www.ti.com

SLLS807-JUNE 2007

FEATURES

- ESD Protection for RS-232 Bus Pins
 - ±15-kV Human-Body Model (HBM)
- Meets or Exceeds the Requirements of TIA/EIA-232-F and ITU v.28 Standards
- Operates at 5-V V_{CC} Supply
- Four Drivers and Five Receivers
- Operates up to 120 kbit/s
- Low Supply Current in Shutdown Mode . . . 15 μA Typ
- External Capacitors . . . 4 × 0.1 F
- Designed to Be Interchangeable With Industry Standard '213 Devices
- Latch-Up Performance Exceeds 100 mA Per JESD 78, Class II

APPLICATIONS

- Battery-Powered Systems
- PDAs
- Notebooks
- Laptops
- Palmtop PCs
- Hand-Held Equipment

(TOP VIEW) 28 DOUT4 DOUT3 II 1 DOUT1 $\prod 2$ 27 TRIN3 ROUT3 DOUT2 II 3 26 25 SHDN RIN2 **∏** 4 ROUT2 15 24 ∏ EN DIN2 6 23 | RIN4 22 ROUT4 DIN1 ROUT1 21 DIN4 20 DIN3 RIN1 10 19 | ROUT5 GND 11 18 | RIN5 V_{CC} 17 \ V_ **1**2 C1+ **1**3 16 C2-V+

C1-

15 C2+

DB. DW. OR PW PACKAGE

DESCRIPTION/ ORDER INFORMATION

The TRS213 device consists of four line drivers, five line receivers, and a dual charge-pump circuit with ±15-kV ESD protection pin to pin (serial-port connection pins, including GND). The device meets the requirements of TIA/EIA-232-F and provides the electrical interface between an asynchronous communication controller and the serial-port connector. The charge pump and four small external capacitors allow operation from a single 5-V supply. The devices operate at data signaling rates up to 120 kbit/s and a maximum of 30-V/µs driver output slew rate.

The TRS213 has an active-low shutdown (\overline{SHDN}) and an active-high enable control (EN). In shutdown mode, the charge pumps are turned off, V+ is pulled down to V_{CC}, V- is pulled to GND, and the transmitter outputs are disabled. This reduces supply current typically to 1 μ A. Two receivers of the TRS213 are active during shutdown.

Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet.

TRS213 5-V MULTICHANNEL RS-232 LINE DRIVER/RECEIVER WITH ±15-kV ESD PROTECTION

SLLS807-JUNE 2007

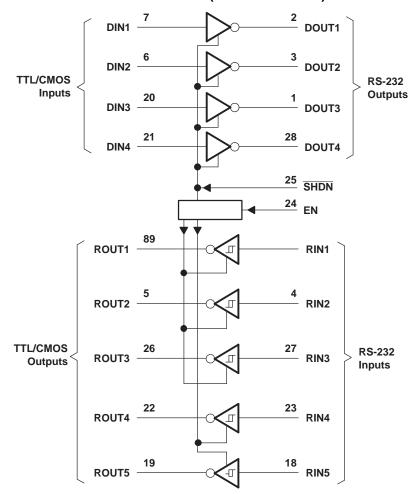
ORDERING INFORMATION

T _A	PACKA	GE ⁽¹⁾⁽²⁾	ORDERABLE PART NUMBER	TOP-SIDE MARKING		
	SOIC - DW	Tube of 20	TRS213CDW	TD\$242C		
	3010 - DVV	Reel of 1000	TRS213CDWR	TRS213C		
0°C to 70°C	SSOP – DB	Tube of 50	TRS213CDB	TRS213C		
	220b – DB	Reel of 2000	TRS213CDBR	1832130		
	TSSOP – PW	Tape and reel	TRS213CPWR	TRS213C		
	SOIC - DW	Tube of 20	TRS213IDW	TRS213I		
	3010 - DVV	Reel of 1000	TRS213IDWR	1832131		
–40°C to 85°C	SSOP – DB	Tube of 50	TRS213IDB	TRS213I		
	220b – DB	Reel of 2000	TRS213IDBR	1832131		
	TSSOP – PW	Tape and reel	TRS213IPWR	TRS213I		

⁽¹⁾ Package drawings, standard packing quantities, thermal data, symbolization, and PCB design guidelines are available at www.ti.com/sc/package.

