

Version: 1.0
Date: 4 July 2022

### Important Notice and Disclaimer:

No part of this document may be reproduced in any form or by any means (including electronic storage and retrieval or translation into a foreign language) without prior agreement written consent from Nicslab. No responsibility is assumed by Nicslab for its use, nor for any infringements of patents or other rights of third parties that may result from its use. Trademarks and registered trademarks are the property of their respective owners.

This product is designated for skilled user. You are entirely responsible for (1) choosing the appropriate Nicslab products for your operation, (2) designing, validating and testing your operation, (3) ensuring your operation meets applicable standards, and any other safety, security or other requirements.

Copyright © 2022, Nicslab.

Series XPOW-120AX-CV-U

1

# Safety Note

Do not operate this product in any manner not specified by Nicslab. Failure to comply with these precautions or with specific warnings or instructions elsewhere in this manual violates safety standards of design, manufacture, and intended use of the instrument. Nicslab assumes no responsibility for any damage caused by mishandling that is beyond normal usage defined in this manual of this product.

### Before Applying DC Power Supply

Verify that DC power supply is good condition and safe to use. The input voltage is no more than 36 V or it can impair this product. Make all connections to the unit before applying power.

#### Do Not Discard the Instrument Cover

Only authorized personnel from Nicslab should remove the instrument cover.

#### Do Not Alter the Instrument

Do not put any unauthorized parts or modify the instrument without Nicslab approval and warranty.

### Caution

This symbol indicates hazard of any operating procedure, practice, or the like that, if not correctly performed or adhered to, could result in damage to the product or loss of important data.

# Contents

| List | of Tables                                      | 4  |
|------|------------------------------------------------|----|
| List | of Figures                                     | 4  |
| 1.   | Introduction                                   | 5  |
| 2.   | Hardware                                       | 7  |
|      | Specification Conditions                       | 7  |
|      | Hardware Requirement                           | 7  |
|      | Box Descriptions                               | 8  |
|      | XPOW-120AX-CV-U Specifications                 | 11 |
|      | Hardware Installation                          | 12 |
| 3.   | Software and Graphical User Interface (GUI)    | 13 |
|      | Software Requirement                           | 13 |
|      | Software Installation                          | 13 |
|      | How to Detect Which COM Is Used (Windows only) | 14 |
|      | Graphical User Interface (GUI)                 | 14 |
|      | Initializing the GUI                           | 17 |
|      | Constant Voltage (CV) Mode                     | 18 |
|      | Save and Upload                                | 18 |
|      | Sequence Automation                            | 20 |
|      | Record                                         | 21 |
|      | Setting Voltage Limit                          | 21 |
|      | Setting Voltage Range                          | 22 |
|      | Setting Reading Speed                          | 22 |
|      | Value Increment Setting                        | 23 |
| 4.   | Operating XPOW through SCPI command            | 24 |
|      | Python Installation (Example)                  | 24 |
|      | Run Python Code (Example)                      | 25 |
|      | Python Function (Example)                      | 26 |
|      | SCPI Commands                                  | 29 |
| 5.   | Troubleshooting                                | 32 |
| 6.   | Warranty                                       | 33 |
| 7.   | Contact                                        | 33 |

# List of Tables

| Table 1. Checklist Items                       | 6  |
|------------------------------------------------|----|
| Table 2. Specification Conditions              | 7  |
| Table 3. DAC Voltage Performance Specification | 11 |
| Table 5. Troubleshooting                       | 32 |
|                                                |    |
| List of Figures                                |    |
| Figure 1. XPOW-120AX-CV-U System Diagram       | 6  |
| Figure 2. Product Dimension                    | 8  |
| Figure 3. Front, Back and Top View             | 9  |
| Figure 4. GUI                                  | 15 |

### 1. Introduction

Nicslab XPOW-120AX-CV-U system is a versatile multichannel source measurement system. The XPOW-120AX-CV-U supports multiple voltage/current sourcing and voltage/current measurement. The system is suitable for sourcing and measuring low power applications from simple electronic circuits to complex photonic integrated circuits.

The XPOW-120AX-CV-U provides independent 120 channels controlled by GUI and SCPI through USB port. The system has Constant Voltage (CV) mode ranging from unipolar 0 - 5 Volt, 0 - 10 Volt, 0 - 20 Volt and 0 - 36 Volt. Each channels provides current for up to 300 mA.

The features for XPOW-120AX-CV-U in details are:

- 16-bits voltage control.
- Enable voltage range configuration through software (technology that enables the
  user to select the output range with software without lose control of the highresolution feature).
- Intuitive GUI.
- Multi-connectors according to your application
- Maximum power output per channel 10 Watt.
- Real time voltage and current reading.
- Save function to create database.
- Upload function to generate the registrable voltage pattern.
- Sequence function for continuous voltage.
- Short circuits protection.
- SCPI command support (Python, C# and LabVIEW).
- SCPI Library (Premium Upgrade).
- Windows, Mac, and Linux support.
- USB port with USB line termination, filtering and ESD protection.
- Bi-directional EMI filtering prevents noise from entering/leaving the system.
- Compliance with IEC61000-4-2 ESD Protection for USB Port.

