Dual D-type flip-flop with set and reset; positive edge-triggerRev. 3 — 4 December 2015Product data sheet

Product data sheet

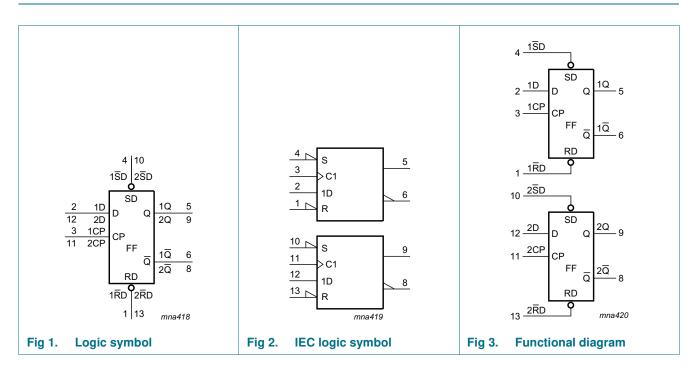
General description 1.

The 74HC74-Q100; 74HCT74-Q100 are dual positive edge triggered D-type flip-flop with individual data (nD), clock (nCP), set (nSD) and reset (nRD) inputs, and complementary nQ and nQ outputs. Data at the nD-input, that meets the set-up and hold time requirements on the LOW-to-HIGH clock transition, will be stored in the flip-flop and appear at the nQ output. The Schmitt-trigger action in the clock input, makes the circuit highly tolerant to slower clock rise and fall times. Inputs include clamp diodes. This enables the use of current limiting resistors to interface inputs to voltages in excess of V_{CC}.

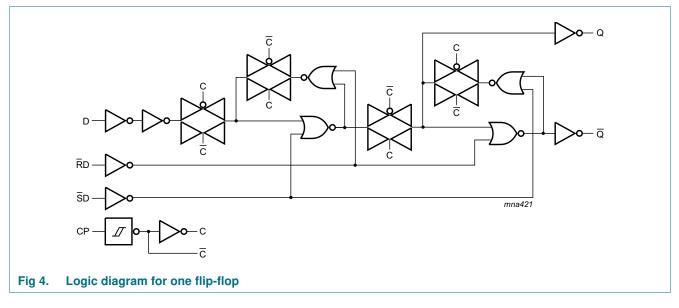
This product has been qualified to the Automotive Electronics Council (AEC) standard Q100 (Grade 1) and is suitable for use in automotive applications.

2. **Features and benefits**

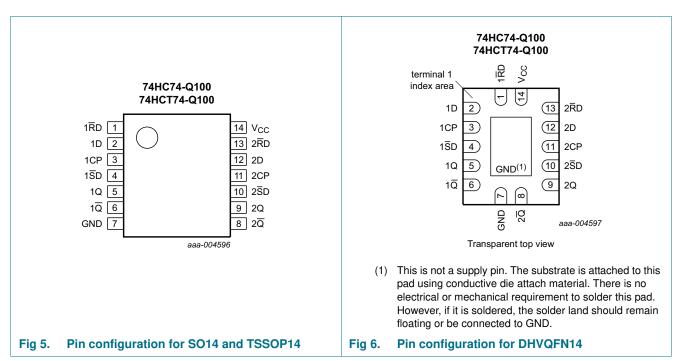
- Automotive product qualification in accordance with AEC-Q100 (Grade 1) Specified from –40 °C to +85 °C and from –40 °C to +125 °C
- Input levels:
 - For 74HC74-Q100: CMOS level
 - For 74HCT74-Q100: TTL level
- Symmetrical output impedance
- Low power dissipation
- High noise immunity
- Balanced propagation delays
- Specified in compliance with JEDEC standard no. 7A
- ESD protection:
 - MIL-STD-883, method 3015 exceeds 2000 V
 - HBM JESD22-A114F exceeds 2000 V
 - MM JESD22-A115-A exceeds 200 V (C = 200 pF, R = 0 Ω)
- Multiple package options


Dual D-type flip-flop with set and reset; positive edge-trigger

3. Ordering information


Table 1.Ordering information

Type number	Package			
	Temperature range	Name	Description	Version
74HC74D-Q100	-40 °C to +125 °C	SO14	plastic small outline package; 14 leads; body	SOT108-1
74HCT74D-Q100	_		width 3.9 mm	
74HC74PW-Q100	-40 °C to +125 °C	TSSOP14	plastic thin shrink small outline package;	SOT402-1
74HCT74PW-Q100	_		14 leads; body width 4.4 mm	
74HC74BQ-Q100	–40 °C to +125 °C	DHVQFN14	plastic dual in-line compatible thermal	SOT762-1
74HCT74BQ-Q100	-		enhanced very thin quad flat package; no leads; 14 terminals; body $2.5 \times 3 \times 0.85$ mm	


4. Functional diagram

Dual D-type flip-flop with set and reset; positive edge-trigger

5. **Pinning information**

5.1 Pinning

.

