

SOP-8

Pin Definiti	on:
1. Source	8. Drain
2. Source	7. Drain
3. Source	6. Drain
4. Gate	5. Drain

Key Parameter Performance

Parameter		Value	Unit	
V _{DS}	6	30	V	
	$V_{GS} = 10V$	4.2		
$R_{DS(on)}$ (max)	$V_{GS} = 4.5V$	6	mΩ	
Qg		24	nC	

Ordering Information

Part No.	Package	Packing
TSM042N03CS RLG	SOP-8	2.5kps / 13" Reel

Note: "G" denotes for Halogen- and Antimony-free as those which contain <900ppm bromine, <900ppm chlorine (<1500ppm total Br + Cl) and <1000ppm antimony compounds

Block Diagram

N-Channel MOSFET

Absolute Maximum Ratings (Tc=25°C unless otherwise noted)

Parameter		Symbol	Limit	Unit
Drain-Source Voltage		V _{DS}	30	V
Gate-Source Voltage	V _{GS}	±20	V	
Continuous Duois Coment	Tc=25ºC		30	А
Continuous Drain Current	Tc=100ºC	- I _D	19	А
Pulsed Drain Current (Note 1)		I _{DM}	120	А
Single Pulse Avalanche Energy (Note 2)		E _{AS}	125	mJ
Single Pulse Avalanche Current (Note 2)		I _{AS}	50	А
Power Dissipation @ $T_c = 25^{\circ}C$		PD	7	W
Operating Junction Temperature		TJ	175	°C
Storage Temperature Range		T _{STG}	-55 to +175	°C

Thermal Performance

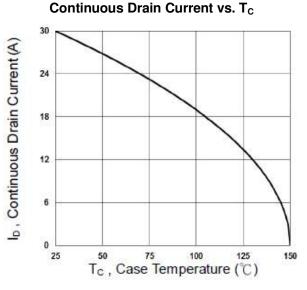
Parameter	Symbol	Limit	Unit
Thermal Resistance - Junction to Ambient	$R_{\Theta JA}$	62	°C/W

Electrical Specifications (T_=25°C unless otherwise noted)

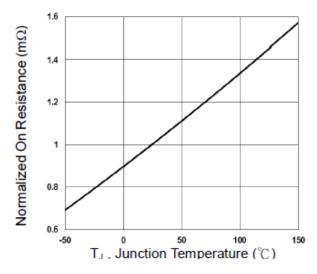
Parameter	Conditions	Symbol	Min	Тур	Max	Unit
Static			1	1		
Drain-Source Breakdown Voltage	$V_{GS} = 0V, I_D = 250\mu A$	BV _{DSS}	30			V
	$V_{GS} = 10V, I_D = 12A$			3.8	4.2	
Drain-Source On-State Resistance	$V_{GS} = 4.5V, I_D = 6A$	$R_{DS(ON)}$		5.2	6	mΩ
Gate Threshold Voltage	$V_{DS} = V_{GS}, I_{D} = 250 \mu A$	V _{GS(TH)}	1.2	1.6	2.5	V
	$V_{DS} = 30V, V_{GS} = 0V$				1	μΑ
Zero Gate Voltage Drain Current	V _{DS} = 24V, T _J = 125 ^o C	I _{DSS}			10	
Gate Body Leakage	$V_{GS} = \pm 20V, V_{DS} = 0V$	I _{GSS}			±100	nA
Forward Transconductance (Note 3)	$V_{DS} = 10V, I_{D} = 6A$	g _{fs}		12		S
Dynamic	1		I	I		
Total Gate Charge (Note 3,4)		Qq		24		
Gate-Source Charge (Note 3,4)	$V_{DS} = 15V, I_D = 12A,$	Q _{qs}		4.2		nC
Gate-Drain Charge (Note 3,4)	$V_{GS} = 4.5V$	Q _{qd}		13		
Input Capacitance		C _{iss}		2200		pF
Output Capacitance	$V_{DS} = 25V, V_{GS} = 0V,$	C _{oss}		280		
Reverse Transfer Capacitance	f = 1.0MHz	C _{rss}		177		
Switching	1		I	I		
Turn-On Delay Time (Note 3,4)		t _{d(on)}		12.6		
Turn-On Rise Time (Note 3,4)	V _{DD} = 15V, I _D = 15A,	t _r		19.5		
Turn-Off Delay Time (Note 3,4)	$V_{GS} = 10V, R_{GEN} = 3.3\Omega$	t _{d(off)}		42.8		- ns
Turn-Off Fall Time (Note 3,4)		t _f		13.2		
Source-Drain Diode Ratings and Ch	aracteristic		1	1		
Maximum Continuous Drain-Source		1			20	٨
Diode Forward Current	Integral reverse diode in	I _S			30	A
Maximum Pulse Drain-Source Diode	the MOSFET	I _{SM}			120	А
Forward Current						
Diode Forward Voltage	$V_{GS} = 0V, I_S = 1A$	V_{SD}			1	V

