Ultra High Capacitance, Small Case Size Options

Type EDL electric double layer supercapacitors offer extremely high capacitance values (farads) in a variety of packaging options that will satisfy, low profile, surface mount, through hole and high density assembly requirements. The EDL is a cut above the standard electrolytic capacitor in that it can act as a battery without having to deal with the environmental or hazardous material issues that batteries entail.

Highlights

- Unlimited charging and discharging capability
- Recycling is not necessary
- Long Life 15 years
- Low ESR
- Will extend battery life up to 1.6 times
- First class performance with economy pricing

-25 °C to +85 °C

2.1 Vdc to 5.5 Vdc

0.022 F to 70 F

-20/+80%

Specifications

Operating Temperature Range

Rated Voltage Range

Capacitance Range

Capacitor Tolerance

Back Up Time Example

How To Select an Electric Double Layer Capacitor

Estimated Initial Backup Time

Select the optimum supercapacitor according to applied current

Back-up time for Type EDL Electric Double Layer Supercapacitors decreases with use and over time especially when the current is large or operating at high temperature. Be sure to specify extra back-up time initially to allow for product changes.

The internal resistance of the supercapacitor prevents drawing high discharge currents. Select the supercapacitor capable of delivering the peak current at switchover to back-up mode using the following table.

	Maximum Operating (Discharge) Current				
Series	0.047 F	0.1 F to 0.33 F	0.47 F to 1.5 F	3.3 F to 4.7 F	10 F to 50 F
SG, SD, NF	200 μΑ	300 μΑ	1 mA	-	-
E	200 μΑ	300 μΑ	300 μΑ	-	-
EN	-	10 μΑ	-	-	-
HW	-	-	-	300 mA	1 A

Back-up time is the time it takes for the applied voltage to decay to the cut-off voltage set by the user after applying the application's maximum voltage at application maximum temperature.

Example: An F Type EDL, P/N EDLF105B5R5C (Rated at 5.5 V, 1.0 F) is charged to 5.0 Vdc. The circuit requirement is such that it must maintain a memory circuit with a current drain of 10 μ A in an ambient temperature of +40 °C. The memory RTC cut-off voltage is 2.0 Vdc.

Using minimum capacitance, calculate the back-up time as

 $t = C\Delta V/I = C[V0-(i \cdot R)-V1]/(i+iL)$

C=1.0 F–20% =0.8 F, R=50 $\Omega,$ V0=5 V, V1=2 V, i=10 μA Therefore,

 $t = 0.8 (5-0.0005-2)/((10+2) \times 10^{-6}) = 55 \text{ hours}$

And thus the initial back-up time is 55 hours. After 1000 hours, calculate the back-up time will drop to about 38 hours.

t: Back-up time (s)

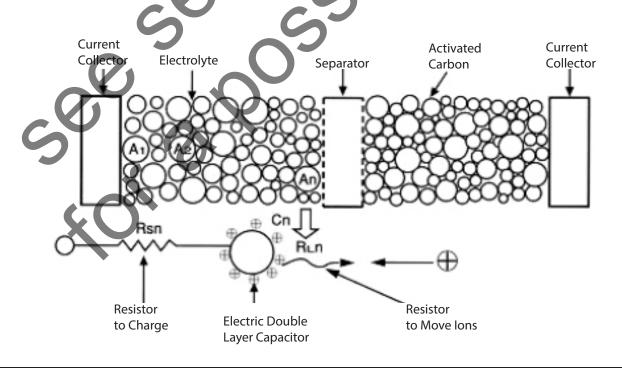
C: Capacitance of Type EDL (F)

V₀: Applied voltage (V)

V: Cut-off voltage (V)

i: Current during back-up (A)

i_L: Leakage current (A)


