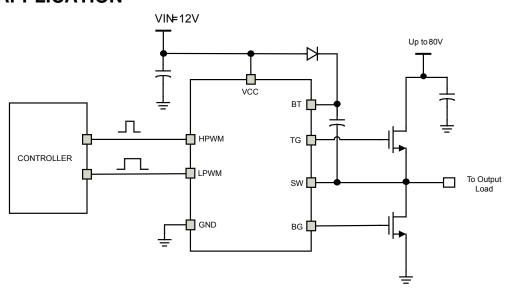
DESCRIPTION

The MP1906 is a high-performance, 80V, gate driver that can drive two external N-MOSFETs in a half-bridge configuration with a 12V gate supply. It accepts independent gate input signals and provides shoot-through prevention. During under-voltage lockout, the output of the high- and low-side drivers goes low to prevent erratic operation under low supply conditions.

The high-current driving capability and short dead time make it suitable for high-power and high-efficiency power applications, such as telecom DC-DC converters. The compact 8-pin SOIC package minimizes the component count and the board space.

FEATURES

- Drives Two Low-Cost, High-Efficiency N-MOSFETs
- 10V-16V Gate Drive Supply
- 3.3V, 5V Logic Compatibility
- 80ns Propagation Delay
- Less than 90µA Quiescent Current
- Under-Voltage Lockout for Both Channels
- Input-Signal-Overlap Protection
- Internal 150ns Dead Time
- Available in a Compact 8-pin SOIC Package

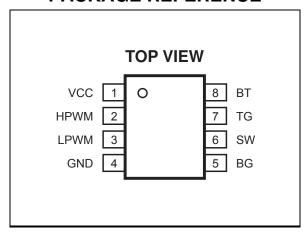

APPLICATIONS

- Motor Drivers
- Half-Bridge Power Supplies
- Avionics DC-DC Converters
- Active-Clamp Forward Converters

All MPS parts are lead-free and adhere to the RoHS directive. For MPS green status, please visit MPS website under Products, Quality Assurance page.

"MPS" and "The Future of Analog IC Technology" are registered trademarks of Monolithic Power Systems, Inc.

TYPICAL APPLICATION



ORDERING INFORMATION

Part Number*	Package	Top Marking
MP1906DS	SOIC8	MP1906

*For Tape & Reel, add suffix –Z (e.g. MP1906DS–Z). For RoHS compliant packaging, add suffix –LF (e.g. MP1906DS–LF–Z)

PACKAGE REFERENCE

ABSOLUTE MAXIMUM RATINGS (1)

Input Voltage V _{CC}	0.3V to +18V
Voltage on SW V _{SW}	
	10ns) to +100V
Voltage on BT V _{BT}	V _{SW} +18V
Logic Inputs	
-0.3 to (V _{CC} +6.5V), or 18.5\	\prime for $V_{CC} \geqslant 12V$
Continuous Power Dissipation ($(T_A = 25^{\circ}C)^{(2)}$
Junction Temperature	40°C to +150°C
Lead Temperature (Solder 10sed	c)260°C
Storage Temperature	55°C to +150°C
Recommended Operating C	onditions ⁽³⁾
Input Voltage V _{CC}	
Maximum Voltage on SW V _{SW}	
Logic Inputs	
Voltage slew rate on SW	
PWM frequency	
Operating Junction Temp. (T _J).	

Thermal Resistance (4)	$oldsymbol{ heta}_{JA}$	$oldsymbol{ heta}_{JC}$	
SOIC8	90	45	°C/W

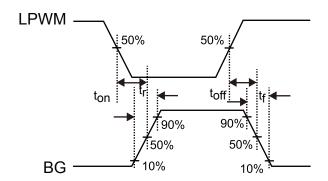
Notes:

- Exceeding these ratings may damage the device.
- 2) The maximum allowable power dissipation is a function of the maximum junction temperature T_J (MAX), the junction-to-ambient thermal resistance θ_{JA} , and the ambient temperature T_A . The maximum allowable continuous power dissipation at any ambient temperature is calculated by P_D (MAX) = $(T_J$ (MAX)- $T_A)/\theta_{JA}$. Exceeding the maximum allowable power dissipation will cause excessive die temperature, and the regulator will go into thermal shutdown. Internal thermal shutdown circuitry protects the device from permanent damage.
- The device is not guaranteed to function outside of its operating conditions.
- 4) Measured on JESD51-7, 4-layer PCB.