The XPOW-120AX-CV-U is connected with DC Power then you can plug into the Device-Under-Test (DUT) or multi-connector first. The voltage can be controlled through GUI or SCPI command via USB port.

### The system diagram is as follow:

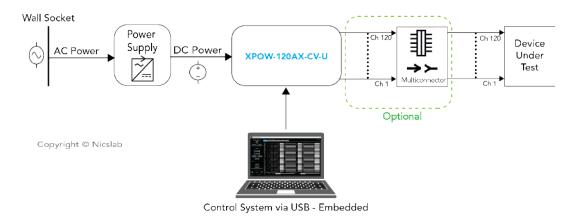



Figure 1. XPOW-120AX-CV-U System Diagram

### The package should include the following items:

| No | Item                                                                                                                                                                               | Qty (pc) | Checklist |
|----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------|-----------|
| 1  | XPOW-120AX-CV-U Box                                                                                                                                                                | 1        |           |
| 2  | DC power line cord                                                                                                                                                                 | 3        |           |
| 3  | Cable USB 3.0 type B                                                                                                                                                               | 3        |           |
| 4  | Multi-connector 6                                                                                                                                                                  | 1        |           |
| 5  | USB hub                                                                                                                                                                            | 1        |           |
| 6  | Ribbon rainbow cable                                                                                                                                                               | 6        |           |
| 7  | USB flash disk                                                                                                                                                                     | 1        |           |
| 8  | Inside USB flash disk: a. GUI b. Specification & Manual c. Test Report d. Serial key (Upgrade) e. XPOW key f. Software Library (Premium) g. Template Excel (upload, demo sequence) | 1        |           |

Table 1. Checklist Items

### 2. Hardware

# **Specification Conditions**

The operating and measurement conditions are under the following conditions:

| ltems                | Conditions                                                                         |
|----------------------|------------------------------------------------------------------------------------|
| Room Temperature     | 0 ~ + 40°C                                                                         |
| Humidity             | 5 ~ 80% (No Condensing)                                                            |
| Power Supply Input   | DC Supply Max 36 V (potential at red & black DC in).  Required headroom 1.4 – 2 V. |
| Waterproof/Dustproof | To be operated under room condition                                                |
| Calibration period   | 2 years                                                                            |

Table 2. Specification Conditions

## Hardware Requirement

The requirements for the PC/Laptop to be used for this product installation are:

• Resolution Min. 1024 x 768 pixel

Hard disk Min. 500 MB of available free space (32-bit and 64-bit operating system)

• USB Port USB 2.0

• RAM Min. 2 GB

• CPU 2.4 GHz or faster

# **Box Descriptions**

The box size is 232 (W)  $\times$  450 (L)  $\times$  102 (H) mm, as the pictures below:

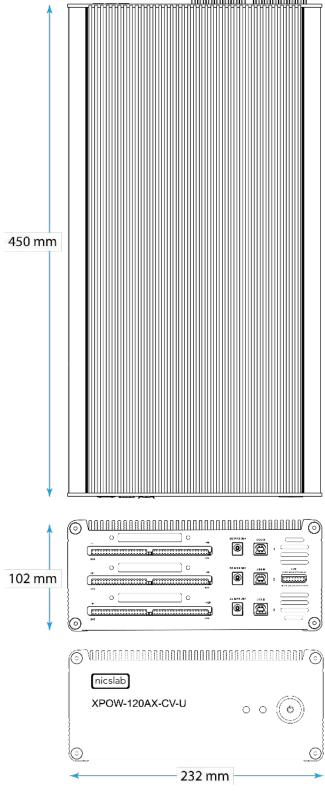



Figure 2. Product Dimension

The details of front and back panel of the box are described below:

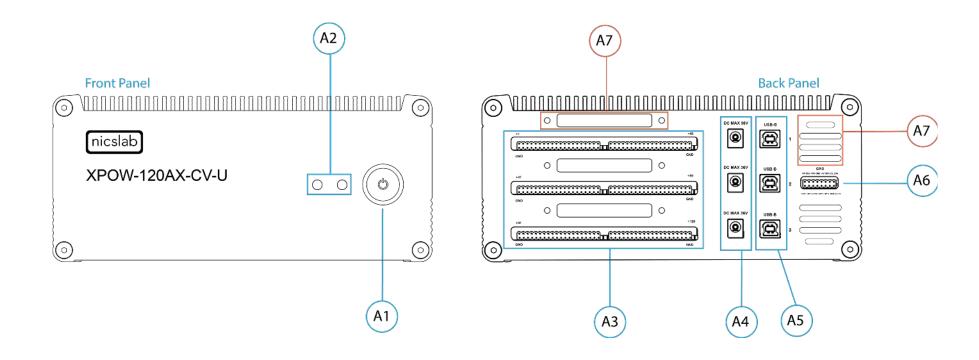



Figure 3. Front, Back and Top View

### Note:

| A1 | Power Switch                        | Turns the instrument on or off.                                                                     |  |
|----|-------------------------------------|-----------------------------------------------------------------------------------------------------|--|
| A2 | Indicator Light                     | Green -> Power Indicator.                                                                           |  |
|    |                                     | Blue -> Serial Transfer Data Active.                                                                |  |
| A3 | Pin Output (40<br>channels per row) | To connect to Device Under Test (DUT) using cable or multi-connector.                               |  |
|    |                                     | Row 1: Channel 1 to 40                                                                              |  |
|    |                                     | Row 2: Channel 41 to 80                                                                             |  |
|    |                                     | Row 3: Channel 81 to 120                                                                            |  |
| A4 | Input DC Max 36V                    | Caution Please follow the safety notice on your DC power supply. The DC input is no more than 36 V. |  |
| A5 | USB-B                               | USB type B ports.                                                                                   |  |
| A6 | GPIO                                | You may use for external control and monitoring direct to microprocessor.                           |  |
| A7 | Airflow                             | For air circulation inside the box.                                                                 |  |

# XPOW-120AX-CV-U Specifications

The performance specifications of Digital Analog Converter (DAC) <u>voltage</u> are listed in the table 3 below:

| No  | Parameter                       | Min   | Тур     | Max      | Unit             | Test conditions/comments                                                                                                                               |
|-----|---------------------------------|-------|---------|----------|------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------|
| 1   | Resolution                      | 16    |         |          | Bits             |                                                                                                                                                        |
| 2   | Integral nonlinearity (INL)     | -1    | ± 0.5   | 1        | LSB              | All ranges, except 0 to 40 $\&\pm2.5V$                                                                                                                 |
| 3   | Differential Nonlinearity (DNL) | -1    | ± 0.5   | 1        | LSB              | Specified 16-bit monotonic                                                                                                                             |
| 4   | Total unadjusted error          | -0.1  | ± 0.01  | 0.1      | %FSR             | All ranges except ±2.5V                                                                                                                                |
| 5   | Unipolar offset error           | -0.03 | ± 0.015 | 0.03     | %FSR             | All unipolar ranges                                                                                                                                    |
| 6   | Unipolar zero-code error        | 0     | 0.04    | 0.1      | %FSR             | All unipolar ranges                                                                                                                                    |
| 7   | Full-scale error                | -0.2  | ± 0.075 | ±<br>0.2 | %FSR             | All ranges                                                                                                                                             |
| 8   | Gain error                      | -0.1  | ± 0.02  | 0.1      | %FSR             | All ranges except ±2.5V                                                                                                                                |
| 9   | Unipolar offset error drift     |       | ±2      |          | ppm of FSR/°C    | All unipolar ranges                                                                                                                                    |
| 10  | Gain error drift                |       | ±2      |          | ppm of<br>FSR/°C | All ranges                                                                                                                                             |
| 11  | Output voltage drift over time  |       | 5       |          | Ppm of<br>FSR    | $T_A = 40$ °C, Full-scale code, 1900 hours                                                                                                             |
| DYN | AMIC PERFORMANCE                |       |         |          |                  |                                                                                                                                                        |
| 12  | Output Voltage Settling<br>Time |       | 12      |          | μs               | $\frac{1}{4}$ to $\frac{3}{4}$ and $\frac{3}{4}$ to $\frac{1}{4}$ scale setting time to $\pm$ 1 LSB, $\pm$ 10V range, $R_L = 5k\Omega$ , $C_L = 200pF$ |
| 13  | Slew Rate                       |       | 4       |          | V/µs             | All range except 0 to 5V                                                                                                                               |
| 14  | Power-on glitch magnitude       |       | 0.3     |          | V                | Power-down to active DAC output,<br>±20V range, Midscale code, $R_L$ = $5k\Omega$ , $C_L$ = 200pF                                                      |
| 15  | Output noise                    |       | 15      |          | μV p-p           | 0.1Hz to 10Hz, Midscale code, 0 to 5V range                                                                                                            |
| 16  | Output noise density            |       | 78      |          | nV/\Hz           | 1 kHz, Midscale code, 0 to 5V range                                                                                                                    |
| 17  | AC PSRR                         |       | 1       |          | LSB/V            | Midscale code, frequency = $60$ Hz, amplitude 200 mVpp superimposed on $V_{DD}$ , $V_{CC}$ or $V_{SS}$                                                 |
| 18  | DC PSRR                         |       | 1       |          | LSB/V            | Midscale code, $V_{DD} = 5V$ , $V_{CC} = 20V$<br>±5%, $V_{SS} = 20V$                                                                                   |
| 19  | Code change glitch impulse      |       | 4       |          | nV-s             | <ul><li>1 LSB change around major carrier,</li><li>0 to 5V range</li></ul>                                                                             |
| 20  | Channel to Channel AC crosstalk |       | 4       |          | nV-s             | 0 to 5V range. Measured channel at midscale. Full-scale swing on all other channels.                                                                   |
| 21  | Channel to Channel DC crosstalk |       | 0.25    |          | LSB              | 0 to 5V range. Measured channel at midscale. All other channels at full-scale.                                                                         |
| 22  | Digital feedthrough             |       | 1       |          | nV-s             | 0 to 5V range, Midscale code, F <sub>SCLK</sub> = 1MHz                                                                                                 |

Table 3. DAC Voltage Performance Specification

### Hardware Installation

This section describes how to install XPOW-120AX-CV-U and how to connect your Device Under Test (DUT) to the output terminals.