FUNCTION TABLE

INPUTS		DRIVER	REC	DEVICE STATUS	
SHDN	EN	D1-D4	R1–R3	R4–R5	DEVICE STATUS
L	L	Z	Z	Z	Shutdown
L	Н	Z	Z	Active ⁽¹⁾	Shutdown
Н	L	All active	Z	Z	Normal operation
Н	Н	All active	Active	Active	Normal operation


(1) See the $V_{\text{IT+}}$ and $V_{\text{IT-}}$ change in the Electrical Characteristics table.

⁽²⁾ For the most current package and ordering information, see the Package Option Addendum at the end of this document, or see the TI website at www.ti.com.

SLLS807-JUNE 2007

LOGIC DIAGRAM (POSITIVE LOGIC)

TRS213

5-V MULTICHANNEL RS-232 LINE DRIVER/RECEIVER WITH ±15-kV ESD PROTECTION

TEXAS INSTRUMENTS www.ti.com

SLLS807-JUNE 2007

Absolute Maximum Ratings(1)

over operating free-air temperature range (unless otherwise noted)

			MIN	MAX	UNIT
V _{CC}	Supply voltage range		-0.3	6	V
V+	Positive charge-pump voltage range (2)		V _{CC} - 0.3	14	V
V-	Negative charge-pump voltage range ⁽²⁾	0.3	-14	V	
.,	lanut valta va sana	Drivers	-0.3	V+ + 0.3	
V _I	Input voltage range	Receivers		±30	V
	Outrot will be a second	Drivers	V0.3	V+ + 0.3	
Vo	Output voltage range	Receivers	-0.3	V _{CC} + 0.3	V
DOUT	Short-circuit duration	·		Continuous	
		DB package		62	
θ_{JA}	Package thermal impedance (3)(4)	DW package		46	C°/W
		PW package			
T_J	Operating virtual junction temperature		150	C°	
T _{stg}	Storage temperature range	-65	150	C°	

⁽¹⁾ Stresses beyond those listed under "absolute maximum ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under "recommended operating conditions" is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

Recommended Operating Conditions⁽¹⁾

See Figure 4

		MIN	NOM	MAX	UNIT
	Supply voltage	4.5	5	5.5	V
V _{IH}	Driver high-level input voltage DIN	2			V
	Control high-level input voltage EN, SHDN	2.4			V
V_{IL}	Driver and control low-level input voltage DIN, EN, SHDN			0.8	V
\/	Driver and control input voltage DIN, EN, SHDN			5.5	V
VI	Receiver input voltage RIN			30	V
т	Operating free air temperature	0		70	°C
IA	Operating free-air temperature TRS213I			85	-0

⁽¹⁾ Test conditions are C1–C4 = 0.1 μF at V_{CC} = 5 V \pm 0.5 V.

Electrical Characteristics (1)

over operating free-air temperature range (unless otherwise noted)

	PARAMETER	Т	MIN	TYP ⁽²⁾	MAX	UNIT	
I_{CC}	Supply current	No load,	See Figure 6		14	20	mA
I _{SHDN}	Shutdown supply current	T _A = 25°C,	See Figure 1		15	50	μΑ

⁽¹⁾ Test conditions are C1–C4 = 0.1 μ F at V_{CC} = 5 V \pm 0.5 V.

⁽²⁾ All voltages are with respect to network GND.

⁽³⁾ Maximum power dissipation is a function of $T_J(max), \theta_{JA}$, and T_A . The maximum allowable power dissipation at any allowable ambient temperature is $P_D = (T_J(max) - T_A)/\theta_{JA}$. Operating at the absolute maximum T_J of 150°C can affect reliability.

⁽⁴⁾ The package thermal impedance is calculated in accordance with JESD 51-7.

⁽²⁾ All typical values are at $V_{CC} = 5 \text{ V}$, and $T_A = 25^{\circ}\text{C}$.

SLLS807-JUNE 2007

DRIVER SECTION

Electrical Characteristics(1)

over operating free-air temperature range (unless otherwise noted) (see Figure 4)

	PARAMETER	TEST CONDIT	IONS	MIN	TYP ⁽²⁾	MAX	UNIT
V_{OH}	High-level output voltage	DOUT at $R_L = 3 \text{ k}\Omega$ to GND	DOUT at $R_L = 3 \text{ k}\Omega$ to GND				٧
V_{OL}	Low-level output voltage	DOUT at $R_L = 3 \text{ k}\Omega$ to GND)	-5	-9		٧
I _{IH}	Control high-level input current	EN, SHDN = 5 V			3	10	μA
	Driver low-level input current	DIN = 0 V		-15	-200		
IIL	Control low-level input current	EN, SHDN = 0 V		-3	-10	μA	
I _{OS} (3)	Short-circuit output current	V _{CC} = 5.5 V,	V _O = 0 V		±10	±60	mA
ro	Output resistance	V_{CC} , V+, and V- = 0 V,	$V_O = \pm 2 V$	300			Ω

