

hik8

Hi/fn™ supplies two of the Internet’s most important raw materials: compres-
sion and encryption. Hi/fn is also the world’ s first company to put both on a
single chip, creating a processor that performs compression and encryption at
a faster speed than a conventional CPU alone could handle, and for much less
than the cost of a Pentium or comparable processor.

LZS221-C Version 6 Data Compression Software

Asof October 1, 1998, our addressis:

Hi/fn, Inc.

750 University Avenue
Los Gatos, CA 95032
info@hifn.com
http://www.hifn.com
Tel: 408-399-3500
Fax: 408-399-3501

Hi/fn Applications Support Hotline:
408-399-3544

Disclaimer

Hi/fn reserves the right to make changes to its products or to discontinue any semiconductor product
or service without notice, and advises its customers to obtain the latest version of relevant informa-
tion to verify, before placing orders, that the information being relied on is current.

Hi/fn warrants performance of its semiconductor products and related software to the specifications
applicable at the time of salein accordance with Hi/fn's standard warranty. Testing and other quality
control techniques are utilized to the extent Hi/fn deems necessary to support this warranty. Specific
testing of all parameters of each deviceis not necessarily performed, except those mandated by
government requirements.

Certain applications using semiconductor products may involve potential risks of death, personal
injury, or severe property or environmental damage ("Critical Applications”).

HI/FN SEMICONDUCTOR PRODUCTS ARE NOT DESIGNED, INTENDED, AUTHORIZED,
OR WARRANTED TO BE SUITABLE FOR USE IN LIFE-SUPPORT APPLICATIONS,
DEVICES OR SYSTEMS OR OTHER CRITICAL APPLICATIONS.

Inclusion of Hi/fn productsin such critical applications is understood to be fully at the risk of the
customer. Questions concerning potential risk applications should be directed to Hi/fn through a
local sales office.

In order to minimize risks associated with the customer's gpplications, adequate design and operating
safeguards should be provided by the customer to minimize inherent or procedural hazards.

Hi/fn does not warrant that its products are free from infringement of any patents, copyrights or
other proprietary rights of third parties. In no event shall Hi/fn be liable for any special, incidental or
consequential damages arising from infringement or alleged infringement of any patents, copyrights
or other third party intellectual property rights.

“Typical” parameters can and do vary in different applications. All operating parameters, including
“Typicals,” must be validated for each customer application by customer’s technical experts.

The use of this product may require alicense from Motorola. A license agreement for theright to
use Motorola patents may be obtained through Hi/fn or directly from Motorola.

DS-0006-00 (9/98) © 1997-1998 by Hi/fn, Inc., including one or more U.S.
patents No.: 4,701,745, 5,003,307, 5,016,009, 5,126,739, 5,146,221, 5,414,425,
5,414,850, 5,463,390, 5,506,580, 5,532,694. Other patents pending.

Page 2 DS-0006-00 DATA SHEET

hik8

LZS221-C Version 6 Data Compression Software

Table of Contents

I = 0To (W o L=] o1 o o IS 5
2 LZS221-C FlES ittt 6
3 FUNCLION SUMMEIYccuieieieiecie et seee sttt seeae e st ene e enae s 6
4 Compile-TiME OPLIONS......cceceeeeeeresreste et se e e ee et eresre e e eeesaenaenes 7
A1 HIFN_FAR . et 7
4.2 LZS C_FOOTPRINT ..ottt 7
T Y1 (T @ o L= 1 o TSP 8
44 HIFN_ALIGNEDccoiiiiiretcie et 8
45 LZS C_PERFORMANCE.......cccootiiiriieinieneesies et 8
5 Constants, TYPES, & BilS.....ccciiiiiiiiieieeciere e 9
B PEIfOIMENCE... ... 9
A w17 1 g W AT @] 110 (=S o] o PP 10
8 Compression & Decompression HiStOr€S.ccccvveeereseeeesieneseeseseeenens 10
8.1 History MaintenanCecccuevuereriesiese e seeeeesees e 11
9 LZS C _SizeOfCompressioNHISONY......ccvcveeereerevrsiesesesseeseeseseessesseanens 11
10 LZS C InitializeCompressionHIStOrY........cccevevuerenieseseseseereeseeseseeseenes 12
11 LZS C COMPIESS ..cueeieeeieeereeeseesseesteeteessesseesseesseesseessesssssssesssssseessesssenns 12
12 LZS C SizeOfDecompressiONHISIONYccoviereeiereeeeseeseseseeseeseeseenens 16
13 LZS C InitializeDecompressionHIStOrYcccevvrevesiesesieeresesesee s 16
14 LZS C DECOMPIESS......eiiieiererrareeseesseesteesseessessssssessseessnessesssesssssssessesssenns 16
Figures
Figure 1. TypPiCal SPEEA ...cviiieieciececee et sne 9
Figure 2. Effect of performance parameters........ccoovvveeeeveresnseseseseeseeeens 10
Figure 3. LZS Compressflags parametercccvovvivveeeeieesesesese e 13
Figure4. LZS C _Compress example pseudocode.........ccccovvvvvrveeeeereeniesennnn, 15
Figure5. LZS C CompressreturN VAlUE.......cc.ccveveeeierieeeeeeeeese e 15
Figure6. LZS C Decompress flags parameterccceeueverereseseseseeseeneenns 17
Figure 7. LZS C _Decompress pseudocode example........cceeveeeeeeierenesensenne, 18
Figure8. LZS C Decompress return ValUEccveeeeeuerienesesieseeeseeseeee s 18