The steps are as follow:

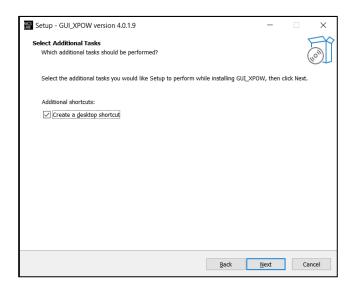
- 1. Precondition step: connect to the DC power supply (max 36 V). Make certain that DC power supply is always 'ON'.
- 2. Connect a USB cable to your workstation (PC/Laptop) via USB port.
- 3. Connect XPOW output to the multi-connector (optional, see the manual M1) and your Device Under Test (DUT).
- 4. After you install the software/GUI (see the <u>Software Installation</u> section), then the XPOW is ready to use by switching the ON/OFF button at the front panel.

# 3. Software and Graphical User Interface (GUI)

## Software Requirement

The GUI software is suitable with the following operating systems:

- Windows<sup>®</sup> 7 (32-bit, 64-bit).
- Windows® 10 (32-bit, 64-bit).
- macOS Catalina.


### Software Installation

The first step is to copy the GUI file into your hard disk. For Mac, both the GUI and Arduino must be copied inside the 'Application' folder.

Double click the icon below to install the GUI.



At the end step of the installation, check a 'Create a desktop shortcut'.



Double click the executable GUI icon (as below) on your desktop to launch the GUI.



# How to Detect Which COM Is Used (Windows only)

1. Click **Start** Type "Device Manager", and then click **Device Manager**.



2. Find Ports (COM & LPT).



3. When XPOW connects on the computer, there are 3 (three) ports Arduino Leonardo detected with COM number as shown below.



## Graphical User Interface (GUI)

Start the XPOW by pressing the ON button, then you can control it by GUI, the display details are on the next page.

Note: You can also launch the GUI through language programming such as Python, C#, LabVIEW and Java.

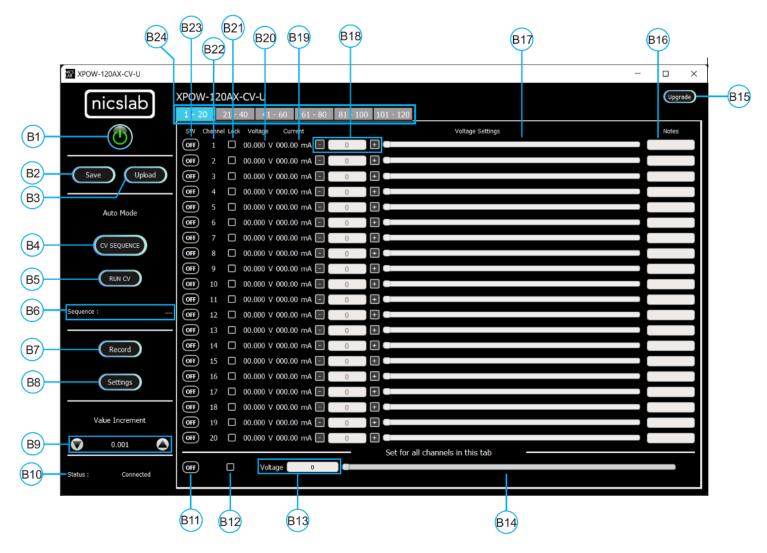
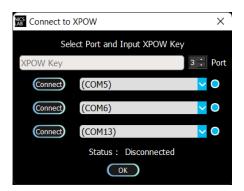



