Power MOSFET, 85 A, 24 V, **N-Channel DPAK/IPAK**

Features

- Planar HD3e Process for Fast Switching Performance
- Low R_{DS(on)} to Minimize Conduction Losses
- Low Capacitance to Minimize Driver Losses
- Low Gate Charge to Minimize Switching Losses
- Pb–Free Packages are Available

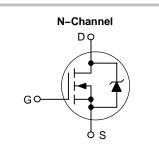
Applications

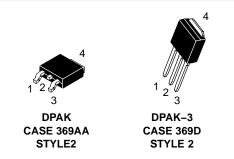
- CPU Power Delivery
- DC–DC Converters
- Low Side Switching

MAXIMUM RATINGS (T_J = 25°C unless otherwise stated)

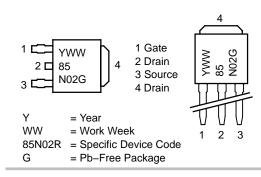
Para	Parameter				Unit
Drain-to-Source Vo	Drain-to-Source Voltage			24	V
Gate-to-Source Vol	tage		V _{GS}	±20	V
Continuous Drain		$T_A = 25^{\circ}C$	۱ _D	17	A
Current R _{θJA} (Note 1)		$T_A = 85^{\circ}C$		12	
Power Dissipation $R_{\theta JA}$ (Note 1)		$T_A = 25^{\circ}C$	PD	2.4	W
Continuous Drain		$T_A = 25^{\circ}C$	۱ _D	12	А
Current R _{θJA} (Note 2)	Steady	T _A = 85°C		8.8	
Power Dissipation $R_{\theta JA}$ (Note 2)	State	T _A = 25°C	PD	1.25	W
Continuous Drain Current R _{0.IC}		T _C = 25°C	۱ _D	85	A
(Note 1)		T _C = 85°C		58	
Power Dissipation $R_{\theta JC}$ (Note 1)		T _C = 25°C	PD	78.1	W
Pulsed Drain Current	T _A = 25°	C, t _p = 10μs	I _{DM}	192	A
Current Limited by F	ackage	$T_A = 25^{\circ}C$	I _{DmaxPkg}	45	А
Operating Junction a Temperature	and Storage	•	T _J , T _{STG}	–55 to +150	°C
Source Current (Boo	Source Current (Body Diode)			78	А
Drain to Source dV/dt			dV/dt	6	V/ns
Single Pulse Drain–to–Source Avalanche Energy T _J = 25°C, V _{DD} = 30 V, V _{GS} = 10 V, I _L = 13 A _{pk} , L = 1.0 mH, R _G = 25 Ω)			EAS	85	mJ
Lead Temperature for (1/8" from case for 1		Purposes	ΤL	260	°C

Stresses exceeding Maximum Ratings may damage the device. Maximum Ratings are stress ratings only. Functional operation above the Recommended Operating Conditions is not implied. Extended exposure to stresses above the Recommended Operating Conditions may affect device reliability. 1. Surface-mounted on FR4 board using 1 sq-in pad, 1 oz Cu.


2. Surface-mounted on FR4 board using the minimum recommended pad size.



ON Semiconductor®


http://onsemi.com

V _{(BR)DSS}	R _{DS(ON)} MAX	I _D MAX
24 V	5.2 mΩ @ 10 V	85 A

ORDERING INFORMATION

See detailed ordering and shipping information in the package dimensions section on page 3 of this data sheet.

THERMAL RESISTANCE MAXIMUM RATINGS

Parameter	Symbol	Value	Unit
Junction-to-Case (Drain)	$R_{ ext{ heta}JC}$	1.6	°C/W
Junction-to-TAB (Drain)	$R_{ hetaJC-TAB}$	3.5	
Junction-to-Ambient - Steady State (Note 1)	$R_{ hetaJA}$	52	
Junction-to-Ambient - Steady State (Note 2)	$R_{ hetaJA}$	100	

Surface-mounted on FR4 board using 1 sq-in pad, 1 oz Cu.
 Surface-mounted on FR4 board using the minimum recommended pad size.

