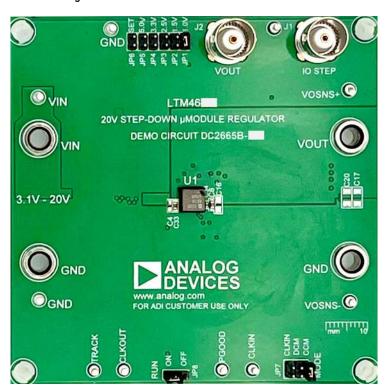


LTM4657 20V_{IN,} 8A Step-Down µModule Regulator

DESCRIPTION

Demonstration circuit 2665B-C features the LTM®4657 µModule® regulator, a high performance, high efficiency step-down regulator. The LTM4657 is a complete DC/DC point-of-load regulator in a thermally enhanced 6.25mm × 6.25mm × 3.87mm BGA package. The LTM4657 has an operating input voltage range of 3.1V to 20V and provides an output current up to 8A. The output voltage is programmable from 0.5V to 5.5V and can be remotely sensed. The stacked inductor design improves thermal dissipation and significantly reduces the package area. Output


voltage tracking is available through the TRACK/SS pin for supply rail sequencing. External clock synchronization is available through the SYNC/MODE pin. For high efficiency at low load currents, select discontinuous current mode (DCM) operation using the MODE jumper (JP7) in less noise sensitive applications. Refer to the LTM4657 data sheet in conjunction with this demo manual for working on or modifying DC2665B-C.

Design files for this circuit board are available.

All registered trademarks and trademarks are the property of their respective owners.

BOARD PHOTO

Part marking is either ink mark or laser mark

PERFORMANCE SUMMARY Specifications are at T_A = 25°C

PARAMETER	CONDITIONS	MIN	TYP	MAX	UNITS
Input Voltage Range		3.1		20	V
Output Voltage, V _{OUT}	Jumper Selection on JP1 Jumper Selection on JP2 Jumper Selection on JP3 Jumper Selection on JP4 Jumper Selection on JP5	0.98 1.47 2.45 3.23 4.9	1.0 1.5 2.5 3.3 5.0	1.02 1.53 2.55 3.37 5.1	V V V V
Maximum Continuous Output Current	Derating Is Necessary for Certain Operating Conditions (See Data Sheet for Details)		8		A
Default Operating Frequency			500		kHz
Efficiency	V _{IN} = 12V, V _{OUT} = 1V, I _{OUT} = 8A		85.8		%

QUICK START PROCEDURE

Demonstration circuit 2665B-C is an easy way to evaluate the performance of the LTM4657. Refer to Figure 1 for test setup connections and use the following the procedure.

1. With power off, place the jumpers in the following positions:

JUMPER	POSITION	FUNCTION
JP8	JP7	JP1 to JP6
RUN	MODE	V _{OUT} Select
ON	CCM	1V

- 2. Before connecting the input supply, load, and meters, preset the input voltage supply between 3.1V to 20V. Preset the load current to 0A.
- 3. With the power off, connect the load, input voltage supply, and meters as shown in Figure 1.
- 4. Turn on the input power supply. The output voltage meters for each phase display the ±1.2% programmed output voltage.

- 5. Once the proper output voltage is established, adjust the load current in the OA to 8A range and observe the load regulation, efficiency, and other parameters. Measure the output voltage ripple across the furthest output cap with a BNC cable and oscilloscope from J2.
- 6. Place the MODE pin jumper (JP7) in the DCM position to observe increased light load efficiency.
- 7. For optional load transient testing, an onboard transient circuit is provided to measure transient response. Place a positive pulse signal between the IO_STEP_CLK (E10) pin and GND pin. The pulse amplitude sets the load step current amplitude. Keep the pulse width short (<1ms) and the pulse duty cycle low (<15%) to limit the thermal stress on the load transient circuit. Monitor the load step with a BNC connected to J1 (5mV/A).