Figure 4. GUI


### Note:

| Callout | Description                                                                                                                                                                                                                        |  |  |  |
|---------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|
| B1      | ON/OFF Switch                                                                                                                                                                                                                      |  |  |  |
| B2      | Save File Button                                                                                                                                                                                                                   |  |  |  |
| В3      | Upload File Button                                                                                                                                                                                                                 |  |  |  |
| B4      | Auto Feature Sequence: Upload Table Button   CV Mode                                                                                                                                                                               |  |  |  |
| B5      | Auto Feature: Run Button CV Mode                                                                                                                                                                                                   |  |  |  |
| В6      | Name of the Sequence                                                                                                                                                                                                               |  |  |  |
| В7      | Record Data Button                                                                                                                                                                                                                 |  |  |  |
| B8      | <ol> <li>Setting for:         <ol> <li>Set Limit voltage values</li> <li>V Range (16-bit precision for every range of voltages: 5, 10, 20, 36 V)</li> </ol> </li> <li>Set Reading speed of Voltage (Fast, Medium, Slow)</li> </ol> |  |  |  |
| В9      | Increment Settings                                                                                                                                                                                                                 |  |  |  |
| B10     | Status of connection                                                                                                                                                                                                               |  |  |  |
| B11     | ON/OFF Button for the current Tab                                                                                                                                                                                                  |  |  |  |
| B12     | Enable/Disable (Lock) Channel Controller for all channels in current tab                                                                                                                                                           |  |  |  |
| B13     | Text area to set the voltage for all channels in current tab                                                                                                                                                                       |  |  |  |
| B14     | Slider to set voltage for all channels in current tab                                                                                                                                                                              |  |  |  |
| B15     | Upgrade Button                                                                                                                                                                                                                     |  |  |  |
| B16     | Notes                                                                                                                                                                                                                              |  |  |  |
| B17     | Voltage Settings Slider                                                                                                                                                                                                            |  |  |  |
| B18     | Voltage Value Based on Increment Setting                                                                                                                                                                                           |  |  |  |
| B19     | Current Value                                                                                                                                                                                                                      |  |  |  |
| B20     | Voltage Value                                                                                                                                                                                                                      |  |  |  |
| B21     | Enable/Disable (Lock) Channel Controller                                                                                                                                                                                           |  |  |  |
| B22     | Number of channels                                                                                                                                                                                                                 |  |  |  |
| B23     | ON/OFF Button per Channel                                                                                                                                                                                                          |  |  |  |
| B24     | Tab Channel                                                                                                                                                                                                                        |  |  |  |

## Initializing the GUI

This section shows how to initialize the GUI:

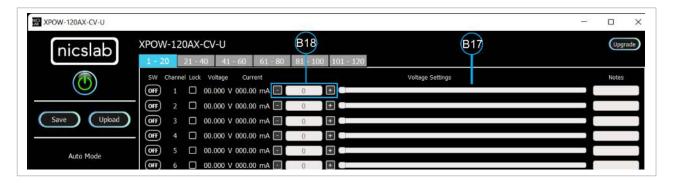
- 1. Launch the GUI by double clicking the executable GUI icon.
- 2. When you launch the GUI for the first time, input the 'XPOW Key' and put the correct 'COM' port.



3. Press switch button (B1) on GUI to connect it with the XPOW.



4. Turn ON (B29) on each channel to input voltage values.



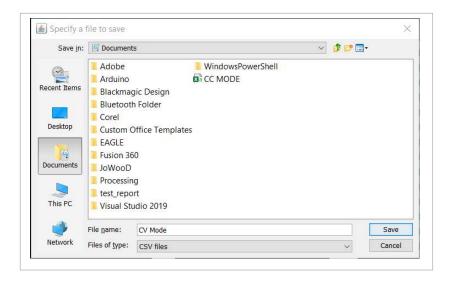

### Constant Voltage (CV) Mode

This section shows how to do CV mode according to your aim:

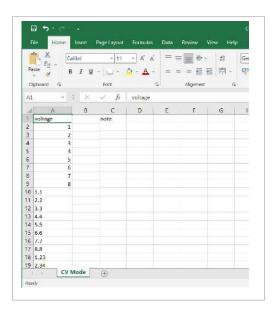
To do CV mode, you need to adjust the voltage value on (B18) or slider (B17).

Important note: When you input manually the values, always press 'Enter'.




### Save and Upload

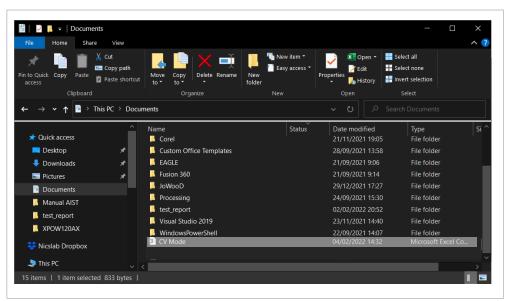
The Excel file (.csv) resulted from the Save function can be uploaded again through the Upload button (B3). You may also create your own Excel file (.csv) of voltage and later be uploaded.


1. To save the configuration, click the 'Save' button (B2).

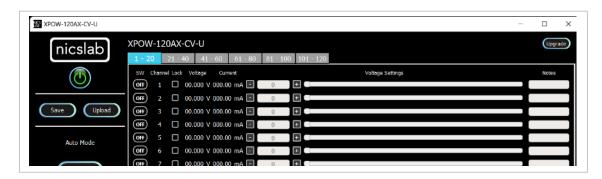


2. Select a directory and write the file name.




3. The file will be automatically existing in the same file as XPOW 'GUI'. It is a .csv file.

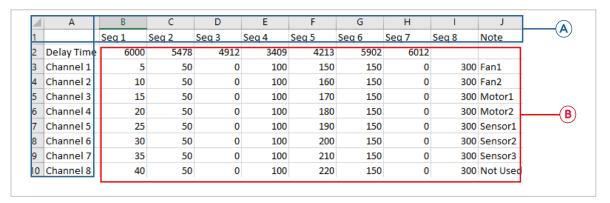



4. To upload the configuration, click the 'Upload' button (B3).



5. Choose and open the intended file.



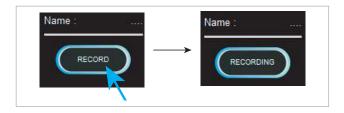

6. It will upload the configuration like the previous configuration.



### Sequence Automation

The sequence is the setting that automates the determined values of voltage (V) given the certain Delay Time (in millisecond).