ELECTRICAL CHARACTERISTICS (T_J = 25° C unless otherwise specified)

Parameter	Symbol	Test Cond	ition	Min	Тур	Max	Unit	
OFF CHARACTERISTICS						-		
Drain-to-Source Breakdown Voltage	V _{(BR)DSS}	$V_{GS} = 0 V, I_D =$	= 250 μA	24	28		V	
Drain-to-Source Breakdown Voltage Temperature Coefficient	V _{(BR)DSS} / T _J				20.5		mV/°C	
Zero Gate Voltage Drain Current	I _{DSS}	$V_{GS} = 0 V$, $T_{J} = 25 °C$				1.5		
		$V_{DS} = 24 V$	T _J = 125°C			10	μΑ	
Gate-to-Source Leakage Current	I _{GSS}	$V_{DS} = 0 V, V_{GS}$	= ±20 V			±100	nA	
ON CHARACTERISTICS (Note 3)						-		
Gate Threshold Voltage	V _{GS(TH)}	$V_{GS} = V_{DS}, I_D$	= 250 μA	1.0	1.5	2.0	V	
Negative Threshold Temperature Coefficient	V _{GS(TH)} /T _J				4		mV/°C	
Drain-to-Source on Resistance	R _{DS(ON)}	V _{GS} = 10 V	I _D = 20 A		4.8	5.2		
		$V_{GS} = 4.5 V$	I _D = 20 A		6.5		mΩ	
Forward Transconductance	9 _{FS}	V _{DS} = 10 V, I _E	₀ = 15 A		38		S	
CHARGES AND CAPACITANCES						-		
Input Capacitance	C _{ISS}				2050			
Output Capacitance	C _{OSS}	V _{GS} = 0 V, f = 1.0 M	Hz, V _{DS} = 20 V		871		pF	
Reverse Transfer Capacitance	C _{RSS}				359			
Total Gate Charge	Q _{G(TOT)}				17.7			
Threshold Gate Charge	Q _{G(TH)}	V _{GS} = 5.0 V, V _{DS} = 10 V; I _D = 10 A			1.6			
Gate-to-Source Charge	Q _{GS}				2.6		nC	
Gate-to-Drain Charge	Q_{GD}				7.1		1	
Total Gate Charge	Q _{G(TOT)}	V _{GS} = 10 V, V _D I _D = 10			35.1		nC	

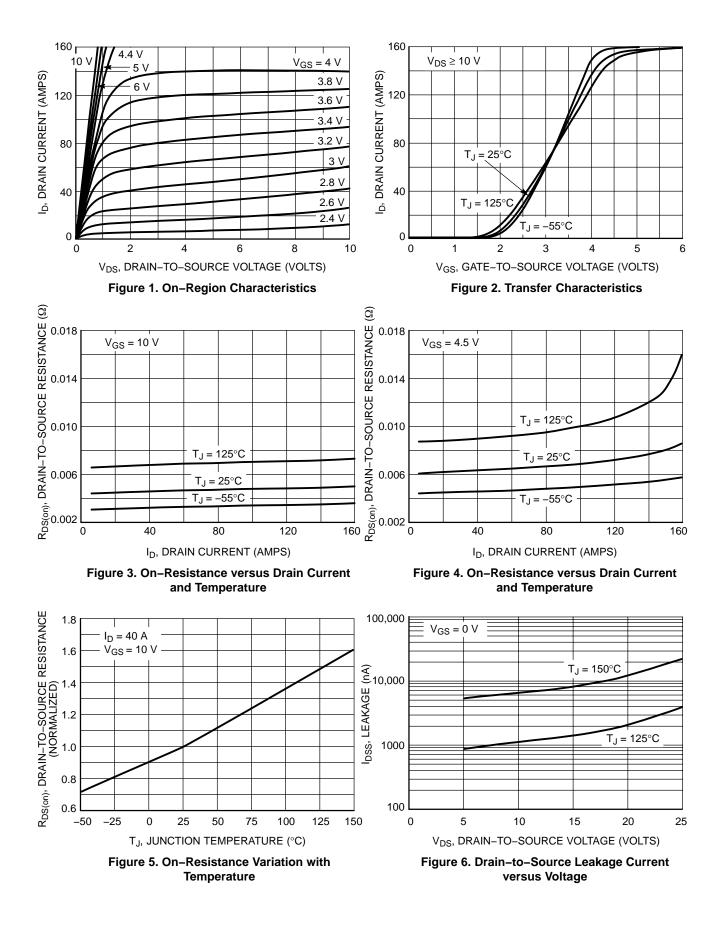
SWITCHING CHARACTERISTICS (Note 4)