-

. . . .

. .

_

74HC74-Q100; 74HCT74-Q100

Dual D-type flip-flop with set and reset; positive edge-trigger

5.2 Pin description

Symbol	Pin	Description
1RD	1	asynchronous reset-direct input (active LOW)
1D	2	data input
1CP	3	clock input (LOW-to-HIGH, edge-triggered)
1 S D	4	asynchronous set-direct input (active LOW)
1Q	5	output
1 <u>Q</u>	6	complement output
GND	7	ground (0 V)
2 <u>Q</u>	8	complement output
2Q	9	output
2 <mark>S</mark> D	10	asynchronous set-direct input (active LOW)
2CP	11	clock input (LOW-to-HIGH, edge-triggered)
2D	12	data input
2RD	13	asynchronous reset-direct input (active LOW)
V _{CC}	14	supply voltage

6. Functional description

Table 3. Function table^[1]

Input nSD			Output		
nSD	nRD	nCP	nD	nQ	nQ
L	Н	Х	Х	Н	L
Н	L	Х	Х	L	Н
L	L	Х	Х	Н	Н

[1] H = HIGH voltage level; L = LOW voltage level; X = don't care.

Table 4.Function table^[1]

Input		Output			
nSD	nRD	nCP	nD	nQ _{n+1}	nQ _{n+1}
Н	Н	↑	L	L	Н
Н	Н	\uparrow	Н	Н	L

[1] H = HIGH voltage level; L = LOW voltage level; $\uparrow = LOW$ -to-HIGH transition; $Q_{n+1} =$ state after the next LOW-to-HIGH CP transition; X = don't care.

Dual D-type flip-flop with set and reset; positive edge-trigger

7. Limiting values

Table 5. Limiting values

In accordance with the Absolute Maximum Rating System (IEC 60134). Voltages are referenced to GND (ground = 0 V).

Symbol	Parameter	Conditions		Min	Max	Unit
V _{CC}	supply voltage			-0.5	+7	V
I _{IK}	input clamping current	$V_{I} < -0.5$ V or $V_{I} > V_{CC} + 0.5$ V		-	±20	mA
I _{OK}	output clamping current	$V_O < -0.5$ V or $V_O > V_{CC}$ + 0.5 V		-	±20	mA
lo	output current	$V_{O} = -0.5 \text{ V to} (V_{CC} + 0.5 \text{ V})$		-	±25	mA
I _{CC}	supply current			-	+100	mA
I _{GND}	ground current			-100	-	mA
T _{stg}	storage temperature			-65	+150	°C
P _{tot}	total power dissipation	DIP14 package	[1]	-	750	mW
		SO14, TSSOP14 and DHVQFN14 packages	[1]	-	500	mW

For DIP14 package: P_{tot} derates linearly with 12 mW/K above 70 °C.
 For SO14 packages: P_{tot} derates linearly with 8 mW/K above 70 °C.
 For TSSOP14 packages: P_{tot} derates linearly with 5.5 mW/K above 60 °C.
 For DHVQFN14 packages: P_{tot} derates linearly with 4.5 mW/K above 60 °C.

8. Recommended operating conditions

Table 6. Recommended operating conditions

Voltages are referenced to GND (ground = 0 V)

Symbol	Parameter	Conditions	74	HC74-Q1	00	74H	ICT74-Q	100	Unit
			Min	Тур	Max	Min	Тур	Max	
V _{CC}	supply voltage		2.0	5.0	6.0	4.5	5.0	5.5	V
VI	input voltage		0	-	V _{CC}	0	-	V _{CC}	V
Vo	output voltage		0	-	V _{CC}	0	-	V _{CC}	V
T _{amb}	ambient temperature		-40	+25	+125	-40	+25	+125	°C
$\Delta t / \Delta V$	input transition rise and fall rate	$V_{CC} = 2.0 V$	-	-	625	-	-	-	ns/V
		$V_{CC} = 4.5 V$	-	1.67	139	-	1.67	139	ns/V
		$V_{CC} = 6.0 V$	-	-	83	-	-	-	ns/V

9. Static characteristics

Table 7.Static characteristics

At recommended operating conditions; voltages are referenced to GND (ground = 0 V).

Symbol	Parameter	Conditions	T _{amb} =	–40 °C to	+85 °C	T _{amb} = -40 °	Unit	
			Min	Typ <mark>[1]</mark>	Max	Min	Max	
74HC74-	Q100							
V _{IH}	HIGH-level	V _{CC} = 2.0 V	1.5	1.2	-	1.5	-	V
ir	input voltage	V _{CC} = 4.5 V	3.15	2.4	-	3.15	-	V
		V _{CC} = 6.0 V	4.2	3.2	-	4.2	-	V

Dual D-type flip-flop with set and reset; positive edge-trigger

Table 7. Static characteristics ...continued

At recommended operating conditions; voltages are referenced to GND (ground = 0 V).