1. The template of sequence is given, then you need to input your intended values of CV Sequence (from 0 to 36 V), and Delay Time (in millisecond). Set the delay time to more than 2 seconds to have more accurate values. To have a faster response (switching time) you can set via SCPI command).




#### Note:

- A. Template given for CV sequences.
- B. Input your intended values according to the modes (CV: 0 36V).
- 2. Choose CV Sequence mode (B4). When you click, say CV sequence you need to open the Excel sequence file (.csv).
- 3. After uploading, choose sequence mode by clicking 'Run CV' (B5).

### Record

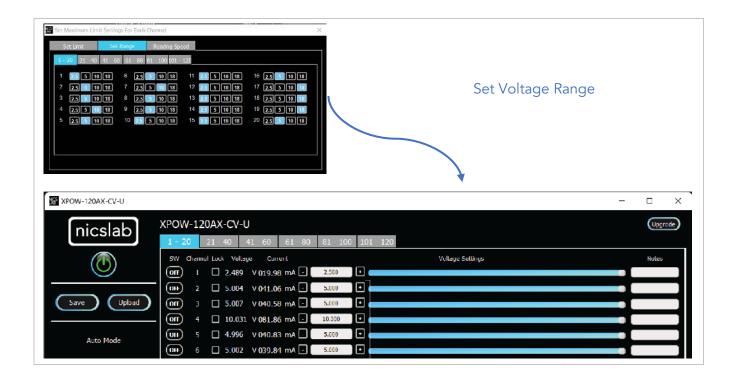
'Record' (B7) keeps data of voltage values. The record starts by the time you click the Record button and finish until you click again the same button. The Excel file (.csv) will be created automatically in the same folder as XDAC's GUI file.



## Setting Voltage Limit

Click the 'Settings' button (B8).




The 'Settings' feature consists of:

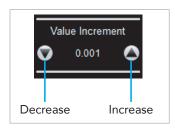
• set maximum limit for voltage values



### Setting Voltage Range

Set range for voltage values where you can choose the voltage range to limit the voltage values (B17, B18, and B20), the range of voltages are 5 V, 10 V, 20 V and 36 V. Each range has 16-bit precision.




### Setting Reading Speed

Set reading speed for voltage. There are three options which is Fast, Medium, and Slow. Faster options can make conversion time smaller but the results noisier.

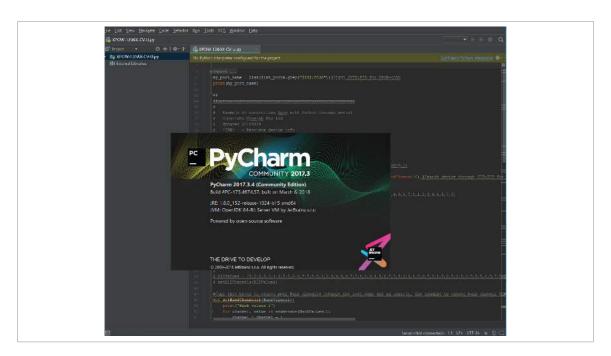


# Value Increment Setting

In this setting, the value of the voltage can be incrementally changed from minimum 0.001 to 1. Adjust the arrow to increase and decrease the value increment (B9).



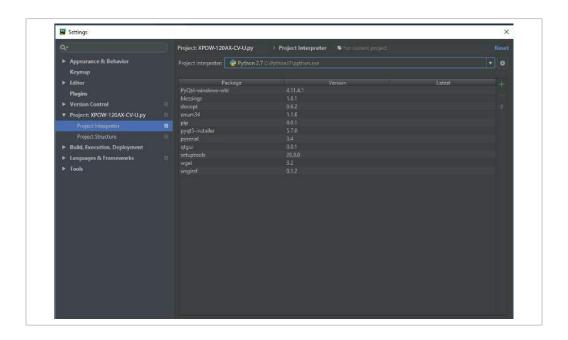
# 4. Operating XPOW through SCPI command


This section set guidelines to help you develop program for any language suits you best. The example language program is written in Python.

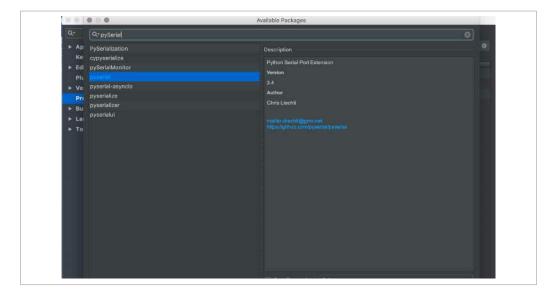
### Python Installation (Example)

Please follow steps below for dynamic programming using SCPI command through Python via serial.