⁽¹⁾ Test conditions are C1–C4 = 0.1 μ F at V_{CC} = 5 V \pm 0.5 V

Switching Characteristics⁽¹⁾

over operating free-air temperature range (unless otherwise noted)

	PARAMETER	TEST CON	DITIONS	MIN	TYP ⁽²⁾	MAX	UNIT
	Maximum data rate	$ \begin{array}{lll} \text{C}_{\text{L}} = 50 \text{ pF to } 1000 \text{ pF}, & \text{R}_{\text{L}} = 3 \text{ k}\Omega \text{ to } 7 \text{ k}\Omega, \\ \text{One DOUT switching,} & \text{See Figure 3} \end{array} $		120			kbit/s
t _{PLH(D)}	Propagation delay time, low- to high-level output	C _L = 2500 pF, All drivers loaded,	$R_L = 3 \text{ k}\Omega$, See Figure 3		2		μs
t _{PHL(D)}	Propagation delay time, high- to low-level output	C _L = 2500 pF, All drivers loaded,	$R_L = 3 \text{ k}\Omega$, See Figure 3		2		μs
t _{sk(p)}	Pulse skew ⁽³⁾	C _L = 150 pF to 2500 pF, See Figure 3	$R_L = 3 \text{ k}\Omega \text{ to } 7 \text{ k}\Omega,$		300		ns
SR(tr)	Slew rate, transition region (see Figure 2)	C _L = 50 pF to 1000 pF, V _{CC} = 5 V	$R_L = 3 \text{ k}\Omega \text{ to } 7 \text{ k}\Omega,$	3	6	30	V/µs

Test conditions are C1–C4 = 0.1 μF at V_{CC} = 5 V \pm 0.5 V. All typical values are at V_{CC} = 5 V, and T_A = 25°C.

ESD Protection

over operating free-air temperature range (unless otherwise noted)

PIN	TEST CONDITIONS	TYP	UNIT
DOUT	Human-Body Model	±15	kV

 ⁽²⁾ All typical values are at V_{CC} = 5 V, and T_A = 25°C.
 (3) Short-circuit durations should be controlled to prevent exceeding the device absolute power dissipation ratings, and not more than one output should be shorted at a time.

⁽³⁾ Pulse skew is defined as (t_{PLH} - t_{PHL}) of each channel of the same device.

TRS213

5-V MULTICHANNEL RS-232 LINE DRIVER/RECEIVER WITH ±15-kV ESD PROTECTION

SLLS807-JUNE 2007

RECEIVER SECTION

Electrical Characteristics(1)

over operating free-air temperature range (unless otherwise noted) (see Figure 6)

	PARAMETER	TEST	CONDITIONS	MIN	TYP ⁽²⁾	MAX	UNIT
V _{OH}	High-level output voltage	I _{OH} = -1 mA	$I_{OH} = -1 \text{ mA}$				V
V _{OL}	Low-level output voltage	I _{OH} = 1.6 mA	I _{OH} = 1.6 mA				V
V	Positive-going	V F V T 25°C	Active mode		1.7	2.4	V
V _{IT+}	input threshold voltage	$V_{CC} = 5 \text{ V}, T_A = 25^{\circ}\text{C}$	Shutdown mode (R4-R5)		1.5	2.4	V
.,	Negative-going	V 5 V T 250C	Active mode	0.8	1.2		\/
V _{IT}	input threshold voltage	$V_{CC} = 5 \text{ V}, T_A = 25^{\circ}\text{C}$ Shutdown mode (R4–R5)		0.6	1.5		V
V _{hys} (3)	Input hysteresis (V _{IT+} , V _{IT-})	V _{CC} = 5 V		0.5	1	V	
r _l	Input resistance	V _{CC} = 5 V, T _A = 25°C	3	5	7	kΩ	
	Output leakage current	EN = 0 V, 0 ≤ ROUT ≤ \	EN = 0 V, 0 ≤ ROUT ≤ V _{CC} , R1–R3				μΑ

⁽¹⁾ Test conditions are C1–C4 = 0.1 μ F at V_{CC} = 5 V \pm 0.5 V. (2) All typical values are at V_{CC} = 5 V, and T_A = 25°C. (3) No hysteresis in shudown mode