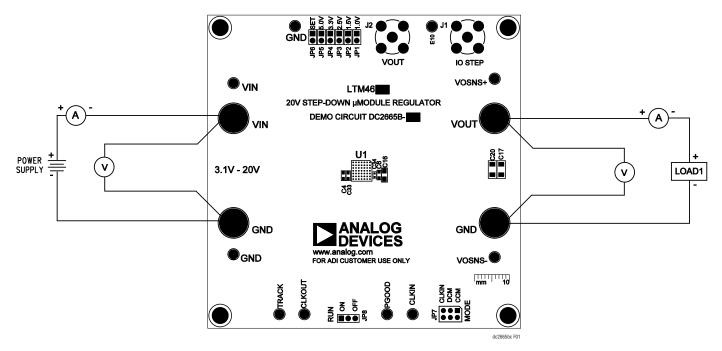


Figure 1. Test Setup of DC2665B-C

NOTES:

1. To achieve the minimum output ripple voltage, optimize the operation frequency at different input and output voltages. Suggested operation frequencies at different voltages are shown in Table 1. Adjust the operation frequency by changing the value of R_{fSET} (R5). Refer to the LTM4657 data sheet for detailed calculation of R_{fSET} (R5).

Table 1. Suggested Operation Frequencies

	3.3V _{IN}			5V _{IN}			12V _{IN}					
V _{OUT} (V)	1	1.5	2.5	1	1.5	2.5	3.3	1	1.5	2.5	3.3	5
f _{SW} (kHz)	500	650	800	500	650	800	1000	500	650	800	1000	1250

2. For applications that require small output voltage ripple, add shunt-through three-terminal capacitors on the output at C41 and C42.

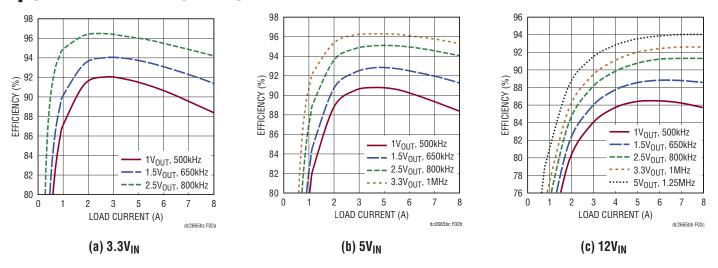


Figure 2. Measured Supply Efficiency (CCM Efficiency vs Load Current)

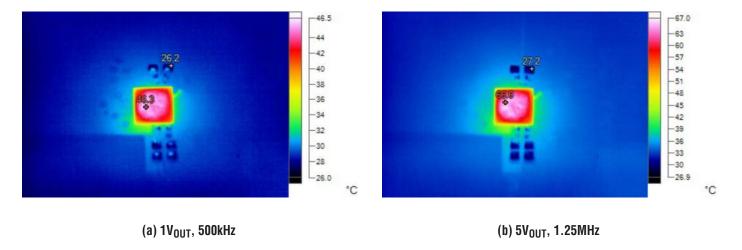
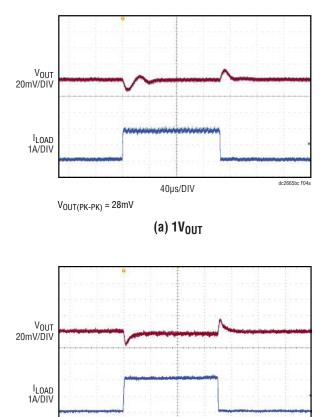



Figure 3. Measured Thermal Capture at $12V_{IN}$, $I_{OUT} = 8A$ at $25^{\circ}C$ Ambient with No Airflow

(b) 5V_{OUT}

40µs/DIV

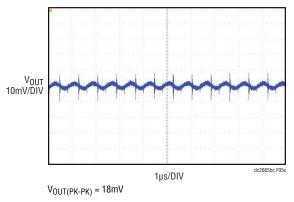
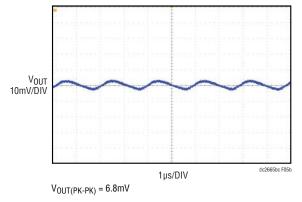
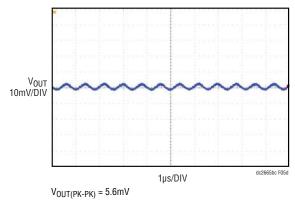

