

Automotive-grade N-channel 60 V, 22.5 mΩ typ., 7.8 A STripFET™ F3 Power MOSFET in a PowerFLAT™ 5x6 package

Datasheet - production data

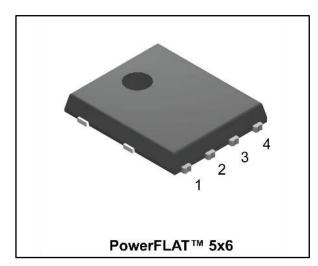
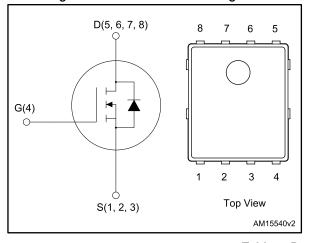



Figure 1: Internal schematic diagram

Features

Order code	V _{DS}	R _{DS(on)} max.	ID
STL8N6LF3	60 V	30 mΩ	7.8 A

AEC-Q101 qualified

- Logic level V_{GS(th)}
- 175 °C maximum junction temperature
- 100% avalanche rated
- Wettable flank package

Applications

• Switching applications

Description

This device is an N-channel Power MOSFET developed using STripFET™ F3 technology. It is designed to minimize on-resistance and gate charge to provide superior switching performance.

Table 1: Device summary

Order code	Marking	Package	Packing
STL8N6LF3	8N6LF3	PowerFLAT™ 5x6	Tape and reel

Contents STL8N6LF3

Contents

1	Electric	eal ratings	3
2	Electric	eal characteristics	4
	2.1	Electrical characteristics (curves)	6
3	Test cir	cuits	8
4	Packag	e information	9
	4.1	PowerFLAT 5x6 WF type R package information	9
	4.2	Packing information	12
5		n history	

STL8N6LF3 Electrical ratings

1 Electrical ratings

Table 2: Absolute maximum ratings

Symbol	Parameter	Value	Unit	
V _{DS}	Drain-source voltage	60	V	
V_{GS}	Gate-source voltage	±20	V	
I _D ⁽¹⁾	Drain current (continuous) at T _C = 25 °C	20	Α	
I _D	Drain current (continuous) at T _C = 100 °C	20	Α	
I _D (3)	Drain current (continuous) at T _{pcb} = 25 °C	7.8	Α	
I _D ⁽³⁾	Drain current (continuous) at T _{pcb} = 100 °C	5.5	Α	
I _{DM} ⁽²⁾⁽³⁾	Drain current (pulsed)	31.2	Α	
Ртот	Total dissipation at T _C = 25 °C	65	W	
P _{TOT} (3)	Total dissipation at T _{pcb} = 25°C 4.3		W	
las	Not-repetitive avalanche current	7.8 A		
Eas ⁽⁴⁾	Single pulse avalanche energy 190		mJ	
Tj	Operating junction temperature range	FF to 17F	°C	
T _{stg}	Storage temperature range	-55 to 175 °C		

Notes:

Table 3: Thermal resitance

Symbol	Parameter	Value	Unit
R _{thj-case}	Thermal resistance junction-case	2.3	°C/W
R _{thj-pcb} ⁽¹⁾	Thermal resistance junction-pcb	35	°C/W

Notes:

 $^{^{(1)}}$ Current is limited by bonding, with an R_{thJC} = 2.3 °C/W the chip is able to carry 30 A at 25 °C.

 $^{^{(2)}}$ Pulse width limited by safe operating area.

 $^{^{(3)}}$ When mounted on FR-4 board of 1inch², 2oz Cu, t < 10 s.

 $^{^{(4)}}Starting~T_{J}=$ 25 °C, ID=IAS, VDD= 25 V.

 $^{^{(1)}}$ When mounted on FR-4 board of 1 inch², 2oz Cu, t < 10 s.

Electrical characteristics STL8N6LF3

2 Electrical characteristics

(T_C = 25 °C unless otherwise specified)

Table 4: On/Off states

Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit
$V_{(BR)DSS}$	Drain-source breakdown voltage	$V_{GS} = 0 \text{ V}, I_{D} = 250 \mu\text{A}$	60			V
I _{DSS}	Zero gate voltage drain current	V _{GS} = 0 V, V _{DS} = 60 V			1	μΑ
Igss	Gate-body leakage current	V _{DS} = 0 V, V _{GS} = ±20 V			±100	nA
$V_{GS(th)}$	Gate threshold voltage	$V_{DS} = V_{GS}$, $I_D = 250 \ \mu A$	1		2.5	V
D- o	Static drain-source	$V_{GS} = 10 \text{ V}, I_{D} = 4 \text{ A}$		22.5	30	mΩ
R _{DS(on)}	on-resistance	$V_{GS} = 5 \text{ V}, I_{D} = 4 \text{ A}$		30	44	mΩ