DATA SHEET DS-0006-00 Page 3

LZS221-C Version 6 Data Compression Software

THISPAGE INTENTIONALLY BLANK

Page 4 DS-0006-00 DATA SHEET

hik8

LZS221-C Version 6 Data Compression Software

Product Description

The LZS221-C Data Compression Software Library provides a processor inde-
pendent software implementation of the Hi/fn LZS® algorithm in a C source code
format. The softwareis compatible with ANSI C.

Figure 1 on page 9 illustrates the compression speed of thislibrary.

Thislibrary supports the simultaneous use of multiple compression and decom-
pression histories. Each history is completely independent of other histories. In
addition, this software is re-entrant.

LZS221-Cisfully compatible with Hi/fn’s data compression compressor chips
along with the multi-history features. Thislibrary is aso compatible with other
members of the LZS221 software family. Files compressed or decompressed
with hardware or software may be compressed or decompressed interchangeably
with hardware or software.

Assembly language optimized implementations for some specific processors are
also available. Consult Hi/fn for more information.

Features

* Hi/fn LZS compression format

* Multiple history support

* Adjustable compression speed vs. ratio

* High performance

* Cross compatible with other Hi/fn LZS compression software and hardware
* Interface similar to Version 4

New in version 6

* Special faster modes

* Flexible memory requirements

* Able to process fragments buffers

DATA SHEET DS-0006-00 Page 5

hik8

2 LZ2S221-C Files

The LZS221-C library is composed of several files. They are summarized be-
low:

LZS221-C Version 6 Data Compression Software

LZS.H - This header file contains the function prototypes and constant defini-
tions. This header file should be included in all source modules that access the
LZS221-Clibrary. Thisfile may be modified by the implementor. There are
some compile-time switches that may be selected based on the characteristics of
the processor and of the application. These switches may be implemented by
modifying thisfile, or by using compiler options. These settings are described in
detail in the Compile-Time Options section.

HIFNUTIL.H — Thisfile contains function prototypes of functionsinside
HIFNUTIL.C. Thisfile may be modified by the implementor.

HIFNDEFS.H — This file contains machine specific definitions used by LZS221-
C, and the algorithm libraries. Thisfile may be modified by the implementor,
for exampl e, to redefine non-machine specific constants such as u32b, and to
define the switches needed to change the endianess and alignment.

HIFNUTIL.C - Thisfile includes code which utilizes ANSI-C utilities that are
required by LZS221-C, which may not be available in an embedded environ-
ment. Implementers may modify this file to redefine functions to call their own
routines.

LZSI.H —Thisfileincludes internal function prototypes and constant definitions.
Thisfile must not be modified by the implementor.

LZSC.C - This source file contains the functions required for compression op-
erations. Thisfile must not be modified by the implementor.

LZSD.C - This source file contains the functions required for decompression
operations. Thisfile must not be modified by the implementor.

3 Function Summar

Functions related to data compression processing are:

LZS C_SizeOfCompressionHistory - Returns amount of memory required for
each compression history.

LZS C InitializeCompressionHistory - Initializes a compression history.
LZS C_Compress - Compresses a block of data.
Functions related to data decompression are;

LZS C_SizeOfDecompressionHistory - Returns amount of memory required for
each decompression history.

LZS C_InitializeDecompressionHistory - Initializes a decompression history.

Page 6 DS-0006-00 DATA SHEET

hik8

LZS C_Decompress - Decompresses a block of data.

LZS221-C Version 6 Data Compression Software

4 Compile-Time Options

There are several user-selectable compile-time options available in the LZS.H
and HIFNDEFS.H header files. These switches may be implemented by modi-
fying thisfile, or by using compiler options.

Please note that no compiler options affect Hi/fn product cross compatibility.

4.1 HIFN_FAR

This constant (in the HIFNDEFS.H fil€) is used as a pointer type modifier for
memory access. Suggested values are listed below. This constant can contain
any value and should be based on the requirements of the compiler being used.
For example, to access the type: unsigned char *, some compilers need the first
example and other compilers need the second example.

[blank] - If 1eft blank, then no modifier isused. Thiswould produce “unsigned
char *” asamemory pointer. Thisisthe default.