Switching Characteristics⁽¹⁾

over operating free-air temperature range (unless otherwise noted)

	PARAMETER		TEST CONDIT	MIN TYP ⁽²⁾	MAX	UNIT	
	Propagation delay time,	C 450 pF	Coo Figure 4	$\overline{SHDN} = V_{CC}$	0.5 10		
t _{PLH(R)}	low- to high-level output	$C_L = 150 \text{ pF},$	See Figure 4	SHDN = 0 V, R4–R5	4	40	μs
t _{PHL(R)}	Propagation delay time, high- to low-level output	C _L = 150 pF,	See Figure 4		0.5	10	μs
t _{en}	Output enable time	$C_L = 150 \text{ pF},$	See Figure 5		600		ns
t _{dis}	Output disable time	$C_L = 150 \text{ pF},$	See Figure 5		200		ns

⁽¹⁾ Test conditions are C1–C4 = 0.1 μ F at V_{CC} = 5 V \pm 0.5 V. (2) All typical values are at V_{CC} = 5 V, and T_A = 25°C.

ESD Protection

over operating free-air temperature range (unless otherwise noted)

PIN	TEST CONDITIONS	TYP	UNIT
RIN	Human-Body Model	±15	kV

PARAMETER MEASUREMENT INFORMATION

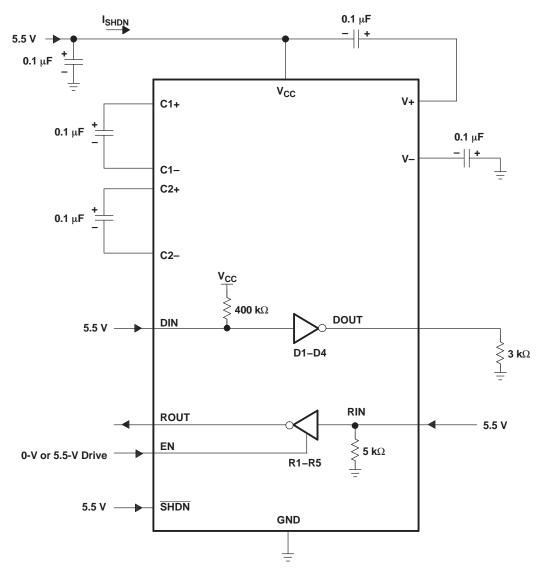
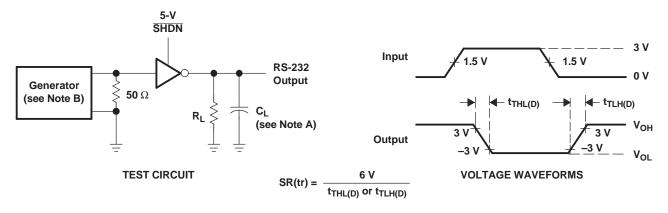
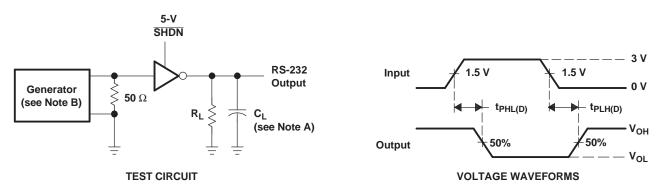
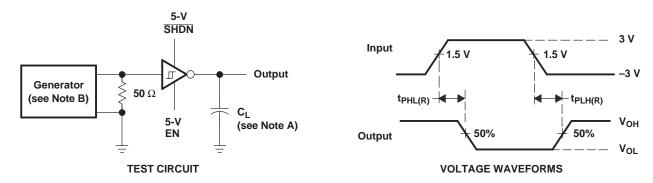



Figure 1. Shutdown Current Test Circuit



NOTES: A. C_L includes probe and jig capacitance.

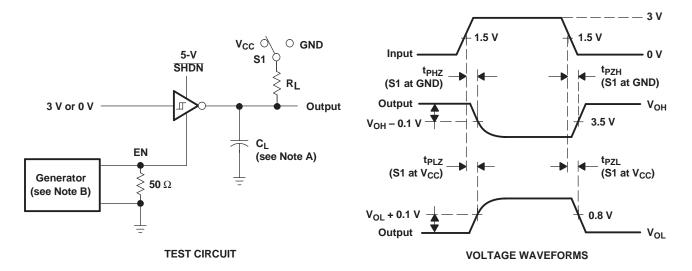
B. The pulse generator has the following characteristics: $Z_O = 50~\Omega$, 50% duty cycle, $t_f \le 10~ns$, $t_f \le 10~ns$.