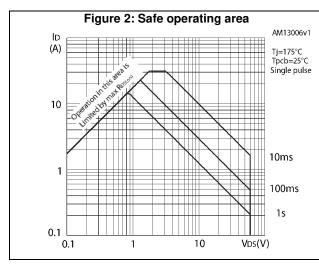
Table 5: Dynamic

Symbol	Parameter Test conditions		Min.	Тур.	Max.	Unit
Ciss	Input capacitance		1	668	ı	
Coss	Output capacitance	$V_{DS} = 25 V$, $f = 1 MHz$,	1	144	ı	рF
Crss	Reverse transfer capacitance	$V_{GS} = 0 V$	ı	14	ı	ρı
Qg	Total gate charge	$V_{DD} = 30 \text{ V}, I_D = 7.8 \text{ A},$	1	13	ı	
Q_{gs}	Gate-source charge	$V_{GS} = 0$ to 10 V	-	2.4	-	nC
Q_{gd}	Gate-drain charge	(see Figure 14: "Test circuit for gate charge behavior")	1	3	1	
Rg	Intrinsic gate resistance	$f = 1 \text{ MHz}, I_D = 0 \text{ A}$	-	4	-	Ω

Table 6: Switching times

Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit
t _{d(on)}	Turn-on delay time	$V_{DD} = 30 \text{ V}, I_D = 4 \text{ A},$	-	9	-	
tr	Rise time	$R_G = 4.7 \Omega$, $V_{GS} = 10 V$ (see Figure 13: "Test circuit for	-	7.7	-	
t _{d(off)}	Turn-off delay time	resistive load switching times"	-	32.5	-	ns
tf	Fall time	and Figure 18: "Switching time waveform")	-	5	-	

Table 7: Source-drain diode


Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit
Isp	Source-drain current		-		7.8	Α
I _{SDM} ⁽¹⁾	Source-drain current (pulsed)		-		31.2	Α
V _{SD} ⁽²⁾	Forward on voltage	$I_{DS} = 7.8 \text{ A}, V_{GS} = 0 \text{ V}$	1		1.3	٧
t _{rr}	Reverse recovery time	$I_{SD} = 7.8 \text{ A}, \text{ di/dt} = 100 \text{ A/}\mu\text{s}$	1	30		ns
Q _{rr}	Reverse recovery charge	$V_{DD} = 48 \text{ V}, T_j = 150 \text{ °C (see}$ Figure 15: "Test circuit for	1	35		nC
I _{RRM}	Reverse recovery current	inductive load switching and diode recovery times")	-	2.35		Α

Notes:

 $[\]ensuremath{^{(1)}}\mbox{Pulse}$ width limited by safe operating area.

 $^{^{(2)}}$ Pulsed: pulse duration = 300 μ s, duty cycle 1.5 %.

2.1 Electrical characteristics (curves)

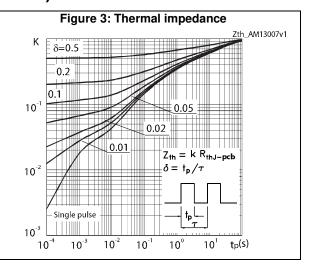
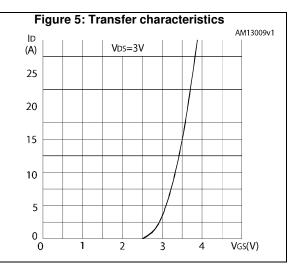
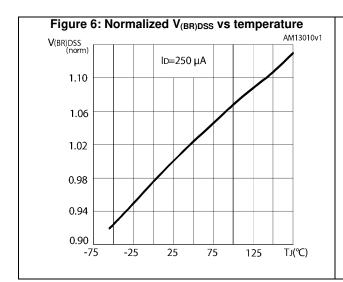
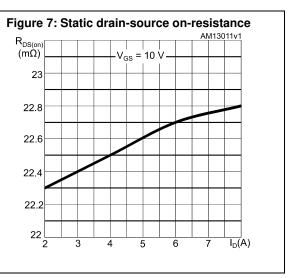
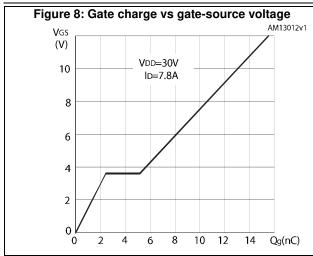






Figure 4: Output characteristics AM13008v1 (A) VGS=10V 4V 25 20 15 10 3V 5 0 2 3 4 VDS(V)