__far - Thiswould produce “unsigned char __far *” asamemory pointer. This
may be useful for Intel target CPUs.

42 LZS_C_FOOTPRINT

This constant (in the LZS.H file) affects the size of the memory requirements per
context. The performance of the object code and the compression ratio are af-
fected inaminor way. Figure 2 summarizes the effects of LZS C FOOTPRINT
on performance and history size.

LZS C FOOTPRINT_10 - Thisfootprint setting isafairly high speed, high
compression ratio setting that takes up a modest amount of memory for its his-
tory. Thisisthe default setting.

LZS C FOOTPRINT_20 - This setting is nearly identical to the

LZS C FOOTPRINT_10 except that the history size of

LZS C FOOTPRINT_10 varies widely with respect to the integer size of the
platform that the code is compiled on. When using a 32 hit or greater platform
this setting provides a substantial savings in history size over

LZS C FOOTPRINT_10, with no loss in compression ratio and a moderate |oss
of speed.

LZS C FOOTPRINT_30 - This setting yields a smaller footprint, but it is
slower thanthe LZS C FOOTPRINT _20 setting. It also has poorer compres-
sion ratios for performance settings 0-2.

LZS C FOOTPRINT_40 - This setting yields an even smaller footprint than the
LZS C FOOTPRINT30 setting, and is alittle bit slower (especialy with small
buffers). However it should yield the same compression ratio as the
LZS C FOOTPRINT30.

LZS C FOOTPRINT_50 - This setting has the absolutely smallest per-history
memory footprint, with the cost of having the worst speed and compression ratio.

DATA SHEET DS-0006-00 Page 7

hik8

Figure 2 shows that the memory footprints requirements change when

LZS221-C Version 6 Data Compression Software

LZS C_ PERFORMANCE islessthan or equal to 2 and when

LZS C_PERFORMANCE is greater than or equal to 3. Thereisafootprint size
difference between LZS C_PERFORMANCE is set to 2 and when

LZS C_PERFORMANCE isset to 3.

The default value of this compiler optionisLZS C FOOTPRINT_10.

The system memory requirements are set to one of five footprint settings by
defining the LZS C_FOOTPRINT switch either inside the LZS.H file or by
compiler option.

4.3 Byte Ordering

One of the following two constants (in the HIFNDEFS.H file) must be defined
to the byte ordering used by the processor. The only valid values for this con-
stant are the following:

HIFN_LITTLE_ENDIAN - Least significant bytesfirst. Thisisthe default.

HIFN_BIG_ENDIAN - Most significant bytesfirst.

4.4 HIFN_ALIGNED

This constant (in the HIFNDEFS.H file), if defined, will produce aversion of the
library that defines type-aligned memory accesses. A type-aligned memory ac-
Cess restricts accesses to memory addresses that are evenly divisible by the size
of the data being accessed. A u8b may reside at any address, aul6b only at even
addresses, and a u32b only on a quad byte boundary. Thisisrequired for some
RISC processors. The default isthat HIFN_ALIGNED is not defined. Defining
this constant may slow performance dlightly.

45 LZS_C_PERFORMANCE

This constant (in the LZS.H file) specifies an compile time setting for controlling
the amount of time that the Compress function will spend compressing the cur-
rent buffer of data. Smaller valuesfor the LZS C_ PERFORMANCE switch will
force faster execution of the Compress function at the cost of compression ratio.

Thereisafootprint size difference between LZS C PERFORMANCE is set to
2and when LZS C PERFORMANCE is set to 3. The memory footprints re-
guirements change when LZS C_PERFORMANCE isless than or equal to 2
and when LZS C_PERFORMANCE is greater than or equal to 3. A value of 0
inthe LZS C_PERFORMANCE column of Figure 2 reflects the footprint size
for LZS C PERFORMANCE settings of 0to 2. A value of 6 inthe

LZS C_PERFORMANCE column of Figure 2 reflects the footprint size for
LZS C_PERFORMANCE settings of 3 to 6.

TheLZS C_PERFORMANCE compile-time switch has seven possible value
settings. The valid range for the LZS C_PERFORMANCE switch is 0 through
LZS C MAXIMUM_ PERFORMANCE_VALUE. The default value of this
compiler optionisLZS C_MAXIMUM_ PERFORMANCE_VALUE.

Page 8 DS-0006-00 DATA SHEET

hik8

Note: thevalueof LZS C MAXIMUM_ PERFORMANCE_VALUE for this
version of codeis 6.

LZS221-C Version 6 Data Compression Software

5 Constants, Types, & Bits

In addition to the compile-time options described previously, there are many
constants defined in the LZS221-C source code that are referred to in this docu-
ment. A completelist of such constantsisin the HIFNDEFS.H and LZS.H
header files. See the function definitions in this document for further informa-
tion concerning these constants.