Symbol	Parameter	Conditions	T _{amb} =	–40 °C to	+85 °C	$T_{amb} = -40$ °	C to +125 °C	Unit
			Min	Typ[1]	Max	Min	Max	
VIL	LOW-level	V _{CC} = 2.0 V	-	0.8	0.5	-	0.5	V
	input voltage	V _{CC} = 4.5 V	-	2.1	1.35	-	1.35	V
		V _{CC} = 6.0 V	-	2.8	1.8	-	1.8	V
V _{ОН}	HIGH-level	$V_{I} = V_{IH} \text{ or } V_{IL}$						
	output voltage	$I_{O} = -4.0 \text{ mA}; V_{CC} = 4.5 \text{ V}$	3.84	4.32	-	3.7	-	V
		$I_{O} = -5.2 \text{ mA}; V_{CC} = 6.0 \text{ V}$	5.34	5.81	-	5.2	-	V
V _{OL}	LOW-level	$V_{I} = V_{IH} \text{ or } V_{IL}$						
	output voltage	$I_{O} = 4.0 \text{ mA}; V_{CC} = 4.5 \text{ V}$	-	0.15	0.33	-	0.4	V
		$I_{O} = 5.2 \text{ mA}; V_{CC} = 6.0 \text{ V}$	-	0.16	0.33	-	0.4	V
I	input leakage current	$V_1 = V_{CC} \text{ or GND};$ $V_{CC} = 6.0 \text{ V}$	-	-	±1.0	-	±1.0	μA
l _{cc}	supply current		-	-	40	-	80	μA
Cı	input capacitance		-	3.5	-	-	-	pF
74HCT7	4-Q100			1	1			
V _{IH}	HIGH-level input voltage	$V_{CC} = 4.5 \text{ V} \text{ to } 5.5 \text{ V}$	2.0	1.6	-	2.0	-	V
V _{IL}	LOW-level input voltage	V_{CC} = 4.5 V to 5.5 V	-	1.2	0.8	-	0.8	V
V _{OH}	HIGH-level	$V_{I} = V_{IH} \text{ or } V_{IL}; V_{CC} = 4.5 \text{ V}$						
	output voltage	$I_{O} = -4 \text{ mA}$	3.84	4.32	-	3.7	-	V
V _{OL}	LOW-level	$V_{I} = V_{IH} \text{ or } V_{IL}; V_{CC} = 4.5 \text{ V}$						
	output voltage	I _O = 4.0 mA	-	0.15	0.33	-	0.4	V
lı	input leakage current	$V_1 = V_{CC} \text{ or GND};$ $V_{CC} = 5.5 \text{ V}$	-	-	±1.0	-	±1.0	μA
I _{CC}	supply current		-	-	40	-	80	μA
∆l _{CC}	additional supply current	$\label{eq:VI} \begin{array}{l} V_I = V_{CC} - 2.1 \ V;\\ \text{other inputs at } V_{CC} \ \text{or GND};\\ V_{CC} = 4.5 \ V \ \text{to } 5.5 \ V;\\ I_O = 0 \ A \end{array}$						
		per input pin; nD, nRD inputs	-	70	315	-	343	μA
		per input pin; nSD, nCP input	-	80	360	-	392	μA
Cı	input capacitance		-	3.5	-	-	-	pF

[1] All typical values are measured at $T_{amb} = 25 \text{ °C}$.

Dual D-type flip-flop with set and reset; positive edge-trigger

10. Dynamic characteristics

Table 8. Dynamic characteristics

Voltages are referenced to GND (ground = 0 V); $C_L = 50 \text{ pF}$ unless otherwise specified; for test circuit see Figure 9.