ELECTRICAL CHARACTERISTICS

 V_{CC} = 12V, V_{SW} =0V, no load on TG or BG, T_A = 25°C, unless otherwise noted.

Parameter	Symbol	Condition	Min	Тур	Max	Units
Supply Current				•	•	
V _{CC} quiescent current	I _{CCQ}	V _{LPWM} =5V, V _{HPWM} = 0V	70	90	110	μA
V _{CC} operation current	I _{cc}	f=50kHz, C _{LOAD BG} =1nF		0.9	1.5	mA
Bootstrap quiescent current	I _{BTQ}	V _{LPWM} =5V, V _{HPWM} = 0V		30		μΑ
Bootstrap operation current	I _{BT}	f=50kHz, C _{LOAD TG} =1nF		0.7	1	mA
SW BT leakage current	I _{LK}	V _{SW} =V _{BT} =80V		0.1	0.5	μΑ
Input						
LPWM falling threshold	V_{LPWMF}				0.8	V
LPWM rising threshold	V_{LPWMR}		2.5			V
HPWM falling threshold	V _{HPWMF}				0.8	V
HPWM rising threshold	V_{HPWMR}		2.5			V
Under-Voltage Protection (UVLO)						
V _{CC} rising threshold	V_{CCTHR}		8.2	8.8	9.4	V
V _{CC} threshold hysteresis	V _{CCTHH}			0.7		V
Bootstrap rising threshold	V_{BTTHR}		4.5	5.5	6.5	V
Bootstrap threshold hysteresis	V _{BTTHH}			0.65		V
Gate Driver Output						
Low-side gate pull-up peak current (5)	I _{BGU}	V _{BG} =0V		350		mA
Low-side gate pull-down peak current (5)	I _{BGD}	V _{BG} =12V		1		Α
High-side gate pull-up peak current ⁽⁵⁾	I _{TGU}	V _{TG} =0V		350		mA
High-side gate pull-down peak current (5)	I _{TGD}	V _{TG} =12V		1		Α
Propagation Delays, Dead Times diagram)	and Outp	ut Rising and Falling Times (C _{Load}	=1nF ca	ap) (plea	ase see	timing
Turn-on propagation delay (TG)	$ au_{ON\ TG}$	V _{SW} =0V		80	150	ns
Turn-off propagation delay (TG)	τ _{OFF} TG	V _{SW} =0V		80	150	ns
Turn-on rise time (TG)	τ _{RISE} TG			50	100	ns
Turn-off fall time (TG)	$ au_{FALL}$ TG			30	100	ns
Turn-on propagation delay (BG)	τ _{ON BG}			80	150	ns
Turn-off propagation delay (BG)	τ _{OFF BG}			80	150	ns
Turn-on rise time (BG)	τ _{RISE_BG}			50	100	ns
Turn-off fall time (BG)	$ au_{FALL_BG}$			30	100	ns
Deadtime, LS turn-off to HS turn-on & HS turn-on to LS turn-off	$ au_{DT}$			150	250	ns

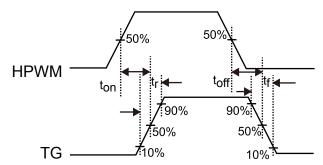


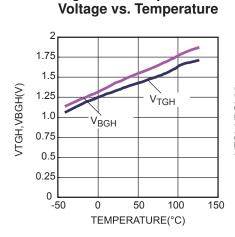
ELECTRICAL CHARACTERISTICS(CONTIUUED) $V_{CC} = 12V$, $V_{SW} = 0V$, no load on TG or BG, $T_A = 25^{\circ}C$, unless otherwise noted.