LZS C_DESTINATION_EXHAUSTED
LZS C_DESTINATION_FLUSH

LZS C_DESTINATION_MINIMUM
LZS C_END_MARKER

LZS C_FLUSHED

LZS C_INVALID

LZS C_SAVE_HISTORY

LZS C_SOURCE_EXHAUSTED

LZS C_SOURCE_FLUSH

LZS C_UPDATE_HISTORY

Note: All unused bits in function return values must be ignored. All unused bits
in input parameters must be set to zero.

u32b is atype definition which is defined to be a 32-bit unsigned data type for
the target compiler.

u8b is a type definition which is defined to be a 8-bit unsigned data type for the
target compiler.

All bitsthat are reserved must be written with zeros and ignored when read.

Figure 1 lists the approximate speed of compression and decompression. This
performance is based on compressing atypical ASCII text file. The LZS _
C_PERFORMANCE is set to zero, and the LZS C FOOTPRINT variableis set
toLZS C FOOTPRINT_10 constant.

Processor compress decompress
(Kbytes/s) (Kbytes/s)
Pentium 200 MM X | 5,020 | 6,374

Figurel. Typical speed

TheLZS _C_PERFORMANCE and LZS_C_FOOTPRINT settings control speed
VS. compression ratio and history size trade-off withinthe LZS C_Compress
function. Figure 2 demonstrates how these parameters affect the overall perform-
ance of compression.

DATA SHEET DS-0006-00 Page 9

hik8

TheLZS C_PERFORMANCE and LZS C _FOOTPRINT settings affect neither
the decompression speed nor the decompression memory requirements.

LZS221-C Version 6 Data Compression Software

These two examples use the standard text file of the U.S. Constitution in 1500
byte packet sizes running on a Pentium 200 MM X CPU. The code was com-
piled under Microsoft’s Visual C++ v4.20 with full speed optimizations turn on
using the “Pentium” processor model.

LZS C_PERFORMANCE LZS C_FOOTPRINT Compress Compression Approximate
speed ratio compr ess/decompr ess
(Kbyteg/s) history size (K bytes)
12/4 (32-bit compiler)
0 FOOOTPRINT_10 | 5,020 1.69 8/4 (16-bit compiler)
0 FOOOTPRINT_20 | 4,345 1.69 8/4 (16- or 32-bit compiler)
0 FOOOTPRINT_30 | 4,273 1.67 6/4 (16- or 32-bit compiler)
0 FOOOTPRINT_40 | 4,206 1.67 5/4 (16- or 32-bit compiler)
0 FOOOTPRINT 50 | 4,012 1.60 3.5/4 (16- or 32-bit compiler)
20/4 (32-bit compiler)
6 FOOOTPRINT_10 | 1,281 2.34 12/4 (16-bit compiler)
6 FOOOTPRINT 20 | 1,276 2.34 12/4 (16- or 32-bit compiler)
6 FOOOTPRINT 30 | 1,237 2.34 10/4 (16- or 32-bit compiler)
6 FOOOTPRINT 40 | 1,224 2.34 9/4 (16- or 32-bit compiler)
6 FOOOTPRINT 50 | 1,373 2.08 5.5/4 (16- or 32-hit compiler)

Figure 2. Effect of performance parameters

7 Hi/fn LZS Compression

The Hi/fn LZS compression algorithm compresses and decompresses data with-
out sacrificing dataintegrity. Hi/fn LZS compression reduces the size of data by
replacing redundant sequences of characters with tokens that represent those
sequences. When the data is decompressed, the original sequences are substi-
tuted for the tokens in a manner that preserves the integrity of all data. Hi/fn
LZSis"lossless’ and differs significantly from “lossy” schemes, such asthose
used often for video images, which discard information that is deemed unneces-
sary.

The efficiency of data compression depends on the degree of redundancy within
agivenfile. Compression ratios of up to 30:1 are possible, but an average com-
pression ratio for mass storage applicationsistypically 2:1. For data communi-
cation applications, a compression ratio of 3:1 is more common. The compres-

sion ratio, CPU performance, and system resources can be adjusted to yield op-

timal system throughput. Refer to App-0022, “Data Compression Performance

Analysisin Data Communications’ for details.

Compression & Decompression Histories

This software requires a reserved block of memory in order to calculate and
maintain compression information. Thisisreferred to asa“history”. The com-
pression operation requires a compression history, and the decompression op-
eration requires a separate decompression history.

Page 10 DS-0006-00 DATA SHEET

hik8

Some applications may want to maintain multiple compression and decompres-
sion histories. For example a data communications product may associate a dif-
ferent history for each data channel. This may be used to maximize the redun-
dancy in each individual history, which in turn maximizes the compression ratio
that is obtained.

LZS221-C Version 6 Data Compression Software

8.1 History Maintenance

Before a history may be used for the first time, it must be initialized. Thisis
accomplished using the LZS C_InitializeCompressionHistory or

LZS C_InitializeDecompressionHistory commands. Thiswill place the history
inastart state. A start state allows the history to be used when starting to proc-
essanew block of data. For multiple histories, each history must be initialized
to the start state before it can be used for compression or decompression.