Turn-On Delay Time	t _{d(ON)}		6.3	
Rise Time	t _r	V _{GS} = 10 V, V _{DS} = 10 V,	77	20
Turn-Off Delay Time	t _{d(OFF)}	$I_{\rm D} = 30$ A, $R_{\rm G} = 3.0 \ \Omega$	25	ns
Fall Time	t _f		12	

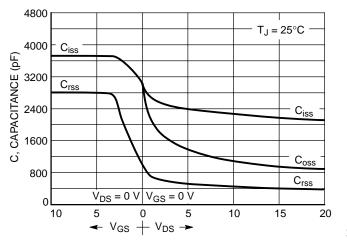
3. Pulse Test: pulse width \leq 300 µs, duty cycle \leq 2%.

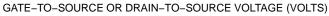
4. Switching characteristics are independent of operating junction temperatures.

ELECTRICAL CHARACTERISTICS (T_J = $25^{\circ}C$ unless otherwise specified)


Parameter	Symbol	Test Condition		Min	Тур	Max	Unit
DRAIN-SOURCE DIODE CHARACT	ERISTICS						
Forward Diode Voltage	V _{SD}	$V_{GS} = 0 V, I_{S} = 30 A T_{J} = 25^{\circ}C T_{J} = 125^{\circ}C$	$T_J = 25^{\circ}C$		0.81	1.0	v
				0.65		V	
Reverse Recovery Time	t _{RR}	V _{GS} = 0 V, dIS/dt = 100 A/μs, I _S = 20 A			37.5		
Charge Time	t _a				16.8		ns
Discharge Time	t _b				20.7		
Reverse Recovery Charge	Q _{RR}				27		nC
PACKAGE PARASITIC VALUES							
Source Inductance	L _S				2.49		nH
Drain Inductance, DPAK	L _D	T _A = 25°C			0.0164		
Drain Inductance, IPAK*	L _D				1.88		
Gate Inductance	L _G				3.46		1
Gate Resistance	R _G				1.2		Ω

*Assume standoff of 110 mils.


ORDERING INFORMATION


Device	Package	Shipping [†]
NTD85N02R	DPAK	
NTD85N02RG	DPAK (Pb-Free)	75 Units / Rail
NTD85N02R-001	IPAK	
NTD85N02R-1G	IPAK (Pb–Free)	800 / Tape & Reel
NTD85N02RT4	DPAK	
NTD85N02RT4G	DPAK (Pb-Free)	2500 / Tape & Reel

†For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specifications Brochure, BRD8011/D.

POWER MOSFET SWITCHING

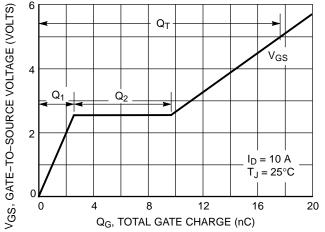


Figure 8. Gate–To–Source and Drain–To–Source Voltage versus Total Charge

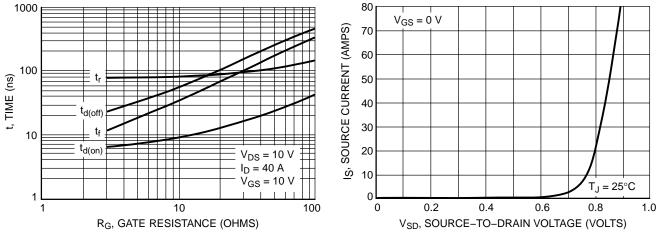
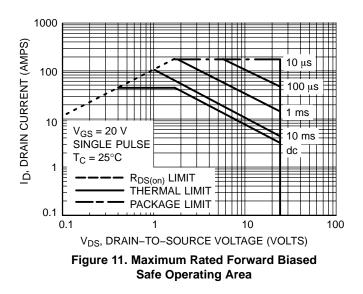



