

# ICS840051

FEMTOCLOCKS<sup>TM</sup> CRYSTAL-TO-LVCMOS/LVTTL CLOCK GENERATOR

NRND – Not Recommend for New Designs - 8/30/2013 For replacement device use ICS840N051BGI

NRND

### GENERAL DESCRIPTION

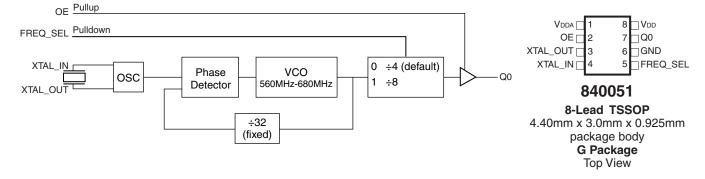
The 840051 is a Gigabit Ethernet Clock Generator and a member of the family of high performance devices from IDT. The 840051 can synthesize 10 Gigabit Ethernet, SONET, or Serial ATA reference clock frequencies with the appropriate choice of crystal and output divider. The 840051 has excellent phase jitter performance and is packaged in a small 8-pin TSSOP, making it ideal for use in systems with limited board space.

### **F**EATURES

- 1 LVCMOS/LVTTL output, 15Ω output impedance
- Crystal oscillator interface designed for 18pF parallel resonant crystals
- Output frequency range: 70MHz 170MHz
- VCO range: 560MHz 680MHz
- RMS phase jitter at 155.52MHz (1.875MHz 20MHz): 0.48ps (typical)
- RMS phase noise at 155.52MHz

#### Offset Noise Power

| 100Hz  | 99.7 | dBc/Hz |
|--------|------|--------|
| 1KHz   | 120  | dBc/Hz |
| 10KHz  | 128  | dBc/Hz |
| 100KHz | 127  | dBc/Hz |


- · 3.3V operating supply
- 0°C to 70°C ambient operating temperature
- · Lead-Free fully RoHS compliant
- Industrial temperature information available upon request
- Not Recommended For New Designs
- For New Designs use ICS840N051BGI

#### FREQUENCY TABLE

| Inputs                  | Output Frequency |            |
|-------------------------|------------------|------------|
| Crystal Frequency (MHz) | FREQ_SEL         | (MHz)      |
| 20.141601               | 0                | 161.132812 |
| 20.141601               | 1                | 80.566406  |
| 19.53125                | 0                | 156.25     |
| 19.53125                | 1                | 78.125     |
| 19.44                   | 0                | 155.52     |
| 19.44                   | 1                | 77.76      |
| 18.75                   | 0                | 150        |
| 18.75                   | 1                | 75         |

# **BLOCK DIAGRAM**

# PIN ASSIGNMENT



ICS840051 FemtoClocks<sup>TM</sup> Crystal-to-LVCMOS/LVTTL CLOCK GENERATOR

## NRND - Not Recommend for New Designs - 8/30/2013

TABLE 1. PIN DESCRIPTIONS

| Number | Name                 | Туре   |          | Description                                                                                                                        |
|--------|----------------------|--------|----------|------------------------------------------------------------------------------------------------------------------------------------|
| 1      | V <sub>DDA</sub>     | Power  |          | Analog supply pin.                                                                                                                 |
| 2      | OE                   | Input  | Pullup   | Output enable pin. When HIGH, Q0 output is enabled. When LOW, forces Q0 to HiZ state. LVCMOS/LVTTL interface levels. See Table 3A. |
| 3, 4   | XTAL_OUT,<br>XTAL_IN | Input  |          | Crystal oscillator interface. XTAL_IN is the input, XTAL_OUT is the output.                                                        |
| 5      | FREQ_SEL             | Input  | Pulldown | Frequency select pin. LVCMOS/LVTTL interface levels. See Table 3B.                                                                 |
| 6      | GND                  | Power  |          | Power supply ground.                                                                                                               |
| 7      | Q0                   | Output |          | Single-ended clock output. LVCMOS/LVTTL interface levels. $15\Omega$ output impedance.                                             |
| 8      | V <sub>DD</sub>      | Power  |          | Core supply pin.                                                                                                                   |

NOTE: Pullup and Pulldown refer to internal input resistors. See Table 2, Pin Characteristics, for typical values.