To properly finish compressing a block of data, a flush operation must be per-
formed. A flush operation forces the compression algorithm to complete the
compression of all the data it has read from the source buffer, and to append a
unigque end marker at the end of the compressed data. A flush operation guaran-
teesthat all the data read by the compression a gorithm will be represented in the
compressed data stream. A flush operation also places a compression history
into a start state.

Sometimes, it is desirable to process a block of datain several smaller blocks (or
sub-blocks). This allows the use of smaller source and destination buffers. The
LZS C_Compress function alows for thisif both the

LZS C SOURCE_FLUSH and LZS C _DESTINATION_FLUSH flags are set
to zero. Itisimportant to note that when the LZS C_Compress function returns
in this condition, the compression history is not in a start state, but rather in a
continue state. ThelLZS C_Compress function can be called multiple times
without requiring a flush operation. In order to properly terminate processing
the complete block of data, the LZS C_SOURCE_FLUSH or

LZS C DESTINATION_FLUSH bit must be set to onein the

LZS C_Compress function call for the last sub-block of data. If thisis not done
during the last call to LZS C_Compress, an alternative is to make an additional
call toLZS C_Compress with the size of the source buffer set to zero, and the
LZS C_SOURCE_FLUSH bit set to one. Note: Thislast call will produce des-
tination data.

In some situations, you may need to set a compression history into a start state
without regard to the data that has already been compressed. In this case, the
LZS C_Compress function can be called with the size of the source buffer set to
zero, the size of the dest buffer to LZS C DESTINATION_MINIMUM, and the
LZS C_SOURCE_FLUSH hit set to oneand the LZS C_SAVE_HISTORY bit
set to zero. Alternatively, the LZS C_InitializeCompressionHistory function
may be called (which is dightly slower).

LZS C SizeOfCompressionHistory

u32b HIFN_FAR LZS C_SizeOf CompressionHistory(void);

DATA SHEET DS-0006-00 Page 11

hik8

This function must be called to determine the number of bytes required for one
compression history. If multiple compression histories are to be used, simply
multiply the value returned by this function by the number of compression histo-
ries desired.

LZS221-C Version 6 Data Compression Software

Note: For informational purposes only, the approximate size of each compres-
sion history is provided in Figure 2. Thisisinformational only, and subject to
change. TheLZS C SizeOfCompressionHistory function must be used to de-
termine the actual byte count.

LZS C InitializeCompressionHistor

void HIFN_FAR LZS_C_InitializeCompressionHistory(
void HIFN_FAR *history /* Pointer to compression history */

);

This function must be called to initialize a compression history before it can be
used withthe LZS C_Compress function. Each compression history must be
initialized separately. Each history istypically only initialized once, although a
compression history may beinitialized at any time if desired.

If thisfunction is called with a compression history that has been used previ-
oudly, the history will be re-initialized to its beginning state. Any pending com-
pression data within this compression history will be lost.

The *history parameter is a pointer to the memory previously allocated by the
user for acompression history. The size of this allocated memory must be de-
termined by the LZS C_SizeOfCompressionHistory function.

11 LZS C Compress
u32b HIFN_FAR LZS_C_Compress(
u8b HIFN_FAR * HIFN_FAR *source, [* Pointer to pointer to source buffer */
u8b HIFN_FAR * HIFN _FAR *destination, /* Pointer to pointer to destination buffer */
u32b HIFN _FAR *sourceCount, /* Pointer to source count */
u32b HIFN _FAR *destinationCount, /* Pointer to destination buffer size */
void HIFN _FAR *history, [* Pointer to compression history */
u32b flags /* Special flags */

)i
This function will compress data from the source buffer into the destination
buffer. The function will stop when sourceCount bytes have been read from the
source buffer or when destinationCount bytes (or slightly less than destination-
Count bytes) have written to the destination buffer. A flush operation may occur
under certain circumstances defined below.

The value of sourceCount will decrement and *source will increment for each
byte that is read from the source buffer. The value of destinationCount will dec-
rement and *destination will increment for each byte that is written to the desti-
nation buffer.

Page 12 DS-0006-00 DATA SHEET

hik8

The valid range of sourceCount is 0 through Ox07FFFFFF. The valid range of
destinationCount isLZS C _DESTINATION_MINIMUM through
OxO7FFFFFF. If thisfunction is called with destinationCount less than
LZS C DESTINATION_MINIMUM, the function will immediately terminate
without performing any compression and the return value will be

LZS C INVALID.

LZS221-C Version 6 Data Compression Software

If the source buffer exhausts (meaning all data has been read from the source
buffer), thenthe LZS C_SOURCE_EXHAUSTED flag in the return value will
be set when the function returns. If the destination buffer exhausts (meaning all
data has been written to the destination buffer), then the

LZS C DESTINATION_EXHAUSTED flag in the return value will be set
when the function returns. Both conditions may be set simultaneously.

