or advisory messages

--NODEL Do not remove temporary files generated by the com-

piler

--NOEXEC Go through the motions of compiling without actually

compiling

--OPT<=type> Enable general compiler optimizations

--OUTDIR Specify output files directory

--OUTPUT=type Generate output file type

--PRE Produce preprocessed source files

--PROTO Generate function prototype information

--RAM=lo-hi<,lo-hi,...> Specify and/or reserve RAM ranges

--ROM=lo-hi<,lo-hi,...> Specify and/or reserve ROM ranges

--RUNTIME=type Configure the C runtime libraries to the specified type

--SCANDEP Generate file dependency “.DEP files”

--SERIAL=code@address Store this hexadecimal code at an address in program

memory

--SETOPTION=app,file Set the command line options for the named applica-

tion

--SETUP=argument Setup the product

--STRICT Enable strict ANSI keyword conformance

--SUMMARY=type Selects the type of memory summary output

--TIME Show execution time in each stage of build process

--VER Display the compiler’s version number

--WARN=level Set the compiler’s warning level

--WARNFORMAT=format Format warning message strings to given style

	Table of Contents
	List of Tables
	Introduction
	Typographic conventions

	PICC Command-line Driver
	Long Command Lines
	Default Libraries
	Standard Runtime Code
	PICC Compiler Options
	-C: Compile to Object File
	-Dmacro: Define Macro
	-Efile: Redirect Compiler Errors to a File
	-Gfile: Generate Source-level Symbol File
	-Ipath: Include Search Path
	-Llibrary: Scan Library
	-L-option: Adjust Linker Options Directly
	-Mfile: Generate Map File
	-Nsize: Identifier Length
	-Ofile: Specify Output File
	-P: Preprocess Assembly Files
	-Q: Quiet Mode
	-S: Compile to Assembler Code
	-Umacro: Undefine a Macro
	-V: Verbose Compile
	-X: Strip Local Symbols
	--ASMLIST: Generate Assembler .LST Files
	--CHAR=type: Make Char Type Signed or Unsigned
	--CHECKSUM=start-end@destination<,specs>: Calculate a checksum
	--CHIP=processor: Define Processor
	--CHIPINFO: Display List of Supported Processors
	--CODEOFFSET: Offset Program Code to Address
	--CR=file: Generate Cross Reference Listing
	--DEBUGGER=type: Select Debugger Type
	--DOUBLE=type: Select kind of Double Types
	--ECHO: Echo compiler command line
	--ERRFORMAT=format: Define Format for Compiler Messages
	Using the Format Options
	Modifying the Standard Format

	--ERRORS=number: Maximum Number of Errors
	--FILL=opcode: Fill Unused Program Memory
	--GETOPTION=app,file: Get Command-line Options
	--HELP<=option>: Display Help
	--IDE=type: Specify the IDE being used
	--LANG=language: Specify the Language for Messages
	--MEMMAP=file: Display Memory Map
	--MSGDISABLE=messagelist: Disable Warning Messages
	--MSGFORMAT=format: Set Advisory Message Format
	--NODEL: Do not remove temporary files
	--NOEXEC: Don't Execute Compiler
	--OPT<=type>: Invoke Compiler Optimizations
	--OUTDIR: Specify a directory for output files
	--OUTPUT=type: Specify Output File Type
	--PRE: Produce Preprocessed Source Code
	--PROTO: Generate Prototypes
	--RAM=lo-hi,<lo-hi,...>: Specify Additional RAM Ranges
	--ROM=lo-hi,<lo-hi,...>|tag: Specify Additional ROM Ranges
	--RUNTIME=type: Specify Runtime Environment
	--SCANDEP: Scan for Dependencies
	--SERIAL=hexcode@address: Store a Value at this Program Memory Address
	--SETOPTION=app,file: Set The Command-line Options for Application
	--SETUP=dir: Setup the product
	--STRICT: Strict ANSI Conformance
	--SUMMARY=type: Select Memory Summary Output Type
	--TIME: Report time taken for each phase of build process
	--VER: Display The Compiler's Version Information
	--WARN=level: Set Warning Level
	--WARNFORMAT=format: Set Warning Message Format

	C Language Features
	ANSI Standard Issues
	Implementation-defined behaviour

	Processor-related Features
	Stack
	Configuration Fuses
	ID Locations
	Bit Instructions
	EEPROM Access
	The eeprom variable qualifier
	The __EEPROM_DATA() macro
	EEPROM Access Functions
	EEPROM Access Macros

	Flash Runtime Access
	Flash Access Macros
	Flash Access Functions

	Baseline PIC special instructions
	The OPTION instruction
	The TRIS instructions
	Calibration Space
	Oscillator calibration constants

	Files
	Source Files
	Symbol Files
	Standard Libraries
	Runtime startup Modules
	Initialization of Data psects
	Clearing the Bss Psects
	Linking in the C Libraries
	The powerup Routine

	Supported Data Types and Variables
	Radix Specifiers and Constants
	Bit Data Types and Variables
	8-Bit Integer Data Types and Variables
	16-Bit Integer Data Types
	32-Bit Integer Data Types and Variables
	Floating Point Types and Variables
	Structures and Unions
	Bit-fields in Structures
	Structure and Union Qualifiers