R: Internal resistance (Ω) at 1 kHz

Ultra High Capacitance, Small Case Size Options

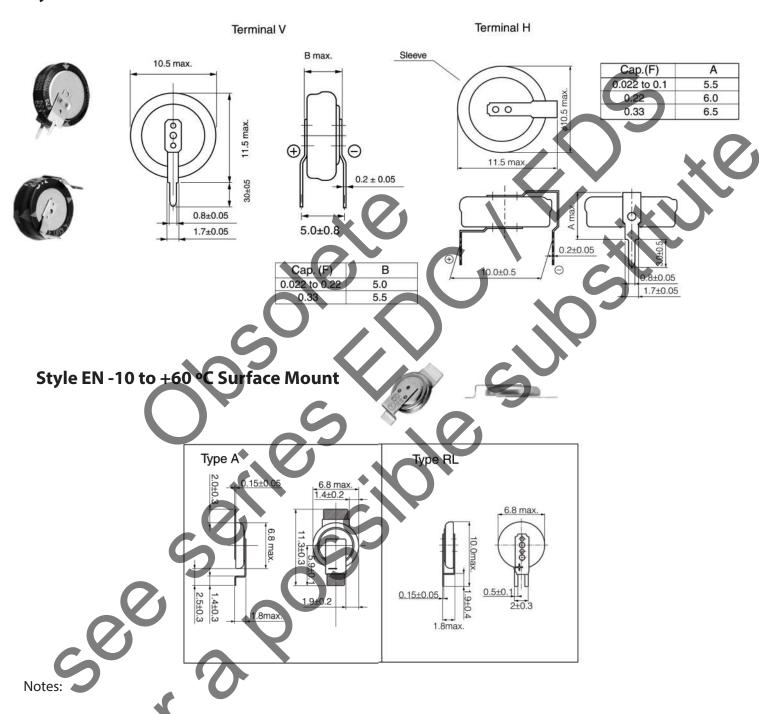
Life Design	Type EDL supercapacitors have a useful lifetime that decreases with increasing operating temperature, humidity, applied-voltage, current and backup-time requirements.
	Expected lifetime is the product of four factors:
	Expected Life = (Lifetime)•(Temperature Factor)•(Voltage Factor)•(Moisture Factor)
Lifetime	The minimum rated life at 85 °C with 5.5 Vdc applied is 1000 hours with maximum permitted end-of-life capacitance change of –30% and a 4 times increase in internal resistance.
Temperature Factor	To determine the effect of temperature on expected life of a supercapacitor, use the fact that expected lifetime doubles for each 10 °C that the operating temperature is reduced. As an illustration, at 85 °C and full voltage the rated lifetime is 1000 hours. So, at 40 °C the expected lifetime would be multiplied by $2(85-40)/10 = 2^4.5 = 22.6$ times. The Temperature Factor is 22.6, and for 1000-h, 85 °C rated life, the expected 40 °C life would be 22600 hours.
Voltage Factor	The rate of change of capacitance decreases with decreasing applied voltage. The effect on life extension is roughly proportional to the voltage derating, e.g., 5 V applied to 5.5 V rated supercapacitors extends the life 1.1 times.
Moisture Factor	Expected life of these supercapacitors is considerably shortened by operation in high humidity. The applications discussed here assume that the relative humidity is no more than 50%.
Expected Life Example	So, for a 5.5 V supercapacitor at 40 °C charged to 5.V in less than 50% RH the expected life is: Expected Life = (Lifetime) (Temperature Factor) (Voltage Factor) (Moisture Factor) = (1000 h) (22.6) (1.1) (1) = 24800 hours = 2.8 years
R	oHS Compliant