If theLZS C_SOURCE_FLUSH bit in the flags parameter is set and the source
buffer exhausts (sourceCount reaches zero), then a flush operation will occur. If
the LZS C DESTINATION_FLUSH bit in the flags parameter is set and the
destination buffer exhausts (destinationCount less than

LZS C DESTINATION_MINIMUM), then aflush operation will also occur.
The value of destinationCount may not reach zero whenthe LZS C_Compress
function returns. Thisis due to the unknown amount of extra bytes that the com-
pression engine needs to output during the flush operation.

If both LZS C_SOURCE_FLUSH and LZS C _DESTINATION_FLUSH hits
are set, then when either source or destination buffers exhaust a flush operation
will occur.

15 14 13 12 11 10 9 8

0 0 0 0 [o | 0 | 0 | 0

7 6 5 4 3 2 1 0

0 0 0 0 0 LZS_C_SAVE_ | LZS_C_DEST_ | LZS_C_SOURCE_
HISTORY FLUSH FLUSH

Figure3. LZS Compressflags parameter

The values of the flush bits cannot be changed between successive

LZS C_Compress function calls until the corresponding buffer is exhausted.
That is, the LZS C_SOURCE_FLUSH bit cannot change until after the

LZS C_SOURCE_EXHAUSTED flag is returned, and the

LZS C_DESTINATION_FLUSH bit cannot change until after the

LZS C_DESTINATION_EXHAUSTED flag isreturned. Thisisindependent
of whether a flush operation actually occurs.

A flush operation will force any intermediate data out to the destination buffer,
and will append an end marker to the destination buffer.

When the function returns after a flush operation occurs, both the * source and
*destination pointers, as well as the sourceCount and destinationCount counters,
will be updated. TheLZS C_SOURCE_EXHAUSTED and the
LZS C _DESTINATION_EXHAUSTED flagswill be set appropriately. Also,
the LZS C FLUSHED bit in the return value will be set to 1.

DATA SHEET DS-0006-00 Page 13

hik8

When the function returns without a flush operation having occurred, then the
following values are returned.

LZS221-C Version 6 Data Compression Software

If the source buffer exhausts, then the sourceCount counter will be 0, the *source
pointer will point to 1 byte beyond the last byte processed in the source buffer,
and the LZS C_SOURCE_EXHAUSTED flag will be set to onein the return
value.

If the source buffer does not exhaust, the * source pointer and sourceCount
counter return values will be returned as the values the function was called with.
The source buffer is still in use by the compression engine, and the original allo-
cated source buffer will be used in the next function call. The actual pointer and
counter values are stored in the compression history area, and the value of the
*source and sourceCount calling parameters for the next function call area
“don’t care”. Also, theLZS C _SOURCE_FLUSH bit must not change value in
the next call.

If the destination buffer exhausts, then the destinationCount counter will be 0,
the *destination pointer will point to 1 byte beyond the last byte processed in the
destination buffer, and the LZS C DESTINATION_ EXHAUSTED flag will be
set to onein the return value.

If the destination buffer does not exhaust, the *destination pointer and destinati-
onCount counter return values will be returned as the values the function was
called with. The destination buffer is still in use by the compression engine, and
the original allocated destination buffer will be used in the next function call.
The actual pointer and counter values are stored in the compression history area,
and the value of the *destination and destinationCount calling parameters for the
next function call area“don’t care”. Also, the

LZS C DESTINATION_FLUSH bit must not change value in the next call.

If the function terminates with both source and destination buffers exhausted
then both the LZS C_SOURCE_EXHAUSTED and

LZS C DESTINATION_EXHAUSTED flagswill be set in the return value and
all counters and pointers will be updated.

Additional callstothe LZS C_Compress function may be made to compress
additional data. When more than one call to the LZS C_Compress functionis
made, the compressed data (when appended together with the compressed data
of the other function calls) will appear asif asingle call were madeto the

LZS C_Compress function.

The pseudocode in Figure 4 illustrates an example of how to call this function.

If theLZS C_SAVE _HISTORY bit of the flags parameter is set to zero, the
Compression History will be cleared at the end of a flush operation. If thisbit is
set to one, the Compression History will NOT be cleared. Thiswill allow a
higher compression ratio for the next block to be compressed because it will
continue to use the same history information. Note: Blocks must be decom-
pressed in the same order as they were compressed if the Compression History
has not been cleared between blocks during compression. |If

LZS C SOURCE_FLUSH and LZS C _DESTINATION_FLUSH hitsin the
flags parameter are both zero, the LZS C_SAVE_HISTORY hit will be ignored.