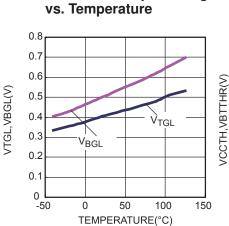
Parameter	Symbol	Condition	Min	Тур	Max	Units
LPWM source current	I _{LPWM}	I _{LPWM} =5V	-8	-3	-1	μΑ
HPWM sink current	I _{HPWM}	I _{HPWM} =5V	1	3	8	μΑ
Floating Gate Driver	Floating Gate Driver					
BG-output-low to GND	V_{BGL}	I _{BG} =100mA		0.4	0.7	V
BG-output-high to rail	V_{BGH}	I_{BG} =-100mA, V_{BGH} = V_{CC} - V_{BG}		1.5	1.7	V
TG-output-low to SW	V_{TGL}	I _{TG} =100mA		0.4	0.7	V
TG-output-high to rail	V_{TGH}	I_{TG} =-100mA, V_{TGH} = V_{CC} - V_{TG}		1.5	1.7	V
Switching Specifications						
Minimum input pulse width to change the output ⁽⁵⁾	$ au_{PWM_min}$				50	ns

Notes:

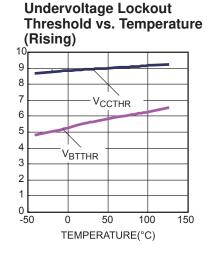
5) Guaranteed by design

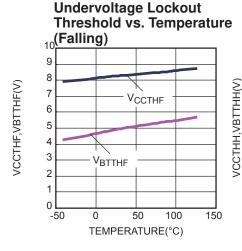


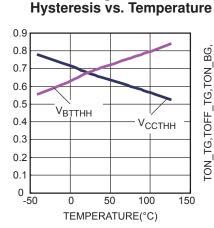

Figure 1: Gate Driver Timing Diagram

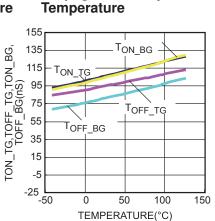


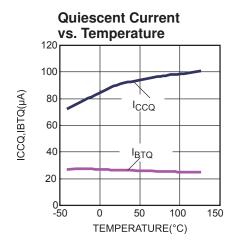
TYPICAL CHARACTERISTICS


High Level Output

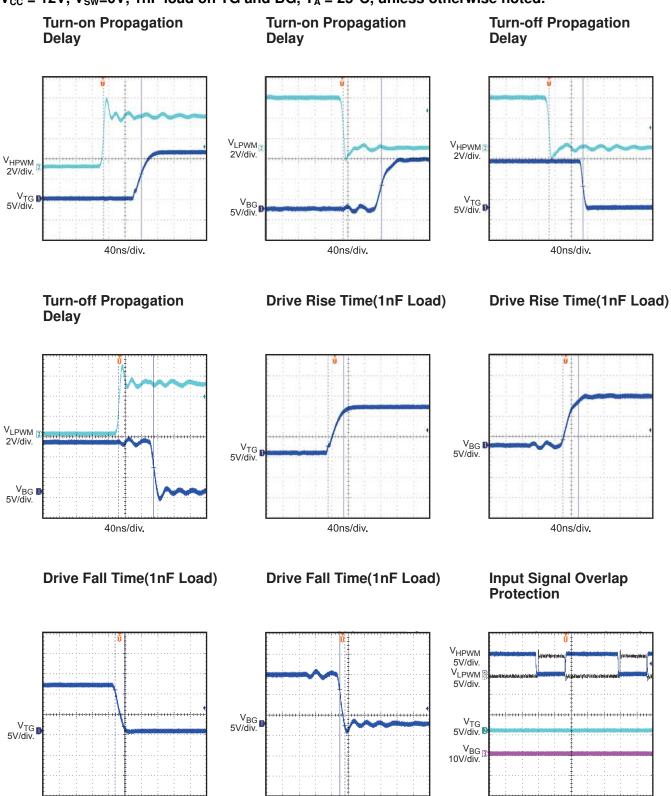

V_{DD}=12V, V_{SW}=0V, T_A=+25°C, unless otherwise noted.