	Standard Type Qualifiers
	Const and Volatile Type Qualifiers

	Special Type Qualifiers
	Persistent Type Qualifier
	Bank1, Bank2 and Bank3 Type Qualifiers

	Eeprom Type Qualifier
	Pointer Types
	Baseline Pointers
	Midrange Pointers
	Highend Pointers
	Qualifiers and Pointers

	Storage Class and Object Placement
	Local Variables
	Auto Variables
	Static Variables

	Absolute Variables

	Functions
	Function Argument Passing
	Function Return Values
	Structure Return Values

	Function Calling Convention
	Operators
	Integral Promotion
	Shifts applied to integral types
	Division and modulus with integral types

	Psects
	Compiler-generated Psects

	Interrupt Handling in C
	Interrupt Functions
	Midrange Interrupt Functions
	Highend Interrupt Functions
	Context Saving on Interrupts
	MidRange Context Saving
	High-End Context Saving
	Context Restoration
	Interrupt Levels
	Multiple Interrupts on High-End PICs
	Enabling Interrupts

	Mixing C and Assembler Code
	External Assembly Language Functions
	#asm, #endasm and asm()
	Accessing C objects from within Assembly Code
	Equivalent Assembly Symbols
	Accessing special function register names from assembler

	Preprocessing
	Preprocessor Directives
	Predefined Macros
	Pragma Directives
	The #pragma inline Directive
	The #pragma jis and nojis Directives
	The #pragma pack Directive
	The #pragma printf_check Directive
	The #pragma psect Directive
	The #pragma regsused Directive
	The #pragma switch Directive

	Linking Programs
	Replacing Library Modules
	Signature Checking
	Linker-Defined Symbols

	Standard I/O Functions and Serial I/O

	Macro Assembler
	Assembler Usage
	Assembler Options
	HI-TECH C Assembly Language
	Statement Formats
	Characters
	Delimiters
	Special Characters

	Comments
	Special Comment Strings

	Constants
	Numeric Constants
	Character Constants and Strings

	Identifiers
	Significance of Identifiers
	Assembler-Generated Identifiers
	Location Counter
	Register Symbols
	Symbolic Labels

	Expressions
	Program Sections
	Assembler Directives
	GLOBAL
	END
	PSECT
	ORG
	EQU
	SET
	DB
	DW
	DS
	FNADDR
	FNARG
	FNBREAK
	FNCALL
	FNCONF
	FNINDIR
	FNSIZE
	FNROOT
	IF, ELSIF, ELSE and ENDIF
	MACRO and ENDM
	LOCAL
	ALIGN
	REPT
	IRP and IRPC
	PROCESSOR
	SIGNAT

	Assembler Controls
	COND
	EXPAND
	INCLUDE
	LIST
	NOCOND
	NOEXPAND
	NOLIST
	NOXREF
	PAGE
	SPACE
	SUBTITLE
	TITLE
	XREF

	Linker and Utilities
	Introduction
	Relocation and Psects
	Program Sections
	Local Psects
	Global Symbols
	Link and load addresses
	Compiled Stack Operation
	Parameters involving Function Calls
	Implicit Calls to Assembler Library Routines

	Map Files
	Generation
	Contents
	General Information
	Call Graph Information
	Psect Information listed by Module
	Psect Information listed by Class
	Segment Listing
	Unused Address Ranges
	Symbol Table

	Operation
	Numbers in linker options
	-Aclass=low-high,...
	-Cx
	-Cpsect=class
	-Dclass=delta
	-Dsymfile
	-Eerrfile
	-F
	-Gspec
	-Hsymfile
	-H+symfile
	-Jerrcount
	-K
	-I
	-L
	-LM
	-Mmapfile
	-N, -Ns and-Nc
	-Ooutfile
	-Pspec
	-Qprocessor
	-S
	-Sclass=limit[, bound]
	-Usymbol
	-Vavmap
	-Wnum
	-X
	-Z

	Invoking the Linker
	Map Files
	Call Graph Information

	Librarian
	The Library Format
	Using the Librarian
	Examples
	Supplying Arguments
	Listing Format
	Ordering of Libraries
	Error Messages

	Objtohex
	Checksum Specifications

	Cref
	-Fprefix
	-Hheading
	-Llen
	-Ooutfile
	-Pwidth
	-Sstoplist
	-Xprefix

	Cromwell
	-Pname[,architecture]
	-N
	-D
	-C
	-F
	-Okey
	-Ikey
	-L
	-E
	-B
	-M
	-V

	Hexmate
	Hexmate Command Line Options
	specifications,filename.hex
	+ Prefix
	-ADDRESSING
	-BREAK
	-CK
	-FILL
	-FIND
	-FIND...,DELETE
	-FIND...,REPLACE
	-FORMAT
	-HELP
	-LOGFILE
	-Ofile
	-SERIAL
	-SIZE
	-STRING
	-STRPACK

	Library Functions
	Error and Warning Messages
	Chip Information
	Index