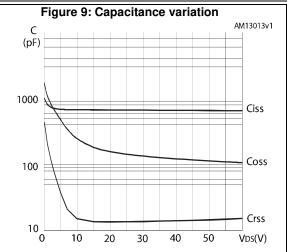
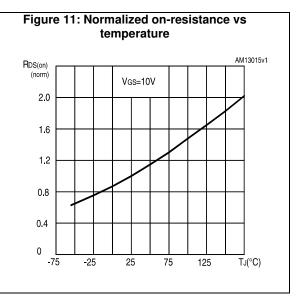
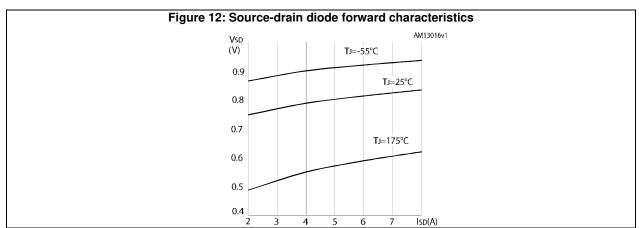




Figure 10: Normalized gate threshold voltage vs temperature AM13014v1 VGS(th) ID=250μA (norm) 1.2 1.0 0.8 0.6 0.4 25 -25 75 125 TJ(°C)

Test circuits STL8N6LF3

3 Test circuits

Figure 13: Test circuit for resistive load switching times

Figure 14: Test circuit for gate charge behavior

12 V 47 KΩ 100 Ω D.U.T.

12 V 47 KΩ VGD

14 VGD

14 VGD

14 VGD

15 VGD

16 CONST 100 Ω OVG

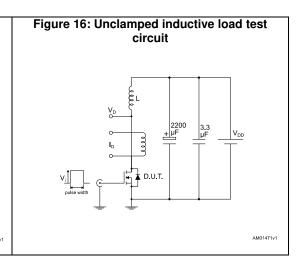
17 VGD

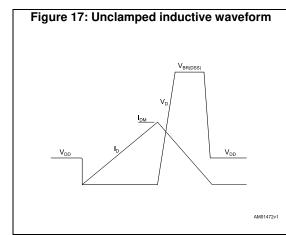
18 VGD

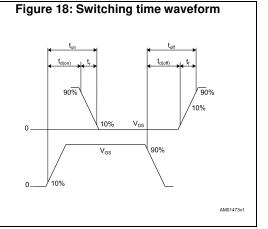
18 VGD

18 VGD

18 VGD


18 VGD


18 VGD


19 VGD

18 VGD

Figure 15: Test circuit for inductive load switching and diode recovery times

577

STL8N6LF3 Package information

Package information 4

In order to meet environmental requirements, ST offers these devices in different grades of ECOPACK® packages, depending on their level of environmental compliance. ECOPACK® specifications, grade definitions and product status are available at: www.st.com. ECOPACK® is an ST trademark.

Figure 19: PowerFLAT™ 5x6 WF type R package outline

4.1 PowerFLAT 5x6 WF type R package information

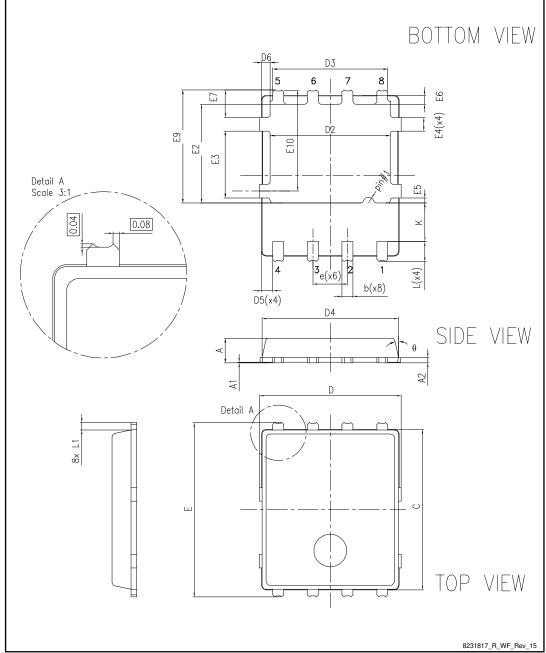


Table 8: PowerFLAT™ 5x6 WF type R mechanical data

		mm	
Dim.	Min.	Тур.	Max.
А	0.80		1.00
A1	0.02		0.05
A2		0.25	
b	0.30		0.50
С	5.80	6.00	6.10
D	5.00	5.20	5.40
D2	4.15		4.45
D3	4.05	4.20	4.35
D4	4.80	5.00	5.10
D5	0.25	0.4	0.55
D6	0.15	0.3	0.45
е		1.27	
Е	6.20	6.40	6.60
E2	3.50		3.70
E3	2.35		2.55
E4	0.40		0.60
E5	0.08		0.28
E6	0.20	0.325	0.45
E7	0.85	1.00	1.15
E9	4.00	4.20	4.40
E10	3.55	3.70	3.85
К	1.275		1.575
L	0.725	0.825	0.925
L1	0.175	0.275	0.375
θ	0°		12°