Low Level Output Voltage



Undervoltage Lockout


Propagation Delay vs.

TYPICAL PERFORMANCE CHARACTERISTICS

 V_{CC} = 12V, V_{SW} =0V, 1nF load on TG and BG, T_{A} = 25°C, unless otherwise noted.

400ns/div.

20ns/div.

40ns/div.

PIN FUNCTIONS

Pin#	Name	Description
1	VCC	Supply Input. Supplies power to all internal circuitry. Requires a decoupling capacitor to ground placed close to this pin to ensure a stable and clean supply.
2	HPWM	Logic input for high-side gate driver output.
3	LPWM	Logic input for low-side gate driver output. Active low.
4	GND	Ground.
5	BG	Gate Driver Output for low-side MOSFET.
6	SW	Source Return for high-side MOSFET.
7	TG	Gate Driver Output for high-side MOSFET.
8	ВТ	Bootstrap. Internal power supply pin for high-side floating driver. Add a 1µF ceramic bootstrap capacitor from BT to SW pin.

FUNCTIONAL BLOCK DIAGRAM

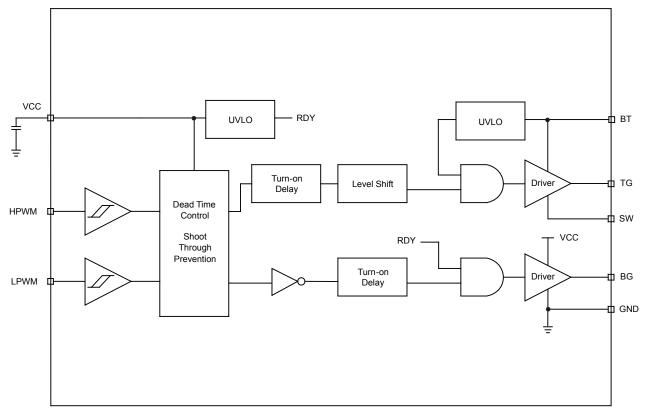


Figure 2: Functional Block Diagram

1/3/2013

OPERATION

Switch Shoot-through Protection

The input signals of HPWM and LPWM are independently controlled. Input shoot-through protection circuitry prevents shoot-through between the TG and BG outputs. Only one of the FET drivers can be on at one time. If HPWM is high and LPWM is low, both TG and BG are OFF.

Under Voltage Lockout

When V_{CC} or V_{BT} goes below their respective UVLO threshold, both BG and TG outputs will go low to both FETS. Once V_{CC} and V_{BT} rises above the UVLO threshold, both TG and BG will stay low until there is a rising edge on either HPWM or LPWM.

Figure 3 shows the operation of the TG and BG under different HPWM and LPWM and UVLO conditions.

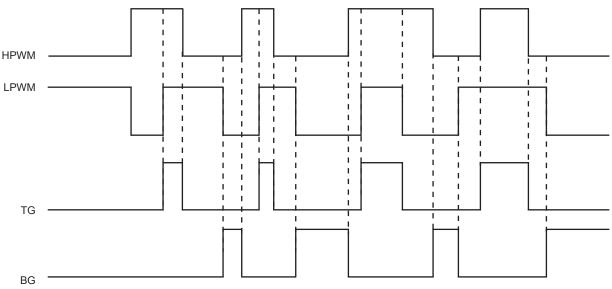


Figure 3: Input/Output Timing Diagram

1/3/2013

APPLICATION INFORMATION

Reference Design Circuits Half Bridge Motor Driver

In a half-bridge converter topology, the MOSFETdriving signals have a dead time: HPWM and LPWM driven with alternating signals from the PWM controller. The input voltage can be up to 80V in this application.