Table 2. Pin Characteristics

| Symbol                | Parameter                     | Test Conditions            | Minimum | Typical | Maximum | Units |
|-----------------------|-------------------------------|----------------------------|---------|---------|---------|-------|
| C <sub>IN</sub>       | Input Capacitance             |                            |         | 4       |         | pF    |
| C <sub>PD</sub>       | Power Dissipation Capacitance | $V_{DD}, V_{DDA} = 3.465V$ |         | 7       |         | pF    |
| R <sub>PULLUP</sub>   | Input Pullup Resistor         |                            |         | 51      |         | ΚΩ    |
| R <sub>PULLDOWN</sub> | Input Pulldown Resistor       |                            |         | 51      |         | ΚΩ    |
| R <sub>OUT</sub>      | Output Impedance              |                            |         | 15      |         | Ω     |

TABLE 3A. CONTROL FUNCTION TABLE

| Control Input | Output |
|---------------|--------|
| OE            | Q0     |
| 0             | Hi-Z   |
| 1             | Active |

TABLE 3B. FREQ SEL FUNCTION TABLE

| Control Input | N Divider    |  |  |
|---------------|--------------|--|--|
| FRE_SEL       | N Divider    |  |  |
| 0             | ÷4 (default) |  |  |
| 1             | ÷8           |  |  |

# ICS840051

FEMTOCLOCKS<sup>TM</sup> CRYSTAL-TO-LVCMOS/LVTTL CLOCK GENERATOR

### NRND - Not Recommend for New Designs - 8/30/2013

NRND

#### **ABSOLUTE MAXIMUM RATINGS**

Supply Voltage, V<sub>DD</sub> 4.6V

Inputs,  $V_{I}$  -0.5V to  $V_{DD}$  + 0.5 V

Outputs,  $V_{O}$  -0.5V to  $V_{DD}$  + 0.5V

Package Thermal Impedance,  $\theta_{IA}$  101.7°C/W (0 mps)

Storage Temperature, T<sub>STG</sub> -65°C to 150°C

NOTE: Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. These ratings are stress specifications only. Functional operation of product at these conditions or any conditions beyond those listed in the *DC Characteristics* or *AC Characteristics* is not implied. Exposure to absolute maximum rating conditions for extended periods may affect product reliability.

Table 4A. Power Supply DC Characteristics,  $V_{DD} = V_{DDA} = 3.3V \pm 5\%$ , Ta = 0°C to 70°C

| Symbol                       | Parameter             | Test Conditions | Minimum | Typical | Maximum | Units |
|------------------------------|-----------------------|-----------------|---------|---------|---------|-------|
| $V_{_{\mathrm{DD}}}$         | Core Supply Voltage   |                 | 3.135   | 3.3     | 3.465   | V     |
| $V_{\scriptscriptstyle DDA}$ | Analog Supply Voltage |                 | 3.135   | 3.3     | 3.465   | V     |
| I <sub>DD</sub>              | Power Supply Current  |                 |         |         | 60      | mA    |
| I <sub>DDA</sub>             | Analog Supply Current |                 |         |         | 10      | mA    |

Table 4B. LVCMOS/LVTTL DC Characteristics,  $V_{DD} = V_{DDA} = 3.3V \pm 5\%$ , Ta = 0°C to 70°C

| Symbol          | Parameter                   |          | Test Conditions                | Minimum | Typical | Maximum        | Units |
|-----------------|-----------------------------|----------|--------------------------------|---------|---------|----------------|-------|
| V <sub>IH</sub> | Input High Voltage          |          |                                | 2       |         | $V_{DD} + 0.3$ | V     |
| V <sub>IL</sub> | Input Low Voltage           |          |                                | -0.3    |         | 0.8            | V     |
|                 | Input High Current          | OE       | $V_{DD} = V_{IN} = 3.465V$     |         |         | 5              | μA    |
| ' <sub>IH</sub> | Imput riigir Current        | FREQ_SEL | $V_{DD} = V_{IN} = 3.465V$     |         |         | 150            | μA    |
|                 | Input Low Current           | OE       | $V_{DD} = 3.465V, V_{IN} = 0V$ | -150    |         |                | μA    |
| '⊩              | Imput Low Current           | FREQ_SEL | $V_{DD} = 3.465V, V_{IN} = 0V$ | -5      |         |                | μΑ    |
| V <sub>OH</sub> | Output High Voltage; NOTE 1 |          |                                | 2.6     |         |                | V     |
| $V_{OL}$        | Output Low Voltage          | ; NOTE 1 |                                |         |         | 0.5            | V     |