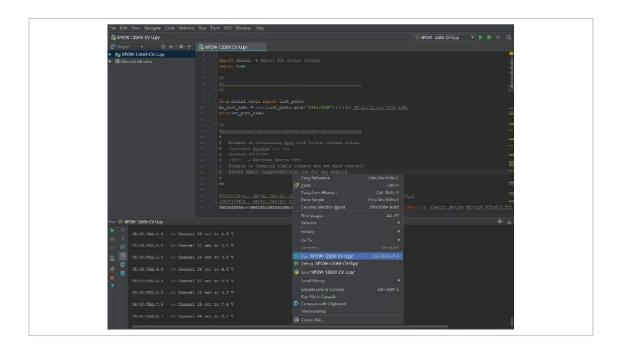
The following Python and packages need to be installed:


- 1. Python 2.7 or Python 3.X (download and install the latest version from <a href="www.python.org">www.python.org</a>). \*Tested with Python 3.7.
- 2. PyCharm 2017.3.4 or the latest version (download and install the latest version from <a href="https://www.jetbrains.com/pycharm/">https://www.jetbrains.com/pycharm/</a>)




### Run Python Code (Example)

To run the Python code please follow the steps below:


- 1. Open PyCharm software and open file example (e.g XPOW-120AX-CV-U.py)
- 2. Configure Python interpreter see figure below by clicking Configure Python Interpreter link on the top right-hand corner of the code, or in File >> Settings >> Project Interpreter in Windows or Preference >> Project Interpreter in Mac. Select Python 2.7 or Python 3.X in Project Interpreter list.



3. Install additional packages: enum34, pip, pyserial, setup tools by clicking + button, search and install all the packages.



- 4. Select Python Configuration and choose the file name.
- 5. Run the file by clicking the green arrow button on the top right corner to test the XPOW (Please refer to the code and SCPI commands references.



# Python Function (Example)

1. Constant Voltage Calibration for single channel

Calibration work by applying voltage below the limit that we set in this function

cvCalibrationSingleChannel(channel, vcal)

channel (int): channel number

vcal (float): 0 - 36 V

Example:

Calibration with DUT connected to channel 1, voltage limit 0.5 V.

cvCalibrationSingleChannel(1, 0.5)

2. Constant Voltage Calibration for all channel

Calibration work by applying voltage below the limit that we set in this function

```
cvCalibrationAllChannel(vcal)
vcal (float array): 0 - 36 V
```

### 3. <u>Set ON for single channel</u>

```
setChannel(channel, voltageVal)
channel (int): channel number
voltageVal (float): 0 - 36 V
```

### 4. Set ON for all channels

```
setVoltage1Channels(AllVValues) for channels 1 - 40
setVoltage2Channels(AllVValues) for channels 41 - 80
setVoltage3Channels(AllVValues) for channels 81 - 120
AllVValues (float array): voltage values in array (V)
```

#### Example:

```
AllCValues = [100, 150, 100, 50, 200, 10, 10, 200] * 5
AllVValues = [20.1, 2.5, 13.0, 4, 5, 10.5, 9.5, 22] * 5
```

### 5. Set Range for all channels

```
setRangelChannels(AllRangeValues) for channels 1 - 40
setRange2Channels(AllRangeValues) for channels 41 - 80
setRange3Channels(AllRangeValues) for channels 81 - 120
AllRangeValues (Int array): voltage range index values in array
Array Index:
```

0:0-5V

1:0-10V

2:0-20V

4:0-34 V (with 36 power supply)

#### Example:

AllRValues = [1, 0, 1, 0, 2, 1, 0, 2] \* 5

#### 6. Set GPIO digital output

setGPIO(index, value)

```
Index (int): Index of GP pin (12, 13, 16, 19, 26)
```

Value (string): "HIGH" or "LOW"

#### Example:

Set GP26 output to digital high setGPIO(26, "HIGH")

#### 7. Set Measurement Config

for channels 1 - 40:

measurementConfigl(voltConvTime, currConvTime, averaging)

for channels 41 - 80:

measurementConfig2(voltConvTime, currConvTime, averaging)

for channels 81 - 120:

measurementConfig3(voltConvTime, currConvTime, averaging)

voltConvTime(Int uS): Voltage measurement conversion time

averaging(int): count of sample to be averaged

### 8. Set OFF for single channel

setOff(channel)

channel (int): channel number

### 9. Set OFF for all channels

setOffAllChannels(maxChannel)

maxChannel (int): maximum number of channels in XPOW

#### 10. Read real-time value for single channel

readChannel(channel)

channel (int): channel number

### 11. Read real-time value for all channels

 ${\tt readCommand1(maxChannel)}\ {\tt for\ channels}\ {\tt 1-40}$ 

readCommand2(maxChannel) for channels 41 - 80

```
readCommand3(maxChannel) for channels 81 - 120
maxChannel (int): maximum number of channels in XPOW
```

### 12. Automatic Setting for One Channel

Change and record the value in one channel for every duration time. The result will be saved as CSV file.

sweepOne(channel, seqValueV, duration)

channel (int): channel number

seqValueV (float array): values for the voltage (V) for one channel in array.

duration (int): waiting time to change to next value in second

#### Example:

```
channel = 1
seqValueV = [20.1, 2.5, 13.0, 4, 5, 10.5, 9.5, 22]
seqValueC = [100, 150, 100, 50, 200, 10, 10]
duration = 5
```

#### SCPI Commands

The XPOW can be controlled using Standard Commands for Programmable Instruments (SCPI) with 115200 baud rates.