Figure 2. Driver Slew Rate

NOTES: A. C_I includes probe and jig capacitance.

B. The pulse generator has the following characteristics: $Z_O = 50~\Omega$, 50% duty cycle, $t_f \le 10~ns$, $t_f \le 10~ns$.

Figure 3. Driver Pulse Skew and Propagation Delay Times

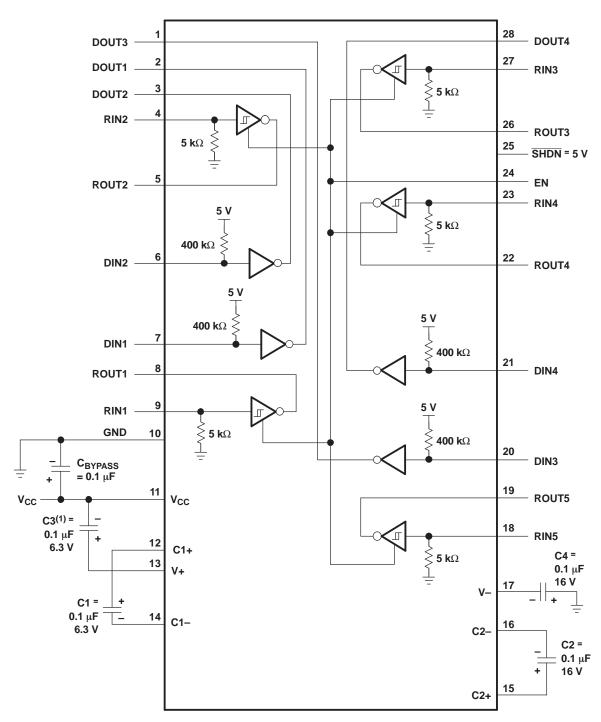


NOTES: A. C_L includes probe and jig capacitance.

B. The pulse generator has the following characteristics: Z_{O} = 50 Ω , 50% duty cycle, $t_{f} \le 10$ ns, $t_{f} \le 10$ ns.

Figure 4. Receiver Propagation Delay Times

SLLS807-JUNE 2007


NOTES: A. C_L includes probe and jig capacitance.

- B. The pulse generator has the following characteristics: $Z_O = 50 \Omega$, 50% duty cycle, $t_r \le 10$ ns. $t_f \le 10$ ns.
- C. t_{PLZ} and t_{PHZ} are the same as t_{dis} .
- D. t_{PZL} and t_{PZH} are the same as t_{en} .

Figure 5. Receiver Enable and Disable Times

APPLICATION INFORMATION

(1) C3 can be connected to $V_{\mbox{\footnotesize CC}}$ or GND.

NOTES: A. Resistor values shown are nominal.

B. Nonpolarized ceramic capacitors are acceptable. If polarized tantalum or electrolytic capacitors are used, they should be connected as shown.

Figure 6. Typical Operating Circuit and Capacitor Values

www.ti.com 1-Jun-2023

PACKAGING INFORMATION

Orderable Device	Status (1)	Package Type	Package Drawing	Pins	Package Qty	Eco Plan	Lead finish/ Ball material	MSL Peak Temp	Op Temp (°C)	Device Marking (4/5)	Samples
TRS213CDBR	LIFEBUY	SSOP	DB	28	2000	RoHS & Green	NIPDAU	Level-1-260C-UNLIM	0 to 70	TRS213C	
TRS213IDB	LIFEBUY	SSOP	DB	28	50	RoHS & Green	NIPDAU	Level-1-260C-UNLIM	-40 to 85	TRS213I	
TRS213IDBR	ACTIVE	SSOP	DB	28	2000	RoHS & Green	NIPDAU	Level-1-260C-UNLIM	-40 to 85	TRS213I	Samples
TRS213IDWR	LIFEBUY	SOIC	DW	28	1000	RoHS & Green	NIPDAU	Level-1-260C-UNLIM	-40 to 85	TRS213I	

(1) The marketing status values are defined as follows:

ACTIVE: Product device recommended for new designs.

LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.

NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.

PREVIEW: Device has been announced but is not in production. Samples may or may not be available.

OBSOLETE: TI has discontinued the production of the device.

(2) RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may reference these types of products as "Pb-Free".