Electric Double Layer Supercapacitor Construction

Ratings

			Max. Resistance		Case	Case	
Catalog Part Number	Capacitance	Voltage (Vdc)	@ 1 kHz (Ω)	Case Type	Dia. (mm)	Length (mm)	Style
EDLHW335D2R3R**	3.3 F	(100)	0.3	.,,,,,	12.5	23	HW
EDLHW475D2R3R**	4.7 F	-	0.3		12.5	23	TIVV
EDLHW106D2R3R**	10 F	-	0.2		12.5	35	# O 25
EDLHW226D2R3R**	22 F	2.3	0.1 Radial Lead		18	35	3 O 23
EDLHW306D2R3R**	30 F	_		Lead	18	18 35	
EDLHW506D2R3R**	50 F	0.1	0.1		18	40	
EDLHW706D2R1R**	70 F	2.1	0.1		18	50	
EDLF473A5R5C^	0.047 F		120		13.5	9.5	F
EDLF104A5R5C	0.10 F		100	G: 1 1 A	13.5	9.5	
EDLF474B5R5C	0.47 F	5.5	75	Stacked Coin	21.5	9.5	
EDLF684B5R5C	0.68 F		50		21.5	9.5	
EDLF105B5R5C	1.00 F		50		21.5	9.5	+85 °C
	ı				1		
EDLNF104A5R5C^	.10 F		75		13.5	7.5	NF
EDLNF224A5R5C	.22 F		75	Stacked	13.5	7.5	0 1.0 5 5.5
EDLNF474B5R5C	.47 F	5.5	30	Coin	21.5	8.0	
EDLNF105B5R5C	1.0 F		30		21.5	8.0	1 1
EDLNF155B5R5C	1.5 F		30		21.5	8.0	+70 °C
		<u> </u>				I	
EDLSG474V5R5C	.47 F		30	Stacked	19	5.0	SG
EDLSG105V5R5C	1.0 F	- 5.5	30	Coin	19	5.0	
EDLSG155V5R5C EDLSG474H5R5C	1.5 F		30		19 20	5.0	
EDLSG474H5R5C	1.0 F		30	Stacked	20	6.0	
EDLSG155H5R5C	1.5 F	3.5	30	Coin	20	6.0	+70 °C
EDESCISSISIO	1.51		30	-	20	0.0	+10 C
EDLSD223V5R5C**	.022 F		150	•	10.5	5.0	SD
EDLSD473V5R5C**	.047 F		120		10.5	5.0	30
EDLSD104V5R5C^	.10 F	5.5	75	Stacked	10.5	5.0	
EDLSD224V5R5C	.22 F		75	Coin	10.5	5.0	
EDLSD334V5R5C	.33 F		75		10.5	5.0	
EDLSD223H5R5C**	.022 F	1	150		11.5	5.5	
EDLSD473H5R5C**	.047 F		120		11.5	5.5	
EDLSD104H5R5CA	10F	5.5	75	Stacked Coin	11.5	5.5	' T
EDLSD224H5R5C	.22 F]	75	Com	11.5	5.5	
EDLSD334H5R5C	.33 F		75		11.5	5.5	+70 °C
•							
EDLEN204A3R3\$**	.20 F	3.3	200	SMT Wide Lead	6.8	1.8	1
EDLEN204RL3R3S**	.20 F	3.3	200	SMT Radial Lead	6.8	1.8	

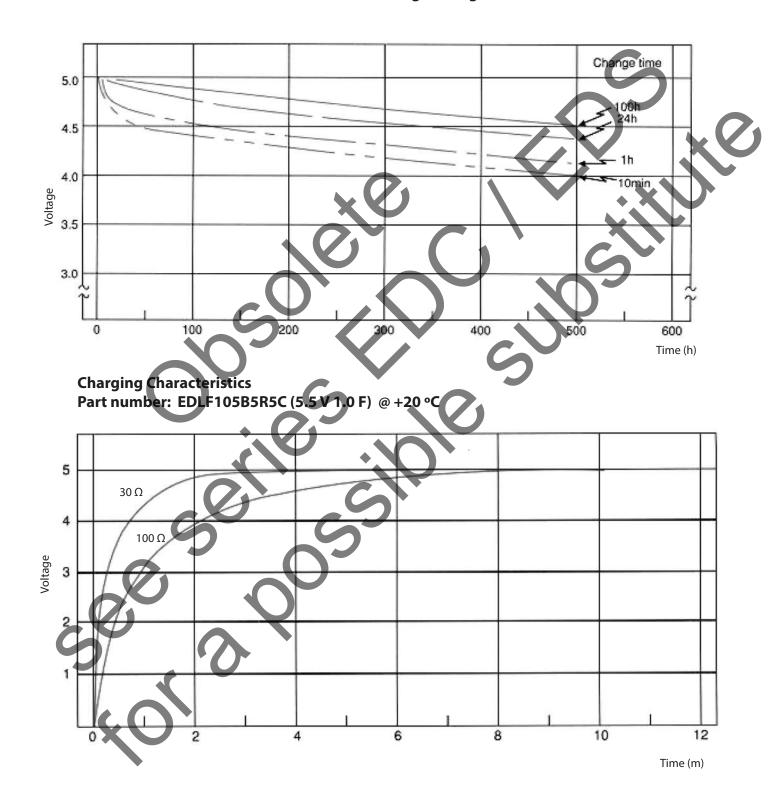
^{**} Product is obsolete and no longer available.


