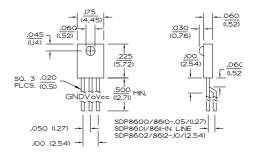

Optoschmitt Detector

FEATURES

- Side-looking plastic package
- 55° (nominal) acceptance angle
- · Wide sensitivity ranges
- TTL/LSTTL/CMOS compatible
- Buffer (SDP8600/8601/8602) or inverting (SDP8610/8611/8612) logic available
- Three different lead spacing arrangements
- Mechanically and spectrally matched to SEP8506 and SEP8706 infrared emitting diodes

DESCRIPTION

The SDP86XX series is a family of single chip Optoschmitt IC detectors molded in a side-looking black plastic package to minimize the effect of visible ambient light. The photodetector consists of a photodiode, amplifier, voltage regulator, Schmitt trigger and an NPN output transistor with a 10 k Ω (nominal) pull-up resistor. Output rise and fall times are independent of the rate of change of incident light. Detector sensitivity has been internally temperature compensated. Flexibility of use is enhanced by a choice of three different lead configurations; in-line (SDP8601/8611), 0.05 in.(1.27 mm) offset pin circle (SDP8600/8610) and 0.10 in. (2.54 mm) offset center lead (SDP8602/8612).


Device Polarity:

Buffer - Output is HI when incident light intensity is above the turn- on threshold level.

Inverter - Output is LO when incident light intensity is above the turn- on threshold level.

OUTLINE DIMENSIONS in inches (mm)

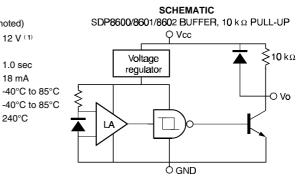
3 plc decimals ±0.005(0.12) 2 plc decimals ±0.020(0.51)

DIM 028 cdr

Optoschmitt Detector

ELECTRICAL CHARACTERISTICS (-40°C to +85°C unless otherwise noted)

PARAMETER	SYMBOL	MIN	TYP	MAX	UNITS	TEST CONDITIONS
Operating Supply Voltage	Vcc	4.5		12.0	V	T _A =25°C
Turn-on Threshold Irradiance SDP86XX-001 SDP86XX-002 SDP86XX-003	Еет(+)			2.5 1.2 0.6	mW/cm ²	Vcc=5 V T _A =25°C (2)
Hysteresis (3)	HYST	5		30	%	
Supply Current	lcc			12.0 15.0	mA	Ee=0 Or 3.0 mW/cm² Vcc=5 V Vcc=12 V
High Level Output Voltage SDP8600/8601/8602 SDP8610/8611/8612	Voн	2.4 2.4			V	V _{CC} =5 V, I _{ОН} =0 E _e =3.0 mW/cm² E _e =0
Low Level Output Voltage SDP8600/8601/8602 SDP8610/8611/8612	VoL			0.4 0.4	V	Vcc=5 V, loL=12.8 mA Ee=0 Ee=3.0 mW/cm²
Internal Pull-Up Resistor	RINT	5.0	10.0	20.0	kΩ	
Operate Point Temperature Coefficient	Ортс		-0.76		%/°C	Emitter @ Constant Temperature
Output Rise Time	t _r		60		ns	R _L =390 Ω , C _L =50 pF
Output Fall Time	t _f		15		ns	R _L =390 Ω , C _L =50 pF
Propagation Delay, Low-High, High-Low	t _{PLH} , t _{PHL}		5.0		μs	R _L =390 Ω , C _L =50 pF
Clock Frequency				100	kHz	R _L =390 Ω , C _L =50 pF


Notes

240°C

ABSOLUTE MAXIMUM RATINGS

(25°C Free-Air Temperature unless otherwise noted) Supply Voltage 12 V (1) **Duration of Output** Short to V_{CC} or Ground 1.0 sec Output Current 18 mA Operating Temperature Range -40°C to 85°C

1. Derate linearly from 25°C to 5.5 V at 85°C.

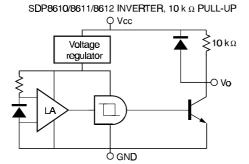
Honeywell reserves the right to make changes in order to improve design and supply the best products possible.

Storage Temperature Range

Soldering Temperature (5 sec)

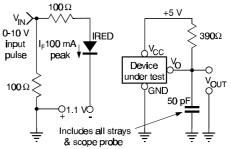
Honeywell

^{1.} It is recommended that a bypass capacitor, 0.1 μF typical, be added between V_{CC} and GND near the device in order to stabilize

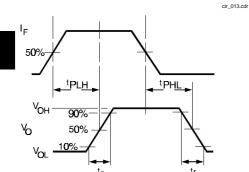

power supply line.

2. The radiation source is an IRED with a peak wavelength of 935 nm.

3. Hysteresis is defined as the difference between the operating and release threshold intensities, expressed as a percentage of the


Optoschmitt Detector

SCHEMATIC



SWITCHING TIME TEST CIRCUIT

cir_007.cdr

SWITCHING WAVEFORM FOR BUFFERS

SWITCHING WAVEFORM FOR

cir 011.cdr

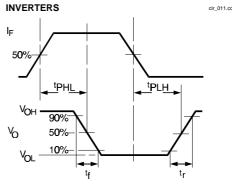
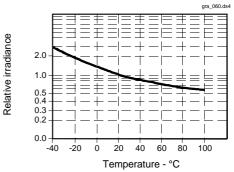
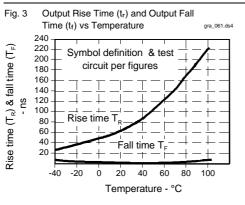



Fig. 1 Responsivity vs

Angular Displacement gra_065.ds4 1.0 0.9 0.8 Relative response 0.7 0.6 0.5 0.4 0.3 0.2 0.1 0.0 -60 -30 -15 ò +15 +30 +45 Angular displacement - degrees


Fig. 2 Threshold Irradiance vs Temperature

Honeywell

Honeywell reserves the right to make changes in order to improve design and supply the best products possible.

Optoschmitt Detector

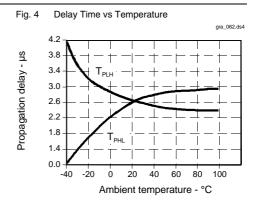
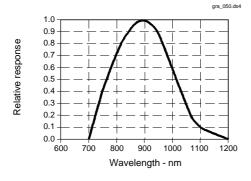



Fig. 5 Spectral Responsivity

All Performance Curves Show Typical Values