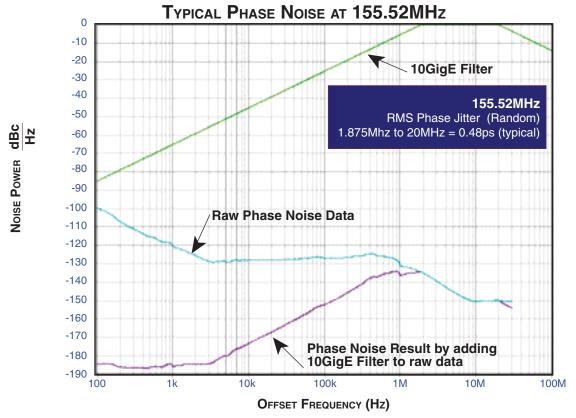
NOTE 1: Outputs terminated with  $50\Omega$  to  $V_{DD}/2$ . See Parameter Measurement Information Section, "3.3V Output Load Test Circuit".

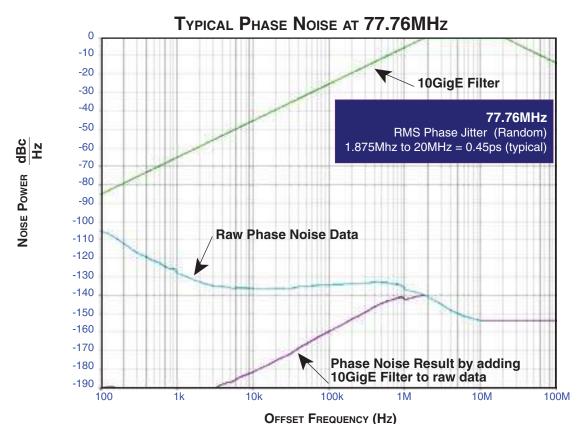
#### TABLE 5. CRYSTAL CHARACTERISTICS

| Parameter                          | Test Conditions | Minimum | Typical    | Maximum | Units |
|------------------------------------|-----------------|---------|------------|---------|-------|
| Mode of Oscillation                |                 | F       | undamental |         |       |
| Frequency                          |                 | 17.5    |            | 21.25   | MHz   |
| Equivalent Series Resistance (ESR) |                 |         |            | 50      | Ω     |
| Shunt Capacitance                  |                 |         |            | 7       | pF    |

ICS840051
FEMTOCLOCKS<sup>TM</sup> CRYSTAL-TOLVCMOS/LVTTL CLOCK GENERATOR

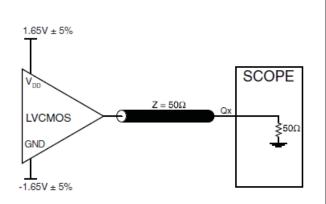
# NRND - Not Recommend for New Designs - 8/30/2013

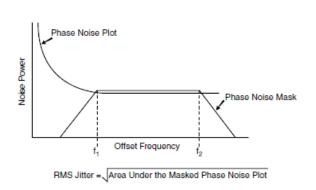

Table 6. AC Characteristics,  $V_{DD} = V_{DDA} = 3.3V \pm 5\%$ , Ta = 0°C to 70°C


| Symbol                          | Parameter                   | Test Conditions                                   | Minimum | Typical | Maximum | Units |
|---------------------------------|-----------------------------|---------------------------------------------------|---------|---------|---------|-------|
| f <sub>out</sub>                | Output Frequency            |                                                   | 70      |         | 170     | MHz   |
| +;;+(0)                         | RMS Phase Jitter ( Random); | 155.52MHz, Integration Range:<br>1.875MHz - 20MHz |         | 0.48    |         | ps    |
| tjit(Ø)                         | NOTE 1                      | 77.76MHz, Integration Range:<br>1.875MHz - 20MHz  |         | 0.45    |         | ps    |
| t <sub>R</sub> / t <sub>F</sub> | Output Rise/Fall Time       | 20% to 80%                                        | 200     |         | 500     | ps    |
| odc                             | Output Duty Cycle           |                                                   | 48      |         | 52      | %     |

NOTE 1: Please refer to the Phase Noise Plots.