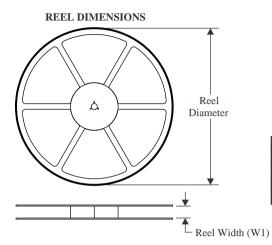
RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption.

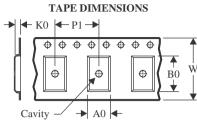
Green: TI defines "Green" to mean the content of Chlorine (CI) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of <=1000ppm threshold. Antimony trioxide based flame retardants must also meet the <=1000ppm threshold requirement.

- (3) MSL, Peak Temp. The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.
- (4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.
- (5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation of the previous line and the two combined represent the entire Device Marking for that device.
- (6) Lead finish/Ball material Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two lines if the finish value exceeds the maximum column width.

Important Information and Disclaimer: The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.

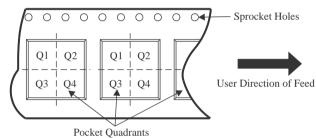
PACKAGE OPTION ADDENDUM


www.ti.com 1-Jun-2023

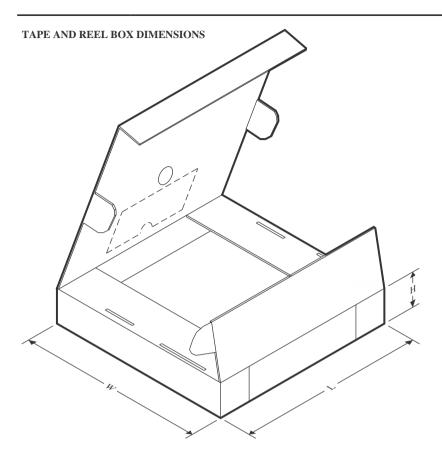

In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.

PACKAGE MATERIALS INFORMATION

www.ti.com 3-Jun-2022


TAPE AND REEL INFORMATION

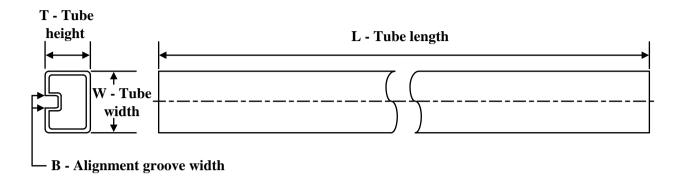
A0	Dimension designed to accommodate the component width
В0	Dimension designed to accommodate the component length
K0	Dimension designed to accommodate the component thickness
W	Overall width of the carrier tape
P1	Pitch between successive cavity centers


QUADRANT ASSIGNMENTS FOR PIN 1 ORIENTATION IN TAPE

*All dimensions are nominal

Device	Package Type	Package Drawing		SPQ	Reel Diameter (mm)	Reel Width W1 (mm)	A0 (mm)	B0 (mm)	K0 (mm)	P1 (mm)	W (mm)	Pin1 Quadrant
TRS213CDBR	SSOP	DB	28	2000	330.0	16.4	8.2	10.5	2.5	12.0	16.0	Q1
TRS213IDBR	SSOP	DB	28	2000	330.0	16.4	8.2	10.5	2.5	12.0	16.0	Q1
TRS213IDWR	SOIC	DW	28	1000	330.0	32.4	11.35	18.67	3.1	16.0	32.0	Q1