Page 14 DS-0006-00 DATA SHEET

hik8

returnCode = LZS C DESTI NATI ON_EXHAUSTED | LZS C SOURCE_EXHAUSTED;
flags = fl agDefaul t & ~LZS C SOURCE_FLUSH & ~LZS C DEST_FLUSH,;
sourceSi ze = 0; destSize = 0;

while (!(returnCode & LZS C FLUSHED))

LZS221-C Version 6 Data Compression Software

if (returnCode & LZS C_SOURCE_EXHAUSTED)
{

Read a bl ock of data into the source buffer;
sourceSi ze += sourceCount;
if (last block of data)

flags | = LZS_C _SOURCE_FLUSH;

}
if (returnCode & LZS C_DESTI NATI ON_EXHAUSTED)

Al l ocate a new destination buffer;
destinati onCount = COW_BUFFER_SI ZE;

returnCode = LZS C Conpress(&source, &destination, &sourceCount,

&destinationCount, conpHi story, flags, performance);
if (returnCode & (LZS_C _DESTI NATI ON_EXHAUSTED | LZS_C_FLUSHED))
{

destinati onCount = COW_BUFFER SI ZE - desti nati onCount;
dest Si ze += destinati onCount;
Wite destination buffer to output device;

Figured. LZS C_Compress example pseudocode

Thereturn value will be LZS C_INVALID (zero) if the any of the calling pa-
rametersareinvalid. TheLZS C SOURCE_EXHAUSTED bhit in the return
value will be set to one if the function has been terminated by sourceCount
reaching zero. TheLZS C DESTINATION_EXHAUSTED bit in the return
value will be set to one if the function has been terminated by destinationCount
reaching (or almost reaching) zero. Both of these bits may be set simultane-
ously. TheLZS C FLUSHED bit will be set in the return value if a flush op-
eration has taken place. At termination *source and *destination pointers, and
sourceCount, and destinationCount values may be updated depending on the
conditions discussed above.

Note: For this version of the software, the value of

LZS C DESTINATION_MINIMUM is 16. Thisvalueis specified here for
information purposes only. This value may change in future versions. Do not
write software that relies on a particular value of

LZS C DESTINATION_MINIMUM.

14 13 12 11 10 9 8

| x [x | x | x | x [ox]

5 4 3 2 1 0

LZS_C_ | LZS_C_DESTINATION_ | LZS_C_SOURCE_

X X X | FLUSHED EXHAUSTED EXHAUSTED

Figure5. LZS C_Compressreturn value

DATA SHEET DS-0006-00 Page 15

LZS221-C Version 6 Data Compression Software

LZS C SizeOfDecompressionHistor

u32b HIFN_FAR LZS C_SizeOfDecompressionHistory(void);

This function must be called to determine the number of bytes required for one
decompression history. If multiple decompression histories are to be used, sim-
ply multiply the value returned by this function by the number of decompression
histories desired.

Note: For informational purposes only, the approximate size of each decompres-
sion history is approximately 4K bytes. Thisisinformational only, and subject
to change. The LZS C_SizeOfDecompressionHistory function must be used to
determine the actual byte count.

LZS C InitializeDecompressionHistor

void HIFN_FAR LZS_C_InitializeDecompressionHistory(
void HIFN_FAR *history /* Pointer to decompression history */

);

This function must be called to initialize a decompression history before it can
be used with the LZS C_Decompress function. Each decompression history
must be initialized separately. Each history istypically only initialized once,
although a decompression history may beinitialized at any time if desired.

The *history parameter is a pointer to the memory previously allocated by the
user for a decompression history. The size of this allocated memory must be
determined by the LZS C_SizeOfDecompressionHistory function.

14 LZS C Decompress
u32b HIFN_FAR LZS_C_Decompress(
u8b HIFN_FAR * HIFN _FAR *source, [* Pointer to pointer to source buffer */
u8b HIFN _FAR * HIFN _FAR *destination, /* Pointer to pointer to destination buffer */
u32b HIFN _FAR *sourceCount, /* Pointer to source count */
u32b HIFN _FAR *destinationCount, /* Pointer to destination buffer size */
void HIFN _FAR *history, [* Pointer to decompression history */
u32b flags [* Special flags */

)i
This function will decompress data from the source buffer into the destination
buffer. The function will stop when sourceCount bytes have been read from the
source buffer or when destinationCount bytes have been written to the destina-
tion buffer or if an end marker is encountered.

sourceCount will decrement and *source will increment when each byte is read
from the source buffer. destinationCount will decrement and * destination will
increment when each byte is written to the destination buffer.

The valid range of sourceCount is 0 through Ox07FFFFFF. The valid range of
destinationCount is 0 through Ox07FFFFFF.

Page 16 DS-0006-00 DATA SHEET

hik8

If the source buffer exhausts (meaning all data has been read from the source
buffer), the LZS C_SOURCE_EXHAUSTED bit in the return value will be set
to one. If destination buffer exhausts (meaning all data has been written to the
destination buffer), the LZS C DESTINATION__EXHAUSTED bit in the re-
turn value will be set to one. If an end marker has been detected, the
LZS C END_MARKER bhit in the return value will be set to one. More than
one bit may be set in the return value.

LZS221-C Version 6 Data Compression Software

If the function terminates due to end marker being detected, then all counters and
pointers will be updated. In these cases * source and * destination pointers will
point to the next bytes to be processed, sourceCount will indicate the number of
bytes remaining in the source buffer to be processed, destinationCount will indi-
cate the number of unused bytes (free space) in the destination buffer.