Figure 9. Resistive Switching Time Variation versus Gate Resistance

Figure 10. Diode Forward Voltage versus Current

http://onsemi.com 5

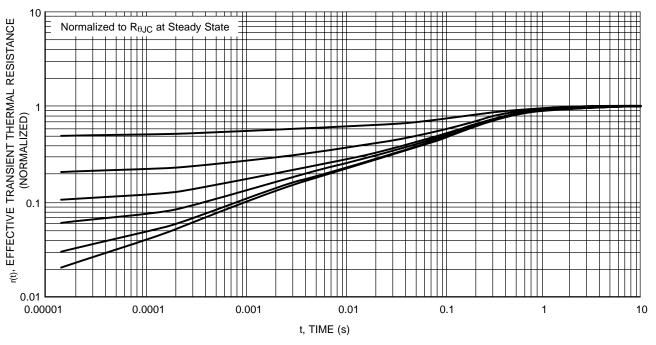


Figure 12. Thermal Response

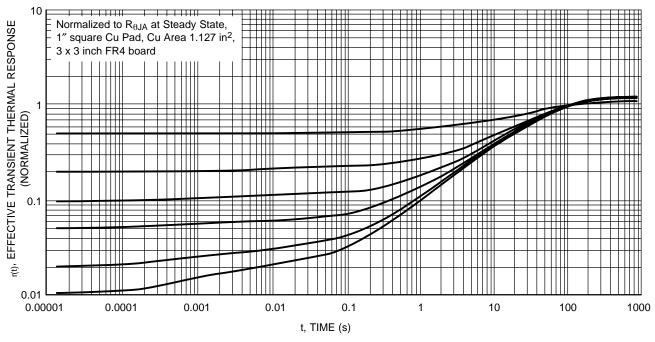
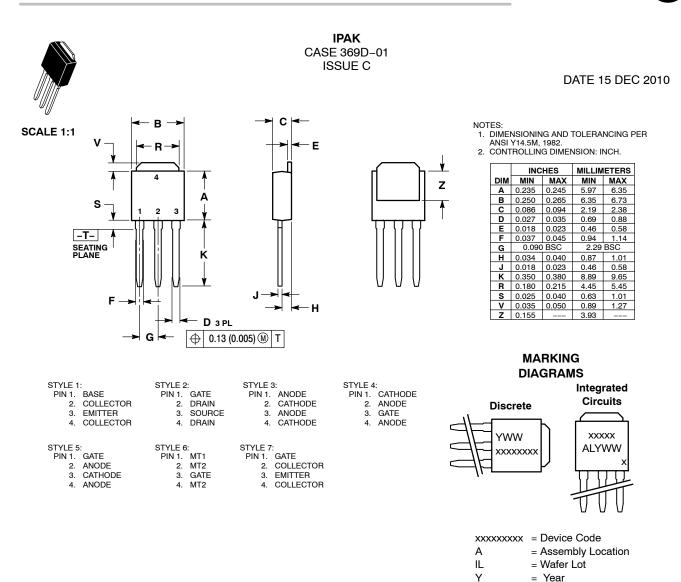



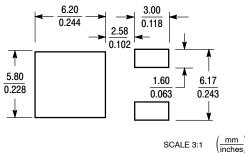
Figure 13. Thermal Response

ON

DOCUMENT NUMBER:	98AON10528D	Electronic versions are uncontrolled except when accessed directly from the Document Repositor Printed versions are uncontrolled except when stamped "CONTROLLED COPY" in red.				
DESCRIPTION: IPAK (DPAK INSERTION MOUNT) PAGE 1 OF						
ON Semiconductor reserves the right the suitability of its products for any pa	ON Semiconductor and are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. ON Semiconductor does not convey any license under its patent rights nor the					

WW

= Work Week


© Semiconductor Components Industries, LLC, 2019

rights of others.