dc2665bc F04b

Figure 4. Load Transient (4A to 6A) Response Waveform at $12V_{IN}$


 $V_{OUT(PK-PK)} = 32.8 \text{mV}$

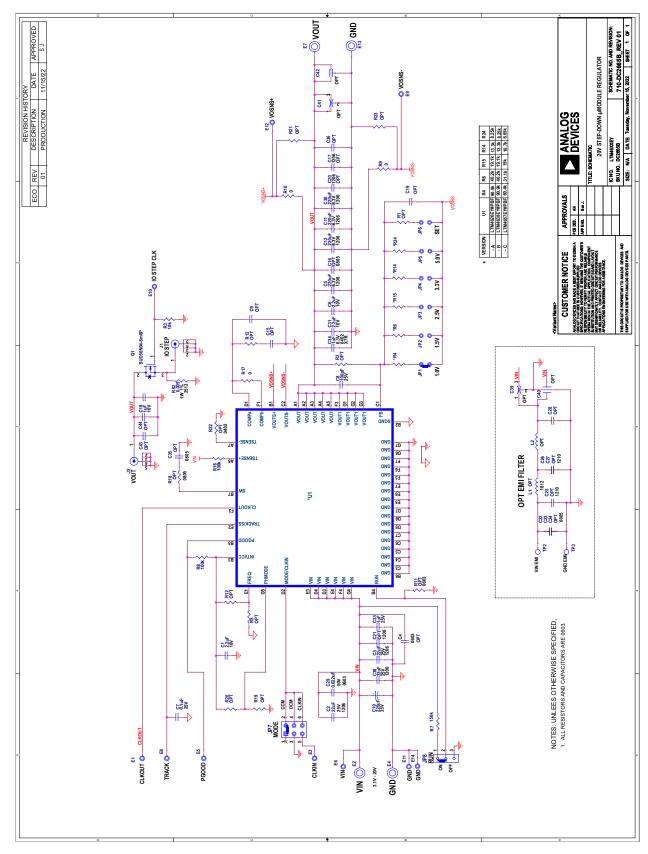

(a) $1V_{OUT}$, 500kHz, Full Bandwidth at 500MHz

(c) $5V_{OUT}$, 1.25MHz, Full Bandwidth at 500MHz

(b) 1V_{OUT}, 500kHz, 20MHz Bandwidth

(d) $5V_{OUT}$, 1.25MHz, 20MHz Bandwidth

Figure 5. Tested V_{OUT} AC Ripple at $12V_{IN}$, , I_{OUT} = 8A, V_{OUT} Ripple Is Tested Across C12


PARTS LIST

ITEM	QTY	REFERENCE	PART DESCRIPTION	MANUFACTURER/PART NUMBER	
Required	Circuit C	omponents	·	·	
1	3	C1, C6, C31	CAP., 2.2µF, X7R, 10V, 20%, 0603	TDK, C1608X7R1A225M080AC	
2	3	C2, C3, C38	CAP., 22µF, X5R, 25V, 10%, 1206	AVX, 12063D226KAT2A	
3	1	C33	CAP, 1µF, X7R, 25V, 10%, 0603	TDK, C1608X7R1E105K080AB	
4	4	C5, C11, C12, C30	CAP., 220µF, X5R, 6.3V, 20%, 1206	MURATA, GRM31CR60J227ME11L	
5	1	C7	CAP, 0.1µF, X7R, 25V, 10%, 0603	AVX, 06033C104KAT2A	
6	1	C8	CAP, 100pF, X7R, 25V, 5%, 0603	AVX, 06033C101JAT2A	
7	1	C10	CAP., 220µF, ALUM HYB, 35V, 20%	SUN ELECTRONIC, 35HVH220M	
8	1	C18	CAP, 1µF, X7R, 10V, 20%, 0603	AVX, 0603ZC105MAT2A	
9	1	C29	CAP, 0.022µF, X7R, 50V, 10%, 0603	KEMET, C0603C223K5RAC7867	