If the function terminates due to source buffer being exhausted, * source pointer
will point to one byte beyond the last byte processed and sourceCount will be 0.
In this case the *destination pointer and the destinationCount counter return val-
ues will be returned as the values the function was called with. The destination
buffer is still in use by the decompression engine, and the original allocated des-
tination buffer will be used in the next function call. The actual pointer and
counter values are stored in the decompression history area, and the value of the
*destination and destinationCount calling parameters for the next function call
area“don’t care”.

13 12 11 10 9 8
o | o | o | 0 | 0 | 0
5 4 3 2 1 0
0 0 o |LZSCSAVE_|LZS_C_UPDATE_|
HISTORY HISTORY

Figure6. LZS C_Decompress flags parameter

If the function terminates due to the destination buffer being exhausted,
*destination pointer will point to one byte beyond the last byte processed and
destinationCount will be 0. In this case the * source pointer and the sourceCount
counter return values will be returned as the values the function was called with.
The source buffer is still in use by the compression engine, and the original allo-
cated source buffer will be used in the next function call. The actual pointer and
counter values are stored in the decompression history area, and the value of the
*source and sourceCount calling parameters for the next function call are a
“don’'t care”.

If the function terminates with both source and destination buffers exhausted,
then all counters and pointers will be updated.

Additional callstothe LZS C_Decompress function may be made to decom-
press additional data. When more than one call tothe LZS C_Decompress
function is made, the decompressed data (when appended together with the de-
compressed data of the other function calls) will appear asif asingle call were
made to the LZS C_Decompress function.

The pseudocode in Figure 7 illustrates an example of how to call this function.

DATA SHEET DS-0006-00 Page 17

hik8

If it is desired to terminate processing a block of data prior to the end of the data
block, smply call the LZS C_InitializeDecompressionHistory function.

LZS221-C Version 6 Data Compression Software

retur nOode = LZS_C _DESTI NATI ON_EXHAUSTED | LZS_C SOURCE_EXHAUSTED;
flags = fl agDefauIt

sourceSi ze = 0; dest Size = 0;

while (!(ret urnCode & LZS C END) MARKER))

{

if (returnCode & LZS C_SOURCE_EXHAUSTED)
{

Read a bl ock of data into the source buffer;
sourceSi ze += sourceCount;

}
if (returnCode & LZS C DESTI NATI ON_EXHAUSTED)
Al ocate a new destination buffer;
returnCode = LZS_C Deconpress(&source, &destination, &sourceCount,
&destinati onCount, deconpHi story, flags);
if (returnCode & (LZS _C DESTI NATI ON_EXHAUSTED | LZS C END MARKER))
{

destinati onCount = (RAWBUFFER SI ZE - desti nati onCount);
dest Si ze += destinati onCount;
Wite destination buffer to output device;

Figure7. LZS C_Decompress pseudocode example

Normally, theLZS C_SAVE_HISTORY bit in the flags parameter should be
set. Thisisrequired to ensure that the decompression history is properly up-
dated between calls. TheLZS C_SAVE_HISTORY bit may be set to zero, if it
is known that the compression history associated with the current decompression
history was cleared. Thiswill improve decompression speed when not main-
taining history.

Note: Blocks must be decompressed in the same order as they were compressed
if the Compression History has not been cleared between blocks during com-
pression (i.e.theLZS C_SAVE_HISTORY bit was set during

LZS C_Compress function calls).

If theLZS C_UPDATE_HISTORY bhit in the flags parameter is set to one, the
source datais treated as if it were uncompressed data. The decompression his-
tory will be updated to reflect thisdata. The data in the source buffer will be
moved into the destination buffer. This bit may only be set after a decompres-
sion history isinitialized or after an end marker is detected. The sourceCount
and destinationCount parameters must be set to the same value in the function
cal whentheLZS C UPDATE_HISTORY bitisset. All counters and pointers
will be updated when the function returns.

15 14 13 12 11 10 9 8

X X X x | x| X | X | X

7 6 5 4 3 2 1 0

« « « « « LZS_C_END_ | LZS_C_DESTINATION_ | LZS_C_SOURCE_
MARKER EXHAUSTED EXHAUSTED

Figure8. LZS C_Decompressreturn value

Note: If the compressed data stream used as source for the LZS C_Decompress
function has been corrupted (for example, due to acommunication link error),
memory outside the range of the decompression history could be accessed

Page 18 DS-0006-00 DATA SHEET

hik8

(read). Specifically, memory could be read up to 2 KBytes before the beginning
of the decompression history, or up to 2 KBytes before the beginning of the des-
tination buffer. If the compressed data stream has no errors, then memory out-
side the decompression history will not be accessed.

LZS221-C Version 6 Data Compression Software

DATA SHEET DS-0006-00 Page 19