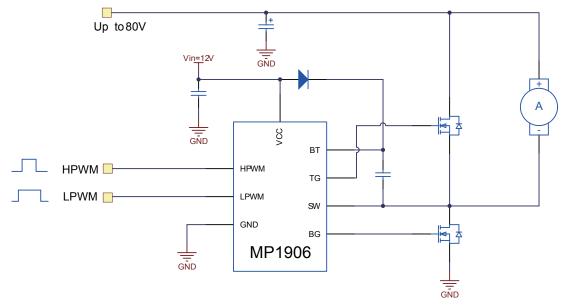
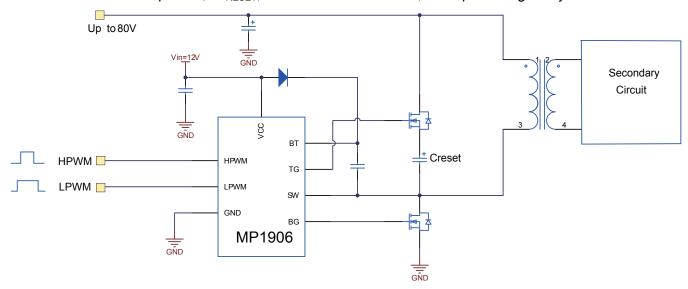
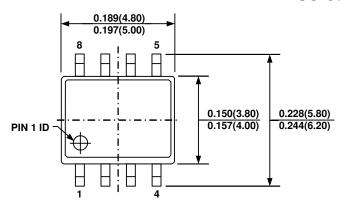


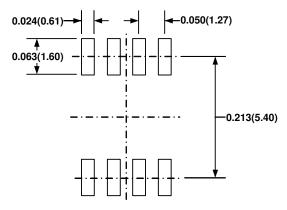
Figure 4: Half-Bridge Motor Driver

Active-Clamp-Forward Converter

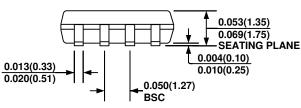
An active-clamp-forward-converter topology alternately drives the MOSFETs. The high-side MOSFET and the capacitor, C_{RESET}, reset the

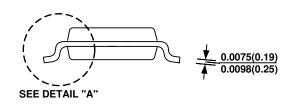
power transformer in a lossless manner. This topology runs well at duty cycles exceeding 50%. However, the input voltage may not run at 80V.

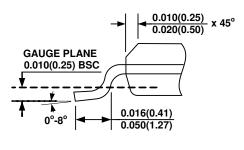

Figure 5: Active-Clamp Forward Converter

PACKAGE INFORMATION


SOIC8



TOP VIEW


RECOMMENDED LAND PATTERN

SIDE VIEW

FRONT VIEW

DETAIL "A"

NOTE:

- 1) CONTROL DIMENSION IS IN INCHES. DIMENSION IN **BRACKET IS IN MILLIMETERS.**
- 2) PACKAGE LENGTH DOES NOT INCLUDE MOLD FLASH, PROTRUSIONS OR GATE BURRS.
- 3) PACKAGE WIDTH DOES NOT INCLUDE INTERLEAD FLASH OR PROTRUSIONS.
- 4) LEAD COPLANARITY (BOTTOM OF LEADS AFTER FORMING) SHALL BE 0.004" INCHES MAX.
- 5) DRAWING CONFORMS TO JEDEC MS-012, VARIATION AA.
- 6) DRAWING IS NOT TO SCALE.

NOTICE: The information in this document is subject to change without notice. Users should warrant and guarantee that third party Intellectual Property rights are not infringed upon when integrating MPS products into any application. MPS will not assume any legal responsibility for any said applications.