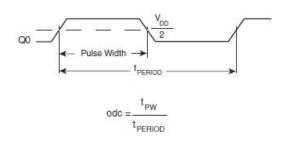
ICS840051 FemtoClocks<sup>TM</sup> Crystal-to-LVCMOS/LVTTL CLOCK GENERATOR

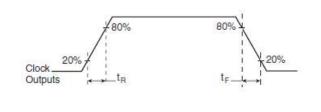

NRND - Not Recommend for New Designs - 8/30/2013






NRND - Not Recommend for New Designs - 8/30/2013


# PARAMETER MEASUREMENT INFORMATION






#### 3.3V OUTPUT LOAD AC TEST CIRCUIT







### OUTPUT DUTY CYCLE/PULSE WIDTH/PERIOD

### OUTPUT RISE/FALL TIME

NRND - Not Recommend for New Designs - 8/30/2013

NRND

## **APPLICATION INFORMATION**

#### Power Supply Filtering Techniques

As in any high speed analog circuitry, the power supply pins are vulnerable to random noise. The 840051 provides separate power supplies to isolate any high switching noise from the outputs to the internal PLL.  $V_{\text{DD}}$  and  $V_{\text{DDA}}$  should be individually connected to the power supply plane through vias, and bypass capacitors should be used for each pin. To achieve optimum jitter performance, power supply isolation is required. Figure 1 illustrates how a  $10\Omega$  resistor along with a  $10\mu\text{F}$  and a  $.01\mu\text{F}$  bypass capacitor should be connected to each  $V_{\text{DDA}}$  pin.

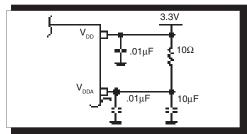
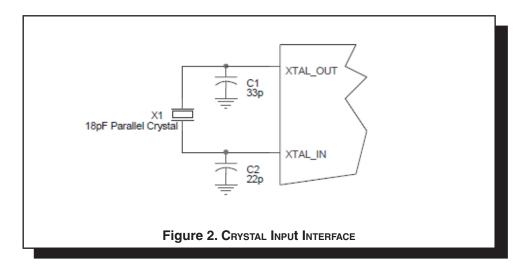




FIGURE 1. POWER SUPPLY FILTERING

#### CRYSTAL INPUT INTERFACE

The 840051 has been characterized with 18pF parallel resonant crystals. The capacitor values, C1 and C2, shown in *Figure 2* below were determined using an 18pF parallel

resonant crystal and were chosen to minimize the ppm error. The optimum C1 and C2 values can be slightly adjusted for different board layouts.



ICS840051 FemtoClocks<sup>TM</sup> Crystal-to-LVCMOS/LVTTL CLOCK GENERATOR

NRND - Not Recommend for New Designs - 8/30/2013

# **RELIABILITY INFORMATION**

Table 7.  $\theta_{\text{JA}} \text{vs. Air Flow Table for 8 Lead TSSOP}$ 

θ<sub>JA</sub> by Velocity (Meters per Second)