Symbol	Parameter	Conditions	Т	amb =	-40 °C to	o +85 °C	$T_{amb} = -40$	°C to +125 °C	Unit
			M	in	Typ <mark>[1]</mark>	Max	Min	Max	
74HC74	-Q100								
t _{pd}	propagation delay	nCP to nQ, n Q ; see <u>Figure 7</u>	[2]						
		V _{CC} = 2.0 V	-		47	220	-	265	ns
		V _{CC} = 4.5 V	-		17	44	-	53	ns
		$V_{CC} = 5 \text{ V}; \text{ C}_{L} = 15 \text{ pF}$	-		14	-	-	-	ns
		$V_{CC} = 6.0 V$	-		14	37	-	45	ns
		nSD to nQ, nQ; see Figure 8	[2]						
		V _{CC} = 2.0 V	-		50	250	-	300	ns
		V _{CC} = 4.5 V	-		18	50	-	60	ns
		$V_{CC} = 5 \text{ V}; C_{L} = 15 \text{ pF}$	-		15	-	-	-	ns
		$V_{CC} = 6.0 V$	-		14	43	-	51	ns
		nRD to nQ, nQ; see Figure 8	[2]						
		V _{CC} = 2.0 V	-		52	250	-	300	ns
		$V_{CC} = 4.5 V$	-		19	50	-	60	ns
		$V_{CC} = 5 \text{ V}; \text{ C}_{L} = 15 \text{ pF}$	-		16	-	-	-	ns
		$V_{CC} = 6.0 V$	-		15	43	-	51	ns
tt	transition	nQ, nQ; see <u>Figure 7</u>	[3]						
	time	V _{CC} = 2.0 V	-		19	95	-	110	ns
		$V_{CC} = 4.5 V$	-		7	19	-	22	ns
		$V_{CC} = 6.0 V$	-		6	16	-	19	ns
tw	pulse width	nCP HIGH or LOW; see <u>Figure 7</u>							
		V _{CC} = 2.0 V	10	00	19	-	120	-	ns
		$V_{CC} = 4.5 V$	2	0	7	-	24	-	ns
		$V_{CC} = 6.0 V$	1	7	6	-	20	-	ns
		nSD, nRD LOW; see <u>Figure 8</u>							
		V _{CC} = 2.0 V	10	0	19	-	120	-	ns
		$V_{CC} = 4.5 V$	2	0	7	-	24	-	ns
		$V_{CC} = 6.0 V$	1	7	6	-	20	-	ns
t _{rec}	recovery	nSD, nRD; see <u>Figure 8</u>							
	time	V _{CC} = 2.0 V	4	0	3	-	45	-	ns
		$V_{CC} = 4.5 V$	8	}	1	-	9	-	ns
		V _{CC} = 6.0 V	7	7	1	-	8	-	ns

Dual D-type flip-flop with set and reset; positive edge-trigger

Symbol	Parameter	Conditions		T _{amb} =	= –40 °C to	o +85 °C	$T_{amb} = -40$	°C to +125 °C	Unit
				Min	Typ <mark>[1]</mark>	Мах	Min	Max	-
su	set-up time	nD to nCP; see Figure 7							
		V _{CC} = 2.0 V		75	6	-	90	-	ns
		V _{CC} = 4.5 V		15	2	-	18	-	ns
		$V_{\rm CC} = 6.0 \text{ V}$		13	2	-	15	-	ns
t _h	hold time	nD to nCP; see Figure 7							
		V _{CC} = 2.0 V		3	-6	-	3	-	ns
		$V_{\rm CC} = 4.5 \rm V$		3	-2	-	3	-	ns
		$V_{CC} = 6.0 V$		3	-2	_	3	-	ns
f _{max}	maximum	nCP; see Figure 7			_				
max	frequency	$V_{CC} = 2.0 V$		4.8	23	_	4.0	_	MHz
		$V_{CC} = 4.5 V$		24	69	-	20		MHz
		$V_{CC} = 4.3 \text{ V}$ $V_{CC} = 5 \text{ V}; \text{ C}_{\text{L}} = 15 \text{ pF}$		-	76	_	-	-	MHz
								-	
0		$V_{\rm CC} = 6.0 \text{ V}$	[4]	28	82	-	24	-	MHz
C _{PD}	power dissipation capacitance	$C_L = 50 \text{ pF}; f = 1 \text{ MHz};$ $V_I = \text{GND to } V_{CC}$	<u>[4]</u>	-	24	-	-	-	pF
74HCT7	4-Q100							I	
t _{pd}	propagation delay	nCP to nQ, n \overline{Q} ; see Figure 7	[2]						
		V _{CC} = 4.5 V		-	18	44	-	53	ns
		V _{CC} = 5 V; C _L = 15 pF		-	15	-	-	-	ns
		nSD to nQ, nQ; see Figure 8	[2]						
		V _{CC} = 4.5 V		-	23	50	-	60	ns
		V _{CC} = 5 V; C _L = 15 pF		-	18	-	-	-	ns
		nRD to nQ, nQ; see Figure 8	[2]						
		V _{CC} = 4.5 V		-	24	50	-	60	ns
		V _{CC} = 5 V; C _L = 15 pF		-	18	-	-	-	ns
t _t	transition	nQ, nQ; see Figure 7	[3]						
	time	V _{CC} = 4.5 V		-	7	19	-	22	ns
t _W	pulse width	nCP HIGH or LOW; see Figure 7							
		V _{CC} = 4.5 V		23	9	-	27	-	ns
		nSD, nRD LOW; see <u>Figure 8</u>							
rec	recovery	$V_{CC} = 4.5 V$ nSD, nRD; see Figure 8		20	9	-	24	-	ns
	time	V _{CC} = 4.5 V		8	1	-	9	-	ns
t _{su}	set-up time	nD to nCP; see Figure 7 $V_{CC} = 4.5 V$		15	5	-	18	-	ns

Dynamic characteristics ... continued Table 8.

_ _ _ . irouit _....

74HC_HCT74_Q100

Dual D-type flip-flop with set and reset; positive edge-trigger

Table 8.	Dynamic	characteristics	continued	

Voltages are referenced to GND (ground = 0 V); $C_L = 50 \text{ pF}$ unless otherwise specified; for test circuit see Figure 9.