www.ti.com 3-Jun-2022

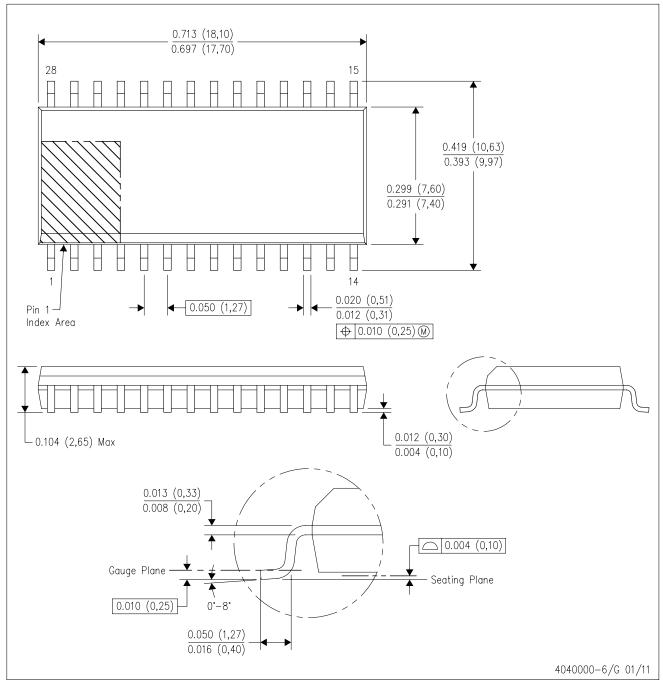

*All dimensions are nominal

Device	Package Type	Package Drawing	Pins	SPQ	Length (mm)	Width (mm)	Height (mm)
TRS213CDBR	SSOP	DB	28	2000	356.0	356.0	35.0
TRS213IDBR	SSOP	DB	28	2000	356.0	356.0	35.0
TRS213IDWR	SOIC	DW	28	1000	350.0	350.0	66.0

PACKAGE MATERIALS INFORMATION

www.ti.com 3-Jun-2022

TUBE

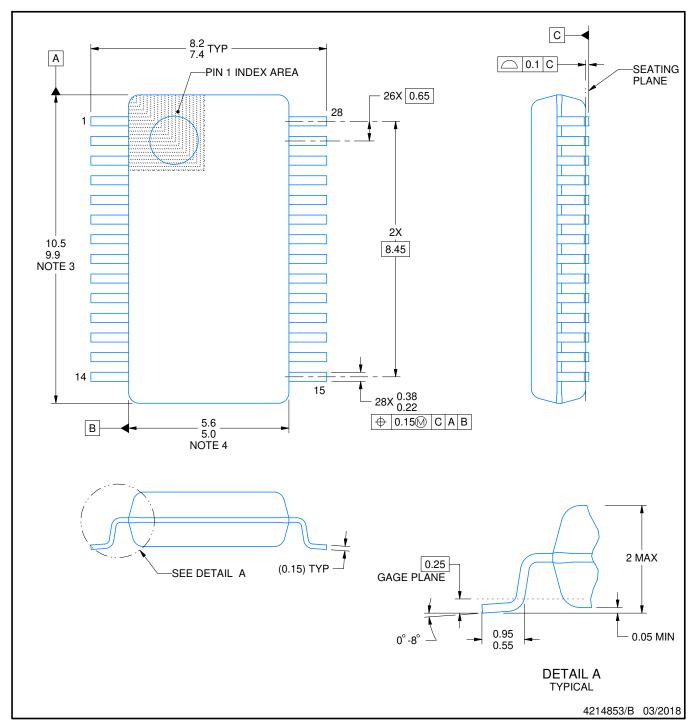


*All dimensions are nominal

Device	Package Name	Package Type	Pins	SPQ	L (mm)	W (mm)	T (µm)	B (mm)
TRS213IDB	DB	SSOP	28	50	530	10.5	4000	4.1

DW (R-PDSO-G28)

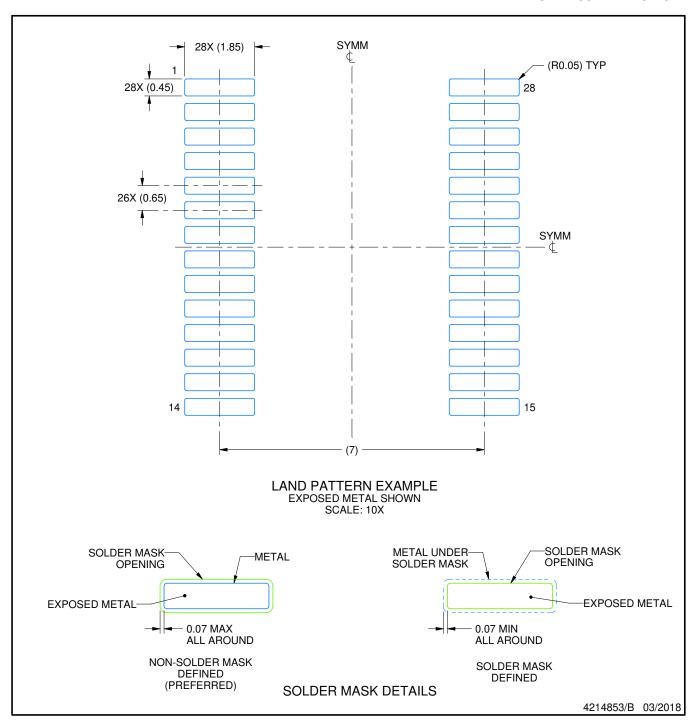
PLASTIC SMALL OUTLINE


NOTES: A. All linear dimensions are in inches (millimeters). Dimensioning and tolerancing per ASME Y14.5M-1994.