1 2.5 0 Multi-Layer PCB, JEDEC Standard Test Boards 101.7°C/W 90.5°C/W 89.8°C/W

#### TRANSISTOR COUNT

The transistor count for 840051 is: 1927

NRND - Not Recommend for New Designs - 8/30/2013

PACKAGE OUTLINE - G SUFFIX FOR 8 LEAD TSSOP

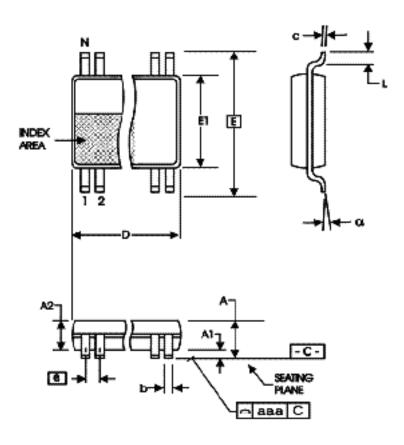



TABLE 8. PACKAGE DIMENSIONS

| CVMDOL | Millin  | neters  |  |  |
|--------|---------|---------|--|--|
| SYMBOL | Minimum | Maximum |  |  |
| N      | 8       |         |  |  |
| А      |         | 1.20    |  |  |
| A1     | 0.05    | 0.15    |  |  |
| A2     | 0.80    | 1.05    |  |  |
| b      | 0.19    | 0.30    |  |  |
| С      | 0.09    | 0.20    |  |  |
| D      | 2.90    | 3.10    |  |  |
| E      | 6.40 E  | BASIC   |  |  |
| E1     | 4.30    | 4.50    |  |  |
| е      | 0.65 E  | BASIC   |  |  |
| L      | 0.45    | 0.75    |  |  |
| α      | 0°      | 8°      |  |  |
| aaa    |         | 0.10    |  |  |

Reference Document: JEDEC Publication 95, MO-153

ICS840051
FEMTOCLOCKS<sup>TM</sup> CRYSTAL-TO-LVCMOS/LVTTL CLOCK GENERATOR

## NRND - Not Recommend for New Designs - 8/30/2013

### Table 9. Ordering Information

| Part/Order Number | Marking | Package                  | Shipping Packaging | Temperature |
|-------------------|---------|--------------------------|--------------------|-------------|
| 840051AGLF        | 051AL   | 8 Lead "Lead-Free" TSSOP | tube               | 0°C to 70°C |
| 840051AGLFT       | 051AL   | 8 Lead "Lead-Free" TSSOP | tape & reel        | 0°C to 70°C |

ICS840051
FEMTOCLOCKS<sup>TM</sup> CRYSTAL-TOLVCMOS/LVTTL CLOCK GENERATOR

## NRND - Not Recommend for New Designs - 8/30/2013

### REVISION HISTORY SHEET

| Rev | Table | Page | Description of Change                                |        |
|-----|-------|------|------------------------------------------------------|--------|
| Α   | Т9    | 10   | Ordering Information Table - Removed leaded devices. | 9/1/15 |
|     |       |      |                                                      |        |

#### IMPORTANT NOTICE AND DISCLAIMER

RENESAS ELECTRONICS CORPORATION AND ITS SUBSIDIARIES ("RENESAS") PROVIDES TECHNICAL SPECIFICATIONS AND RELIABILITY DATA (INCLUDING DATASHEETS), DESIGN RESOURCES (INCLUDING REFERENCE DESIGNS), APPLICATION OR OTHER DESIGN ADVICE, WEB TOOLS, SAFETY INFORMATION, AND OTHER RESOURCES "AS IS" AND WITH ALL FAULTS, AND DISCLAIMS ALL WARRANTIES, EXPRESS OR IMPLIED, INCLUDING, WITHOUT LIMITATION, ANY IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, OR NON-INFRINGEMENT OF THIRD PARTY INTELLECTUAL PROPERTY RIGHTS.

These resources are intended for developers skilled in the art designing with Renesas products. You are solely responsible for (1) selecting the appropriate products for your application, (2) designing, validating, and testing your application, and (3) ensuring your application meets applicable standards, and any other safety, security, or other requirements. These resources are subject to change without notice. Renesas grants you permission to use these resources only for development of an application that uses Renesas products. Other reproduction or use of these resources is strictly prohibited. No license is granted to any other Renesas intellectual property or to any third party intellectual property. Renesas disclaims responsibility for, and you will fully indemnify Renesas and its representatives against, any claims, damages, costs, losses, or liabilities arising out of your use of these resources. Renesas' products are provided only subject to Renesas' Terms and Conditions of Sale or other applicable terms agreed to in writing. No use o any Renesas resources expands or otherwise alters any applicable warranties or warranty disclaimers for these products.

(Disclaimer Rev.1.0 Mar 2020)

#### **Corporate Headquarters**

TOYOSU FORESIA, 3-2-24 Toyosu, Koto-ku, Tokyo 135-0061, Japan www.renesas.com

### **Trademarks**

Renesas and the Renesas logo are trademarks of Renesas Electronics Corporation. All trademarks and registered trademarks are the property of their respective owners.

#### **Contact Information**

For further information on a product, technology, the most up-to-date version of a document, or your nearest sales office, please visit:

www.renesas.com/contact/