Symbol	Parameter	Conditions	T _{amb} :	= -40 °C to	o +85 °C	$T_{amb} = -40$	Unit	
			Min	Typ[1]	Мах	Min	Max	
t _h hold tim	hold time	nD to nCP; see Figure 7						
		V _{CC} = 4.5 V	3	-3	-	3	-	ns
f _{max}	maximum	nCP; see Figure 7						
	frequency	V _{CC} = 4.5 V	22	54	-	18	-	MHz
		V _{CC} = 5 V; C _L = 15 pF	-	59	-	-	-	MHz
C _{PD}	power dissipation capacitance	$C_L = 50 \text{ pF}; f = 1 \text{ MHz};$ [4] V _I = GND to V _{CC} - 1.5 V	-	29	-	-	-	pF

[1] All typical values are measured at $T_{amb} = 25 \text{ °C}$.

[2] t_{pd} is the same as t_{PLH} and t_{PHL} .

 $[3] \quad t_t \mbox{ is the same as } t_{THL} \mbox{ and } t_{TLH}.$

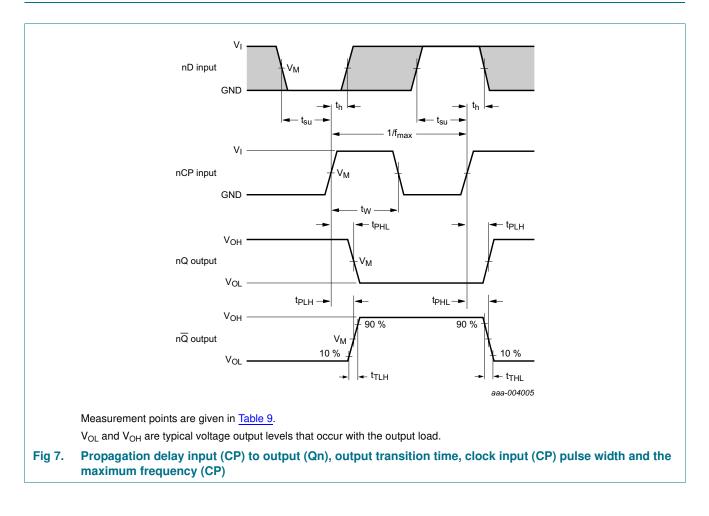
[4] C_{PD} is used to determine the dynamic power dissipation (P_D in μ W).

 $P_{D} = C_{PD} \times V_{CC}^{2} \times f_{i} \times N + \sum (C_{L} \times V_{CC}^{2} \times f_{o}) \text{ where:}$

 f_i = input frequency in MHz;

 $f_o = output frequency in MHz;$

 C_L = output load capacitance in pF;


V_{CC} = supply voltage in V;

N = number of inputs switching;

 $\Sigma(C_L \times V_{CC}^2 \times f_o) = sum of outputs.$

Dual D-type flip-flop with set and reset; positive edge-trigger

11. Waveforms

NXP Semiconductors

74HC74-Q100; 74HCT74-Q100

Dual D-type flip-flop with set and reset; positive edge-trigger

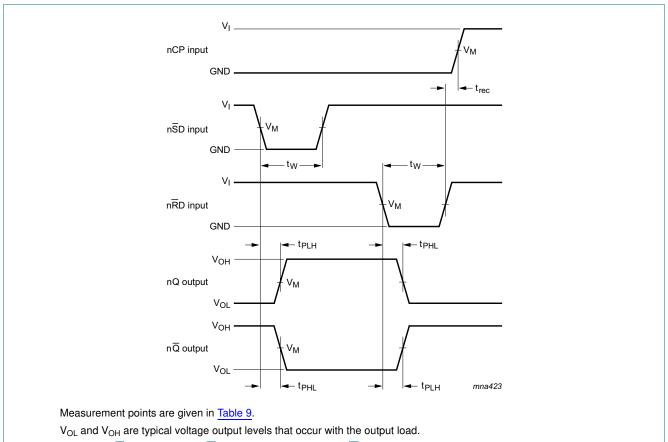
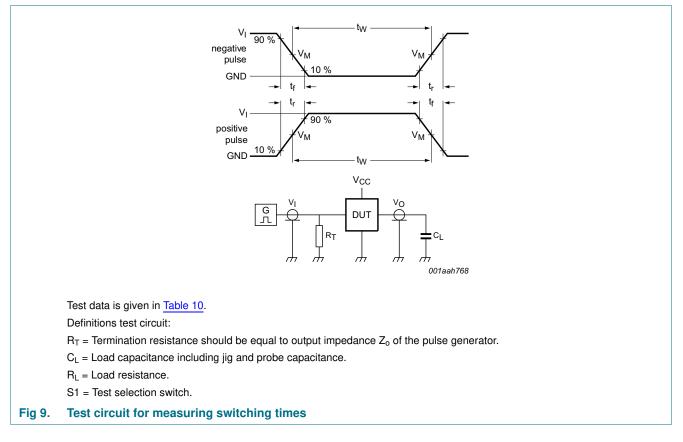