- B. This drawing is subject to change without notice.
- C. Body dimensions do not include mold flash or protrusion not to exceed 0.006 (0,15).
- D. Falls within JEDEC MS-013 variation AE.

SMALL OUTLINE PACKAGE

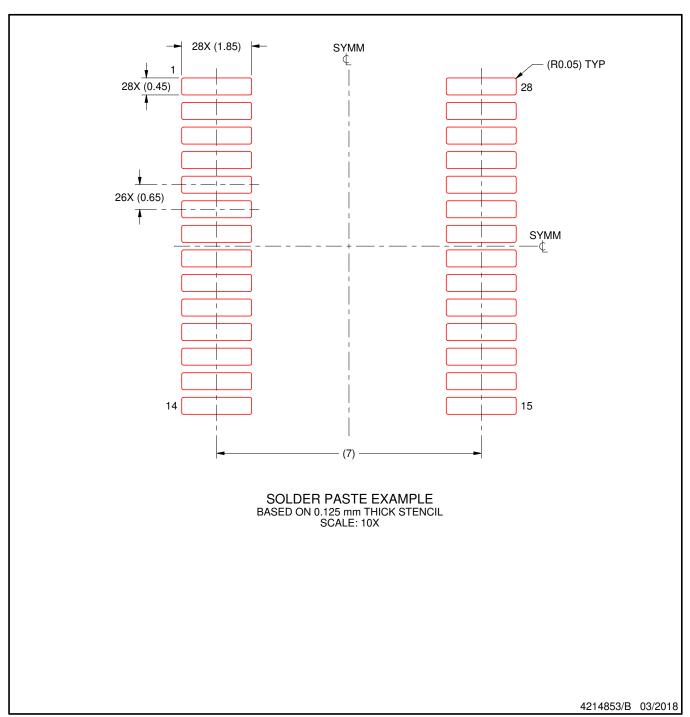
NOTES:


- 1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing per ASME Y14.5M.

 2. This drawing is subject to change without notice.

 3. This dimension does not include mold flash, protrusions, or gate burrs. Mold flash, protrusions, or gate burrs shall not
- exceed 0.15 mm per side.
- 4. This dimension does not include interlead flash. Interlead flash shall not exceed 0.25 mm per side.
- 5. Reference JEDEC registration MO-150.

SMALL OUTLINE PACKAGE


NOTES: (continued)

6. Publication IPC-7351 may have alternate designs.

7. Solder mask tolerances between and around signal pads can vary based on board fabrication site.

SMALL OUTLINE PACKAGE

NOTES: (continued)

- 8. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate design recommendations.
- 9. Board assembly site may have different recommendations for stencil design.

IMPORTANT NOTICE AND DISCLAIMER

TI PROVIDES TECHNICAL AND RELIABILITY DATA (INCLUDING DATA SHEETS), DESIGN RESOURCES (INCLUDING REFERENCE DESIGNS), APPLICATION OR OTHER DESIGN ADVICE, WEB TOOLS, SAFETY INFORMATION, AND OTHER RESOURCES "AS IS" AND WITH ALL FAULTS, AND DISCLAIMS ALL WARRANTIES, EXPRESS AND IMPLIED, INCLUDING WITHOUT LIMITATION ANY IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT OF THIRD PARTY INTELLECTUAL PROPERTY RIGHTS.

These resources are intended for skilled developers designing with TI products. You are solely responsible for (1) selecting the appropriate TI products for your application, (2) designing, validating and testing your application, and (3) ensuring your application meets applicable standards, and any other safety, security, regulatory or other requirements.

These resources are subject to change without notice. TI grants you permission to use these resources only for development of an application that uses the TI products described in the resource. Other reproduction and display of these resources is prohibited. No license is granted to any other TI intellectual property right or to any third party intellectual property right. TI disclaims responsibility for, and you will fully indemnify TI and its representatives against, any claims, damages, costs, losses, and liabilities arising out of your use of these resources.

TI's products are provided subject to TI's Terms of Sale or other applicable terms available either on ti.com or provided in conjunction with such TI products. TI's provision of these resources does not expand or otherwise alter TI's applicable warranties or warranty disclaimers for TI products.

TI objects to and rejects any additional or different terms you may have proposed.

Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265 Copyright © 2023, Texas Instruments Incorporated