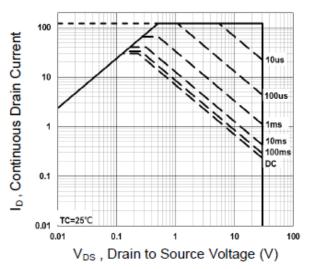
Note:

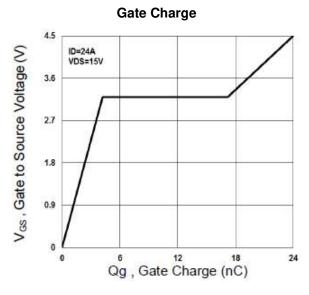
1. Pulse width limited by safe operating area


2. L=0.1mH, I_{AS} =50A, V_{DD} = 25V, R_G = 25 Ω , Starting T_J = 25^oC

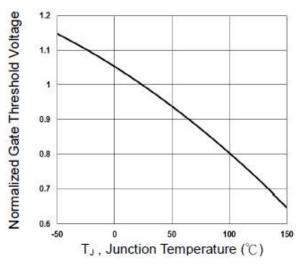
3. Pulse test: pulse width \leq 300µs, duty cycle \leq 2%


4. Switching time is essentially independent of operating temperature.

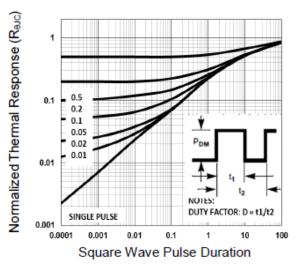

Electrical Characteristics Curve



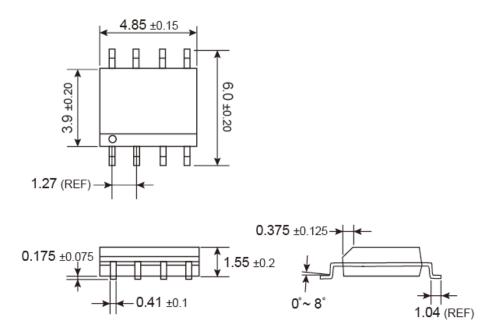
On-Resistance vs. Junction Temperature



Maximum Safe Operating Area



Threshold Voltage vs. Junction Temperature



Normalized Thermal Transient Impedance Curve

SOP-8 Mechanical Drawing

Unit: Millimeters

Marking Diagram

H	H	H	<u> </u>	
04	2N0)3		
		-	.	
Y٨	ΛL	2	כ	

- Y = Year Code
- **M** = Month Code for Halogen Free Product
 - (**O**=Jan, **P**=Feb, **Q**=Mar, **R**=Apl, **S**=May, **T**=Jun, **U**=Jul, **V**=Aug, **W**=Sep, **X**=Oct, **Y**=Nov, **Z**=Dec)
- L = Lot Code

Notice

Specifications of the products displayed herein are subject to change without notice. TSC or anyone on its behalf, assumes no responsibility or liability for any errors or inaccuracies.

Information contained herein is intended to provide a product description only. No license, express or implied, to any intellectual property rights is granted by this document. Except as provided in TSC's terms and conditions of sale for such products, TSC assumes no liability whatsoever, and disclaims any express or implied warranty, relating to sale and/or use of TSC products including liability or warranties relating to fitness for a particular purpose, merchantability, or infringement of any patent, copyright, or other intellectual property right.

The products shown herein are not designed for use in medical, life-saving, or life-sustaining applications. Customers using or selling these products for use in such applications do so at their own risk and agree to fully indemnify TSC for any damages resulting from such improper use or sale.