Fig 8. The set (nSD) and reset (nRD) input to output (nQ,nQ) propagation delays, set and reset pulse widths and the nSD, nRD to nCP recovery time

Table 9.Measurement points

Туре	Input	Output
	V _M	V _M
74HC74-Q100	0.5V _{CC}	0.5V _{CC}
74HCT74-Q100	1.3 V	1.3 V

Dual D-type flip-flop with set and reset; positive edge-trigger

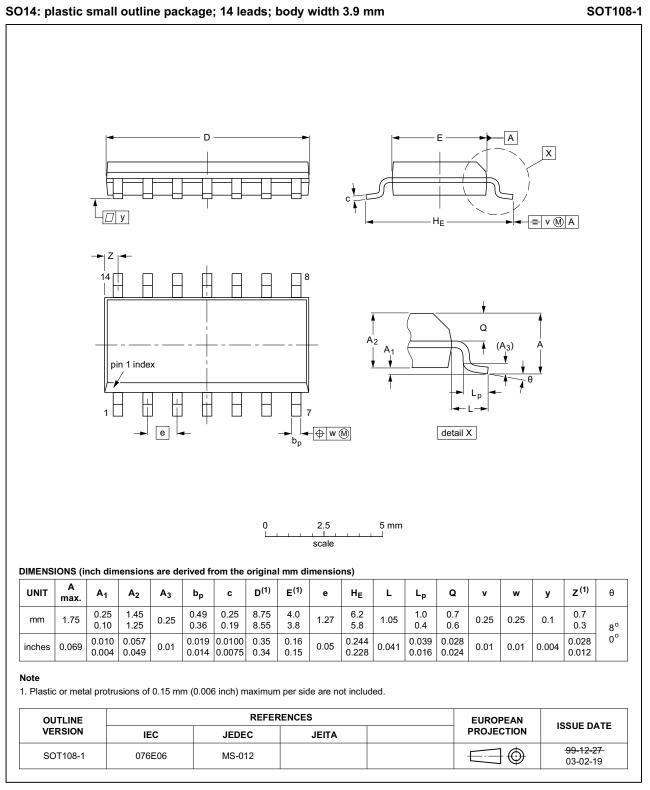
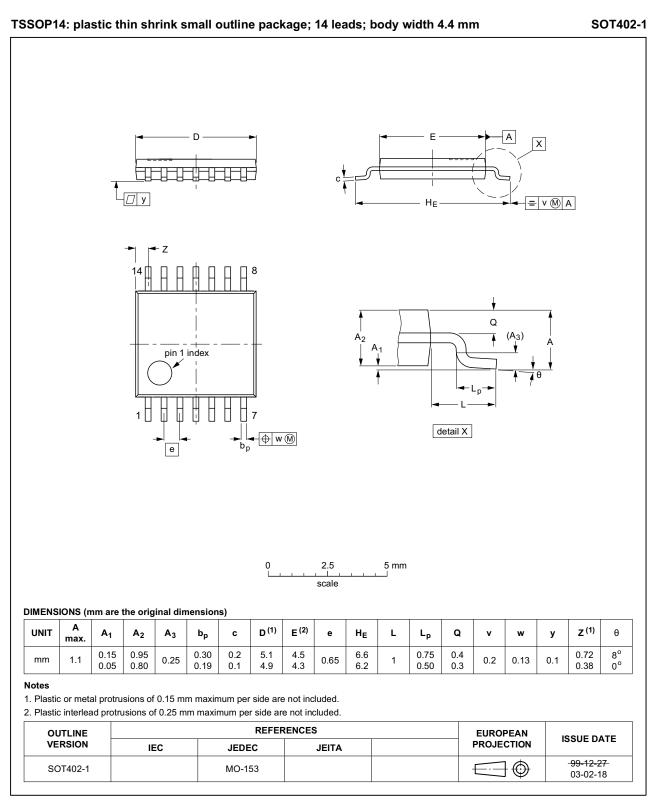


Table 10. Test data

Туре	Input		Load		Test
	VI	t _r , t _f	CL	RL	
74HC74-Q100	V _{CC}	6 ns	15 pF, 50 pF	1 kΩ	t _{PLH} , t _{PHL}
74HCT74-Q100	3 V	6 ns	15 pF, 50 pF	1 kΩ	t _{PLH} , t _{PHL}

Dual D-type flip-flop with set and reset; positive edge-trigger

12. Package outline


Fig 10. Package outline SOT108-1 (SO14)

All information provided in this document is subject to legal disclaimers.

74HC HCT74 Q100

© NXP Semiconductors N.V. 2015. All rights reserved.