PARTS LIST

ITEM	QTY	REFERENCE	PART DESCRIPTION MANUFACTURER/PART NUMBER		
10	1	C34	CAP, 1µF, X7R, 6.3V, 10%, 0402	MURATA, GRM155R70J105KA12D	
11	1	R3	RES., 10k, 1%, 1/10W, 0603	VISHAY, CRCW060310K0FKEAC	
12	1	R4	RES., 60.4k, 1%, 1/10W, 0603	VISHAY, CRCW060360K4FKEA	
13	1	R6	RES., 30.1k, 1%, 1/10W, 0603	VISHAY, CRCW060330K1FKEA	
14	1	R14	RES., 10.7k, 1%, 1/10W, 0603	YAGEO, RC0603FR-0710K7L	
15	1	R15	RES., 15k, 1%, 1/10W, 0603	VISHAY, CRCW060315K0FKEA	
16	1	R24	RES., 6.65k, 1% 1/10W 0603	YAGEO, RC0603FR-076K65L	
17	2	R8, R16	RES., 100k, 1%, 1/10W, 0603	STACKPOLE ELECTRONICS, RMCF0603FG100K	
18	2	R9, R10	RES., 0Ω, 5%, 1/16W, 0402	ROHM, SFR01MZPJ000	
19	1	R17	RES., 0Ω, 1/10W, JUMPER, 0603	YAGEO, RC0603FR-070RL	
20	1	R7	RES., 150k, 5%, 1/10W, 0603	YAGEO, RC0603JR-07150KL	
21	1	Q1	XSTR, MOSFET, N-CH, 40V, TO-252 (DPAK)	VISHAY, SUD50N04-8M8P-4GE3	
22	1	RS2	RES., SENSE, 0.005Ω, 1%, 1W, 2512	VISHAY, WSL25125L000FEA	
23	1	U1	IC, 20V, 8A STEP-DOWN µModule REG.	ANALOG DEVICES, INC. LTM4657EY#PBF	
Additiona	l Demo B	oard Circuit Components	'	,	
24	0	C4, C9, C15, C36, C19, C43, C44	CAP, OPTION, 0603	OPTION	
25	0	C13, C16, C22-C24, C37	CAP, OPTION, 0805	OPTION	
26	0	C21, C20, C17	CAP, OPTION, 1206	OPTION	
27	0	C25-C28	CAP, OPTION, 1210	OPTION	
28	0	C39	CAP, OPTION, 0805, 3 PC Pad	MURATA, NFM21PC104R1E3D	
29	0	C40	CAP, OPTION, 1206, 3 PC Pad	TDK, YFF31HC2A104MT000N	
30	0	C41	CAP, OPTION, 0603, 3 PC Pad	MURATA, NFM18CC223R1C3D	
31	0	C42	CAP, OPTION, 1206, 3 PC Pad	MURATA, NFM31PC276B0J3L	
32	0	R18	RES., OPTION, 0805	OPTION	
33	0	C35	CAP, OPTION, 0805	OPTION	
34	0	R21-R23	RES., OPTION, 0402	OPTION	
35	0	R1, R2, R5, R11-R13, R19, R20	RES., OPTION, 0603	OPTION	
36	0	L1	IND., OPTION, 1812	OPTION	
37	0	L2	IND., OPTION, 4mm × 4mm, AEX-Q200	COILCRAFT, XEL4020-800MEC	
Hardware	: For Dem	no Board Only			
38	10	E1, E3, E5, E6, E8-E12, E14	TESTPOINT, TURRET 0.064"	MILL-MAX, 2308-2-00-80-00-00-07-0	
39	4	E2, E4, E7, E13	JACK, BANANA	KEYSTONE, 575-4	
40	2	J1, J2	CONN, BNC, 5 PINS	AMPHENOL RF, 112404	
41	5	JP1, JP2-JP6	HEADER, 1×2, 2mm	SULLINS, NRPN021PAEN-RC	
42	1	JP7	HEADER, 2×3, 2mm	SULLINS, NRPN032PAEN-RC	
43	1	JP8	HEADER, 1×3, 2mm	SAMTEC, TMM-103-02-L-S	
44	4	MP1-MP4	STAND-OFF, NYLON 0.5"	KEYSTONE, 8833(SNAP ON)	
45	3	XJP1, XJP7, XJP8	SHUNT, 2mm	SAMTEC, 2SN-BK-G	

SCHEMATIC DIAGRAM

REVISION HISTORY

DEMO BOARD REV	DEMO MANUAL Rev	DATE	DESCRIPTION	PAGE NUMBER
DC2989A	0	02/20	Initial Release.	_
DC2665B-C	0	12/22	DC2665B-C replaces DC2989A for low HF V _{OUT} ripple.	_

DEMO MANUAL DC2665B-C

FSD Caution

ESD (electrostatic discharge) sensitive device. Charged devices and circuit boards can discharge without detection. Although this product features patented or proprietary protection circuitry, damage may occur on devices subjected to high energy ESD. Therefore, proper ESD precautions should be taken to avoid performance degradation or loss of functionality.