STL8N6LF3 Package information

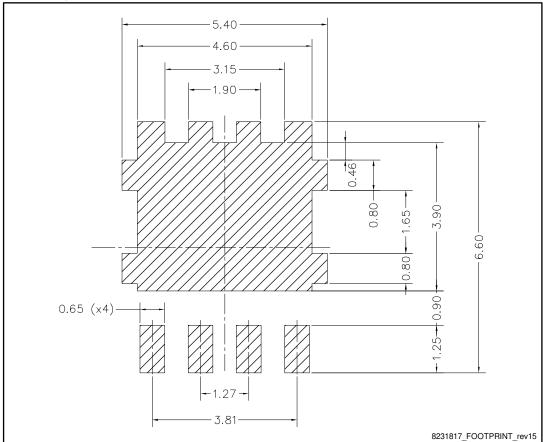


Figure 20: PowerFLAT™ 5x6 recommended footprint (dimensions are in mm)

Package information STL8N6LF3

4.2 Packing information

Figure 21: PowerFLAT™ 5x6 WF tape (dimensions are in mm)

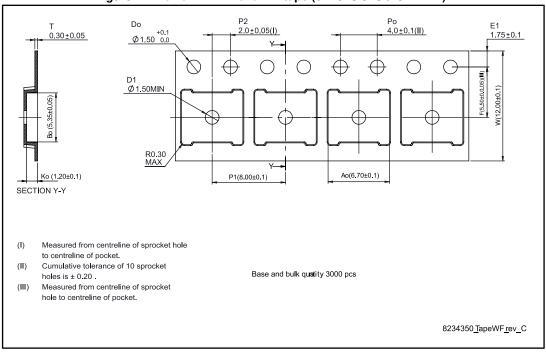
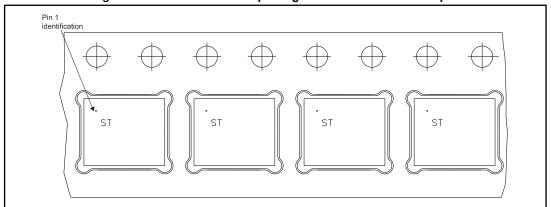



Figure 22: PowerFLAT™ 5x6 package orientation in carrier tape

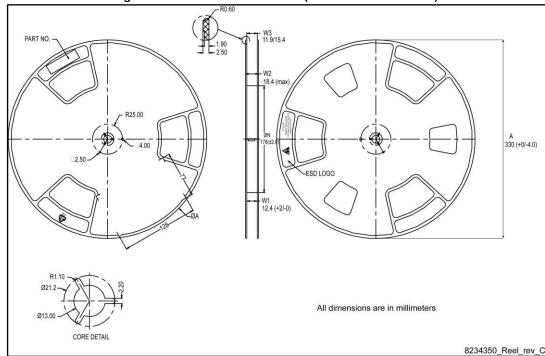


Figure 23: PowerFLAT™ 5x6 reel (dimensions are in mm)

Revision history STL8N6LF3

5 Revision history

Table 9: Document revision history

Date	Revision	Changes
13-Oct-2014	1	First release.
23-Nov-2015	2	Updated title. Datasheet promoted from preliminary data to production data. Updated Section 4: Package information. Minor text changes.
11-May-2017	3	Modified Figure 6: "Normalized V(BR)DSS vs temperature" and Figure 11: "Normalized on-resistance vs temperature". Updated Section 4: "Package information" Minor text changes.

IMPORTANT NOTICE - PLEASE READ CAREFULLY

STMicroelectronics NV and its subsidiaries ("ST") reserve the right to make changes, corrections, enhancements, modifications, and improvements to ST products and/or to this document at any time without notice. Purchasers should obtain the latest relevant information on ST products before placing orders. ST products are sold pursuant to ST's terms and conditions of sale in place at the time of order acknowledgement.

Purchasers are solely responsible for the choice, selection, and use of ST products and ST assumes no liability for application assistance or the design of Purchasers' products.

No license, express or implied, to any intellectual property right is granted by ST herein.

Resale of ST products with provisions different from the information set forth herein shall void any warranty granted by ST for such product.

ST and the ST logo are trademarks of ST. All other product or service names are the property of their respective owners.

Information in this document supersedes and replaces information previously supplied in any prior versions of this document.

© 2017 STMicroelectronics - All rights reserved