[^] Product has been discontinued, replacement part is part-number below discontinued number.

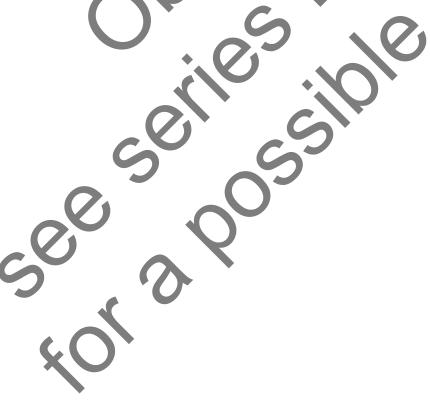
Outline Drawing and Dimensions

Outline Drawing and Dimensions

Style SD 70 °C Stacked Coin


- 1 Style EN is packaged on 24 mm wide tape and a 330 mm dia. reel, with 2000 pieces per reel.
- 2 Only Style EN is capable of reflow soldering. Peak reflow soldering temperature is 250 °C for a maximum of 5 seconds, with a maximum of 30 seconds at or above 220 °C.
- 3 Do not reflow solder when the cell voltage is above 0.3 V.

Applications and Recommended Series


Application	Function	Recommended Series	Component	
Mobile Phones	Real-Time Clock Back-Up	- FN		
PDA	Real-Time Clock Back-Up	EN		
DSC	Real-Time Clock Back-Up	EN, SD		
DVD Recorder	Real-Time Clock and Channel Back-Up	SD, S G		
Digitial TV	Real-Time Clock and Channel Back-Up	SD, SG NF		
PC, Server	Real-Time Clock and Channel Back-Up	F		
Mobile Phone	Real-Time Clock and Channel Back-Up			
Base Station		5		
Inkjet Printer	Time and Impact Back-Up	SD, SG, NF		
Electric Power			to b	
Gas and Water Meters	Real-Time Clock and Data Back-Up	F		
LED Light	-60		0	
with Solar Battery	LED Lighting at Night		- O B	
Toys	Motor Drives	HW		
Toy Games	Real-Time Clock Back-Up	EN		
Robot	Real-Time Clock and Data Back-Up	F	Jr. 1.0.1	
Car Audio Memory	Real-Time Clock Back-Up	r 		

Performance Data

Self-Discharging Characteristics Versus Charging Time Part number: EDLF105B5R5C (5.5 V 1.0 F) Charge voltage: 5V

Notice and Disclaimer: All product drawings, descriptions, specifications, statements, information and data (collectively, the "Information") in this datasheet or other publication are subject to change. The customer is responsible for checking, confirming and verifying the extent to which the Information contained in this datasheet or other publication is applicable to an order at the time the order is placed. All Information given herein is believed to be accurate and reliable, but it is presented without any guarantee, warranty, representation or responsibility of any kind, expressed or implied. Statements of suitability for certain applications are based on the knowledge that the Cornell Dubilier company providing such statements ("Cornell Dubilier") has of operating conditions that such Cornell Dubilier company regards as typical for such applications, but are not intended to constitute any guarantee, warranty or representation regarding any such matter – and Cornell Dubilier specifically and expressly disclaims any guarantee, warranty or representation concerning the suitability for a specific customer application, use, storage, transportation, or operating environment. The Information is intended for use only by customers who have the requisite experience and capability to determine the correct products for their application. Any technical advice inferred from this Information or otherwise provided by Cornell Dubilier with reference to the use of any Cornell Dubilier products is given gratis (unless otherwise specified by Cornell Dubilier), and Cornell Dubilier assumes no obligation or liability for the advice given or results obtained. Although Cornell Dubilier strives to apply the most stringent quality and safety standards regarding the design and manufacturing of its products, in light of the current state of the art, isolated component failures may still occur. Accordingly, customer applications which require a high degree of reliability or safety should employ suitable designs or other safeguards (such as installation of protective circuitry or redundancies or other appropriate protective measures) in order to ensure that the failure of an electrical component does not result in a risk of personal injury or property damage. Although all product-related warnings, cautions and notes must be observed, the customer should not assume that all safety measures are indicated in such warnings, cautions and notes, or that other safety measures may not be required.