Legal Terms and Conditions

By using the evaluation board discussed herein (together with any tools, components documentation or support materials, the "Evaluation Board"), you are agreeing to be bound by the terms and conditions set forth below ("Agreement") unless you have purchased the Evaluation Board, in which case the Analog Devices Standard Terms and Conditions of Sale shall govern. Do not use the Evaluation Board until you have read and agreed to the Agreement. Your use of the Evaluation Board shall signify your acceptance of the Agreement. This Agreement is made by and between you ("Customer") and Analog Devices, Inc. ("ADI"), with its principal place of business at One Technology Way, Norwood, MA 02062, USA. Subject to the terms and conditions of the Agreement, ADI hereby grants to Customer a free, limited, personal, temporary, non-exclusive, non-sublicensable, non-transferable license to use the Evaluation Board FOR EVALUATION PURPOSES ONLY. Customer understands and agrees that the Evaluation Board is provided for the sole and exclusive purpose referenced above, and agrees not to use the Evaluation Board for any other purpose. Furthermore, the license granted is expressly made subject to the following additional limitations: Customer shall not (i) rent, lease, display, sell, transfer, assign, sublicense, or distribute the Evaluation Board; and (ii) permit any Third Party to access the Evaluation Board. As used herein, the term "Third Party" includes any entity other than ADI, Customer, their employees, affiliates and in-house consultants. The Evaluation Board is NOT sold to Customer; all rights not expressly granted herein, including ownership of the Evaluation Board, are reserved by ADI. CONFIDENTIALITY. This Agreement and the Evaluation Board shall all be considered the confidential and proprietary information of ADI. Customer may not disclose or transfer any portion of the Evaluation Board to any other party for any reason. Upon discontinuation of use of the Evaluation Board or termination of this Agreement, Customer agrees to promptly return the Evaluation Board to ADI. ADDITIONAL RESTRICTIONS. Customer may not disassemble, decompile or reverse engineer chips on the Evaluation Board. Customer shall inform ADI of any occurred damages or any modifications or alterations it makes to the Evaluation Board, including but not limited to soldering or any other activity that affects the material content of the Evaluation Board. Modifications to the Evaluation Board must comply with applicable law, including but not limited to the RoHS Directive. TERMINATION. ADI may terminate this Agreement at any time upon giving written notice to Customer agrees to return to ADI the Evaluation Board at that time. LIMITATION OF LIABILITY. THE EVALUATION BOARD PROVIDED HEREUNDER IS PROVIDED "AS IS" AND ADI MAKES NO WARRANTIES OR REPRESENTATIONS OF ANY KIND WITH RESPECT TO IT. ADI SPECIFICALLY DISCLAIMS ANY REPRESENTATIONS, ENDORSEMENTS, GUARANTEES, OR WARRANTIES, EXPRESS OR IMPLIED, RELATED TO THE EVALUATION BOARD INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTY OF MERCHANTABILITY, TITLE, FITNESS FOR A PARTICULAR PURPOSE OR NONINFRINGEMENT OF INTELLECTUAL PROPERTY RIGHTS. IN NO EVENT WILL ADI AND ITS LICENSORS BE LIABLE FOR ANY INCIDENTAL, SPECIAL, INDIRECT, OR CONSEQUENTIAL DAMAGES RESULTING FROM CUSTOMER'S POSSESSION OR USE OF THE EVALUATION BOARD, INCLUDING BUT NOT LIMITED TO LOST PROFITS, DELAY COSTS, LABOR COSTS OR LOSS OF GOODWILL. ADI'S TOTAL LIABILITY FROM ANY AND ALL CAUSES SHALL BE LIMITED TO THE AMOUNT OF ONE HUNDRED US DOLLARS (\$100.00). EXPORT. Customer agrees that it will not directly or indirectly export the Evaluation Board to another country, and that it will comply with all applicable United States federal laws and regulations relating to exports. GOVERNING LAW. This Agreement shall be governed by and construed in accordance with the substantive laws of the Commonwealth of Massachusetts (excluding conflict of law rules). Any legal action regarding this Agreement will be heard in the state or federal courts having jurisdiction in Suffolk County, Massachusetts, and Customer hereby submits to the personal jurisdiction and venue of such courts. The United Nations Convention on Contracts for the International Sale of Goods shall not apply to this Agreement and is expressly disclaimed.

Rev. 0