### <u>Description: Constant Voltage Mode Calibration for single channel</u>

#### Format:

CH: [n]: CALIB:[BIT VALUES V]: [BIT VALUES C]

### Description: Set output voltage for single channel

#### Format:

CH: [n]: VOLT:[BIT VALUES]

Example 1: Set output of channel to maximum or 65535 (16-bit max).

CH:1:VOLT:65535 (set output of channel 1 to max 36 V)

Example 2: Set output of channel 3 to half max or 32767

### Display real-time data for single channel

Format:

CH:[n]:VAL?

Description: Display voltage and current real-time value of channel n.

Example:

CH:1:VAL?

Result:

CH:1:VAL? >> Channel 1 = 6.101 V, 100.211 mA

### Set output voltage for group of channels

Format:

CH:[m-n]:VOLT:[O-Vmax]

Description: Set output voltage of channel m to channel n to [0-65535].

Note: 1 <= m < n <= Channel Max

Example:

CH:1-10:VOLT:32767 (set outputs of channel 1 to channel 10 to 20 Volt)

### Set measurement config

Format:

MEAS:VoltConvTime:CurrConvTime:Averaging

Description: Set measurement conversion time in uS and averaging sample count.

Set pin GPIO

Output - High

Format:

GPIO:[PIN NAME]:HIGH

Description: Set GPIO pin 12 to high (5V)

Example:

GPIO:12:HIGH

Output - Low Format: GPIO:[PIN NAME]:LOW Description: Set GPIO pin 16 to low (0V) Example: GPIO:16:LOW Retrieve device information Format: \*IDN? Description: Get information of the device. Example: \*IDN? Result: \*IDN? >> XPOW-120AX-CV-U, Nicslab Ops, Inc. Set range Format: CH: [n]: SVR:[0-3] Note: 0 -> 5 V 1 -> 10 V 2 -> 20 V 3 -> 40 V Default: 3 Example 1: Set range of channel to maximum. CH:1:SVR:3 (set output of channel 1 to max 36 V)

Result:

<CH:1:SVR:3:OK>

# 5. Troubleshooting

Please use the following guidelines to identify particular problem. If the solution does not rectify the problem, contact us at <a href="mailto:support@nicslab.com">support@nicslab.com</a>.

| Problem                                                | Cause                       | Solution                                                                                                                                                                   |
|--------------------------------------------------------|-----------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Front end light off when switch turned on              | No USB connection           | Check USB connection to Laptop/PC                                                                                                                                          |
| Blue light off when software active or software freeze | Initialization failed       | Restart the software / unplug -<br>plug USB connector/Press Reset<br>Button                                                                                                |
| No channel output detected at device under test        | Connection failed           | Check metal pad check point to intended channel                                                                                                                            |
| No USB port detected at device manager                 | No USB connection           | Turn on the XPOW-12AX box before running the application, and check USB connection Check the Arduino Driver if it is installed in the computer. Check to another USB port. |
| Unable to upload the file                              | File format problem         | Make sure the file format is .csv                                                                                                                                          |
| No value after upload the file                         | File problem                | Check the file content: make sure there is no blank space on each row.                                                                                                     |
| Unable to use Auto Mode feature                        | File format problem         | Check file format: should be csv file. Check content format                                                                                                                |
| Display value unstable in GUI                          | Serial Connection<br>Failed | Change USB cable, use low noise USB cable                                                                                                                                  |

Table 4. Troubleshooting

### 6. Warranty

Nicslab warrants the hardware and software designed by Nicslab to work accordingly, fulfilling the highest standard of quality product. Nicslab is not liable for consequential or incidental damages or for errors in subject to misuse, neglect, accident, modification, use in critical operation, or has been soldered or altered in any way outside stated by us or unauthorized maintenance.

Nicslab retains to change the material and technical data of this manual at any time without notice, in future editions.

Please do not hesitate to contact us at support@nicslab.com if you would like to have more information on warranty or return and refund policy.

### 7. Contact

#### **United States**

Nicslab Inc

228 Hamilton Avenue, 3<sup>rd</sup> Floor, Palo Alto

Silicon Valley, CA, 94301

Phone number: +1 6507985000

Email: support@nicslab.com

Website: www.nicslab.com.

### Indonesia

PT. Nicslab Global Industri

Wisma Monex 9th floor

Jl. Asia Afrika No. 133-132, Bandung West Java 40112

Phone: +62 22 8602 6854

WA: +62 813 2171 5791

Email: nicslab.id@nicslab.com

Book Meeting <u>here</u>.