Dual D-type flip-flop with set and reset; positive edge-trigger

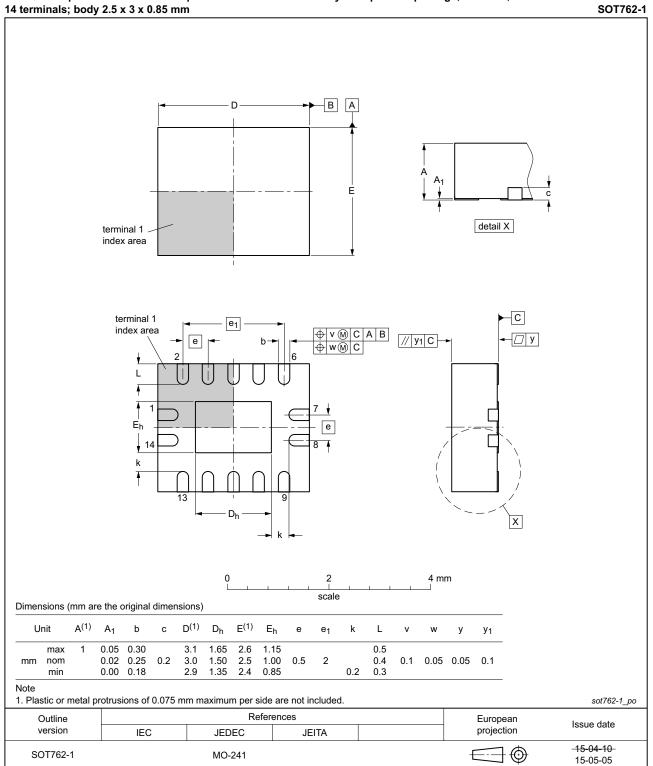


Fig 11. Package outline SOT402-1 (TSSOP14)

All information provided in this document is subject to legal disclaimers.

74HC_HCT74_Q100

Dual D-type flip-flop with set and reset; positive edge-trigger

DHVQFN14: plastic dual in-line compatible thermal enhanced very thin quad flat package; no leads;

Fig 12. Package outline SOT762-1 (DHVQFN14)

74HC_HCT74_Q100

© NXP Semiconductors N.V. 2015. All rights reserved.

Dual D-type flip-flop with set and reset; positive edge-trigger

13. Abbreviations

Table 11. Abbreviations		
Acronym	Description	
CMOS	Complementary Metal Oxide Semiconductor	
ESD	ElectroStatic Discharge	
HBM	Human Body Model	
MIL	Military	
MM	Machine Model	
TTL	Transistor-Transistor Logic	

14. Revision history

Table 12. Revision history

Document ID	Release date	Data sheet status	Change notice	Supersedes
74HC_HCT74_Q100 v.3	20151204	Product data sheet	-	74HC_HCT74_Q100 v.2
Modifications:	Type number	er 74HC74N-Q100 (SOT27	7-1) removed.	
74HC_HCT74_Q100 v.2	20130906	Product data sheet	-	74HC_HCT74_Q100 v.1
Modifications:	• 74HC74N-C	2100 (DIP14) added.		
74HC_HCT74_Q100 v.1	20120807	Product data sheet	-	-

Dual D-type flip-flop with set and reset; positive edge-trigger

15. Legal information

15.1 Data sheet status

Document status[1][2]	Product status ^[3]	Definition
Objective [short] data sheet	Development	This document contains data from the objective specification for product development.
Preliminary [short] data sheet	Qualification	This document contains data from the preliminary specification.
Product [short] data sheet	Production	This document contains the product specification.

[1] Please consult the most recently issued document before initiating or completing a design.

[2] The term 'short data sheet' is explained in section "Definitions".

[3] The product status of device(s) described in this document may have changed since this document was published and may differ in case of multiple devices. The latest product status information is available on the Internet at URL http://www.nxp.com.

15.2 Definitions

Draft — The document is a draft version only. The content is still under internal review and subject to formal approval, which may result in modifications or additions. NXP Semiconductors does not give any representations or warranties as to the accuracy or completeness of information included herein and shall have no liability for the consequences of use of such information.

Short data sheet — A short data sheet is an extract from a full data sheet with the same product type number(s) and title. A short data sheet is intended for quick reference only and should not be relied upon to contain detailed and full information. For detailed and full information see the relevant full data sheet, which is available on request via the local NXP Semiconductors sales office. In case of any inconsistency or conflict with the short data sheet, the full data sheet shall prevail.

Product specification — The information and data provided in a Product data sheet shall define the specification of the product as agreed between NXP Semiconductors and its customer, unless NXP Semiconductors and customer have explicitly agreed otherwise in writing. In no event however, shall an agreement be valid in which the NXP Semiconductors product is deemed to offer functions and qualities beyond those described in the Product data sheet.

15.3 Disclaimers

Limited warranty and liability — Information in this document is believed to be accurate and reliable. However, NXP Semiconductors does not give any representations or warranties, expressed or implied, as to the accuracy or completeness of such information and shall have no liability for the consequences of use of such information. NXP Semiconductors takes no responsibility for the content in this document if provided by an information source outside of NXP Semiconductors.