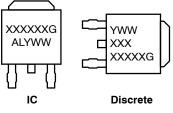
1

L3

L4

*For additional information on our Pb-Free strategy and soldering details, please download the ON Semiconductor Soldering and Mounting Techniques Reference Manual, SOLDERRM/D.

DATE 03 JUN 2010


1. DIMENSIONING AND TOLERANCING PER ASME Y14.5M, 1994.

ON Semiconductor

- 2. CONTROLLING DIMENSION: INCHES. 3. THERMAL PAD CONTOUR OPTIONAL WITHIN DI-
- THERMAL FAD CONTOR OF FIGURE WITHIN DEMONSIONS b3, L3 and Z.
 DIMENSIONS D AND E DO NOT INCLUDE MOLD FLASH, PROTRUSIONS, OR BURRS. MOLD FLASH, PROTRUSIONS, OR GATE BURRS SHALL
- NOT EXCEED 0.006 INCHES PER SIDE 5. DIMENSIONS D AND E ARE DETERMINED AT THE OUTERMOST EXTREMES OF THE PLASTIC BODY.
- 6. DATUMS A AND B ARE DETERMINED AT DATUM

	INC	HES	MILLIN	IETERS
DIM	MIN	MAX	MIN	MAX
Α	0.086	0.094	2.18	2.38
A1	0.000	0.005	0.00	0.13
b	0.025	0.035	0.63	0.89
b2	0.030	0.045	0.76	1.14
b3	0.180	0.215	4.57	5.46
С	0.018	0.024	0.46	0.61
c2	0.018	0.024	0.46	0.61
D	0.235	0.245	5.97	6.22
Е	0.250	0.265	6.35	6.73
е	0.090	BSC	2.29	BSC
Н	0.370	0.410	9.40	10.41
L	0.055	0.070	1.40	1.78
L1	0.108	REF	2.74	REF
L2	0.020 BSC		0.51	BSC
L3	0.035	0.050	0.89	1.27
L4		0.040		1.01
Ζ	0.155		3.93	

MARKING DIAGRAM*

= Device Code = Assembly Location L = Wafer Lot Y = Year = Work Week WW G = Pb-Free Package

*This information is generic. Please refer to device data sheet for actual part marking.

DOCUMENT NUMBER:	98AON13126D	Electronic versions are uncontrolled except when accessed directly from the Document Repository. Printed versions are uncontrolled except when stamped "CONTROLLED COPY" in red.				
DESCRIPTION:	DPAK (SINGLE GAUGE)		PAGE 1 OF 1			
ON Semiconductor and are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. ON Semiconductor does not convey any license under its patent rights nor the						

rights of others.

onsemi, ONSEMI, and other names, marks, and brands are registered and/or common law trademarks of Semiconductor Components Industries, LLC dba "onsemi" or its affiliates and/or subsidiaries in the United States and/or other countries. onsemi owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of onsemi's product/patent coverage may be accessed at <u>www.onsemi.com/site/pdf/Patent-Marking.pdf</u>. onsemi reserves the right to make changes at any time to any products or information herein, without notice. The information herein is provided "as-is" and onsemi makes no warranty, representation or guarantee regarding the accuracy of the information, product features, availability, functionality, or suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or indental damages. Buyer is responsible for its products and applications using onsemi products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by onsemi. "Typical" parameters which may be provided in onsemi data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. onsemi does not convey any license under any of its intellectual property rights nor the rights of others. onsemi products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification. Buyer shall indemnify and hold onsemi and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs,

ADDITIONAL INFORMATION

TECHNICAL PUBLICATIONS:

Technical Library: www.onsemi.com/design/resources/technical-documentation onsemi Website: www.onsemi.com ONLINE SUPPORT: <u>www.onsemi.com/support</u> For additional information, please contact your local Sales Representative at www.onsemi.com/support/sales