In no event shall NXP Semiconductors be liable for any indirect, incidental, punitive, special or consequential damages (including - without limitation - lost profits, lost savings, business interruption, costs related to the removal or replacement of any products or rework charges) whether or not such damages are based on tort (including negligence), warranty, breach of contract or any other legal theory.

Notwithstanding any damages that customer might incur for any reason whatsoever, NXP Semiconductors' aggregate and cumulative liability towards customer for the products described herein shall be limited in accordance with the *Terms and conditions of commercial sale* of NXP Semiconductors.

Right to make changes — NXP Semiconductors reserves the right to make changes to information published in this document, including without limitation specifications and product descriptions, at any time and without notice. This document supersedes and replaces all information supplied prior to the publication hereof.

Suitability for use in automotive applications - This NXP

Semiconductors product has been qualified for use in automotive applications. Unless otherwise agreed in writing, the product is not designed, authorized or warranted to be suitable for use in life support, life-critical or safety-critical systems or equipment, nor in applications where failure or malfunction of an NXP Semiconductors product can reasonably be expected to result in personal injury, death or severe property or environmental damage. NXP Semiconductors and its suppliers accept no liability for inclusion and/or use of NXP Semiconductors products in such equipment or applications and therefore such inclusion and/or use is at the customer's own risk.

Applications — Applications that are described herein for any of these products are for illustrative purposes only. NXP Semiconductors makes no representation or warranty that such applications will be suitable for the specified use without further testing or modification.

Customers are responsible for the design and operation of their applications and products using NXP Semiconductors products, and NXP Semiconductors accepts no liability for any assistance with applications or customer product design. It is customer's sole responsibility to determine whether the NXP Semiconductors product is suitable and fit for the customer's applications and products planned, as well as for the planned application and use of customer's third party customer(s). Customers should provide appropriate design and operating safeguards to minimize the risks associated with their applications and products.

NXP Semiconductors does not accept any liability related to any default, damage, costs or problem which is based on any weakness or default in the customer's applications or products, or the application or use by customer's third party customer(s). Customer is responsible for doing all necessary testing for the customer's applications and products using NXP Semiconductors products in order to avoid a default of the applications and the products or of the application or use by customer's third party customer(s). NXP does not accept any liability in this respect.

Limiting values — Stress above one or more limiting values (as defined in the Absolute Maximum Ratings System of IEC 60134) will cause permanent damage to the device. Limiting values are stress ratings only and (proper) operation of the device at these or any other conditions above those given in the Recommended operating conditions section (if present) or the Characteristics sections of this document is not warranted. Constant or repeated exposure to limiting values will permanently and irreversibly affect the quality and reliability of the device.

Terms and conditions of commercial sale — NXP Semiconductors products are sold subject to the general terms and conditions of commercial sale, as published at http://www.nxp.com/profile/terms, unless otherwise agreed in a valid written individual agreement. In case an individual agreement is concluded only the terms and conditions of the respective agreement shall apply. NXP Semiconductors hereby expressly objects to applying the customer's general terms and conditions with regard to the purchase of NXP Semiconductors products by customer.

NXP Semiconductors

74HC74-Q100; 74HCT74-Q100

Dual D-type flip-flop with set and reset; positive edge-trigger

No offer to sell or license — Nothing in this document may be interpreted or construed as an offer to sell products that is open for acceptance or the grant, conveyance or implication of any license under any copyrights, patents or other industrial or intellectual property rights.

Export control — This document as well as the item(s) described herein may be subject to export control regulations. Export might require a prior authorization from competent authorities.

Translations — A non-English (translated) version of a document is for reference only. The English version shall prevail in case of any discrepancy between the translated and English versions.

15.4 Trademarks

Notice: All referenced brands, product names, service names and trademarks are the property of their respective owners.

16. Contact information

For more information, please visit: http://www.nxp.com

For sales office addresses, please send an email to: salesaddresses@nxp.com

18 of 19

NXP Semiconductors

74HC74-Q100; 74HCT74-Q100

Dual D-type flip-flop with set and reset; positive edge-trigger

17. Contents

1	General description 1
2	Features and benefits 1
3	Ordering information 2
4	Functional diagram 2
5	Pinning information 3
5.1	Pinning 3
5.2	Pin description 4
6	Functional description 4
7	Limiting values 5
8	Recommended operating conditions 5
9	Static characteristics 5
10	Dynamic characteristics 7
11	Waveforms 10
12	Package outline 13
13	Abbreviations 16
14	Revision history 16
15	Legal information 17
15.1	Data sheet status 17
15.2	Definitions 17
15.3	Disclaimers
15.4	Trademarks 18
16	Contact information 18
17	Contents 19

Please be aware that important notices concerning this document and the product(s) described herein, have been included in section 'Legal information'.

© NXP Semiconductors N.V. 2015.

All rights reserved.

For more information, please visit: http://www.nxp.com For sales office addresses, please send an email to: salesaddresses@nxp.com

Date of release: 4 December 2015 Document identifier: 74HC_HCT74_Q100