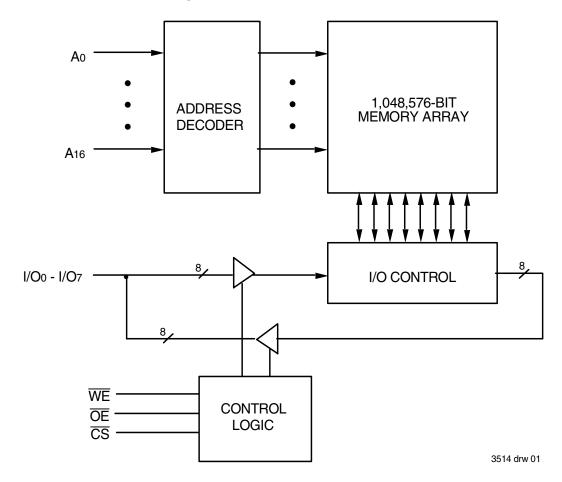


CMOS Static RAM 1 Meg (128K x 8-Bit) Revolutionary Pinout

IDT71124

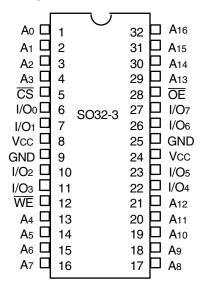
Features

- ◆ 128K x 8 advanced high-speed CMOS static RAM
- JEDEC revolutionary pinout (center power/GND) for reduced noise.
- Equal access and cycle times
 - Commercial: 12/15/20ns
 - Industrial: 15/20ns
- One Chip Select plus one Output Enable pin
- Bidirectional inputs and outputs directly TTL-compatible
- Low power consumption via chip deselect
- Available in a 32-pin 400 mil Plastic SOJ.


Description

The IDT71124 is a 1,048,576-bit high-speed static RAM organized as $128 \text{K} \times 8$. It is fabricated using high-performance, high-reliability CMOS technology. This state-of-the-art technology, combined with innovative circuit design techniques, provides a cost-effective solution for high-speed memory needs. The JEDEC centerpower/GND pinout reduces noise generation and improves system performance.

The IDT71124 has an output enable pin which operates as fast as 6ns, with address access times as fast as 12ns available. All bidirectional inputs and outputs of the IDT71124 are TTL-compatible and operation is from a single 5V supply. Fully static asynchronous circuitry is used; no clocks or refreshes are required for operation.


The IDT71124 is packaged in a 32-pin 400 mil Plastic SOJ.

Functional Block Diagram

APRIL 2013

Pin Configuration

3514 drw 02

SOJ Top View

Truth Table (1,2)

CS	ŌĒ	WE	ľΟ	Function
L	L	Н	DATAout	Read Data
L	Х	L	DATAIN	Write Data
L	Н	Н	High-Z	Output Disabled
Н	Х	Х	High-Z	Deselected - Standby (ISB)
VHC ⁽³⁾	Х	Х	High-Z	Deselected - Standby (ISB1)

NOTES:

- 1. $H = V_{IH}, L = V_{IL}, x = Don't care.$
- 2. VLC = 0.2V, VHC = VCC -0.2V.
- 3. Other inputs \geq VHC or \leq VLC.

Absolute Maximum Ratings(1)

Symbol	Rating	Value	Unit
VTERM ⁽²⁾	Terminal Voltage with Respect to GND	-0.5 to +7.0 ⁽²⁾	V
Та	Operating Temperature	0 to +70	°C
TBIAS	Temperature Under Bias	-55 to +125	°C
Тѕтс	Storage Temperature	-55 to +125	°C
Рт	Power Dissipation	1.25	W
Іоит	DC Output Current	50	mA

NOTES:

3514 tbl 02

- Stresses greater than those listed under ABSOLUTE MAXIMUM RATINGS may
 cause permanent damage to the device. This is a stress rating only and functional
 operation of the device at these or any other conditions above those indicated in the
 operational sections of this specification is not implied. Exposure to absolute maximum
 rating conditions for extended periods may affect reliability.
- 2. VTERM must not exceed Vcc + 0.5V.

Capacitance

 $(TA = +25^{\circ}C, f = 1.0MHz)$

Symbol	Parameter ⁽¹⁾	Conditions	Max.	Unit
CIN	Input Capacitance	VIN = 3dV	8	pF
Cvo	I/O Capacitance	Vout = 3dV	8	pF

NOTE:

3514 tbl 01

514 tbl 03

 $1. \ \ This parameter is guaranteed by device characterization, but is not production tested.$

Recommended Operating Temperature and Supply Voltage

Grade	Temperature	GND	Vcc
Commercial	0°C to +70°C	0V	5.0V ± 10%
Industrial	-40°C to +85°C	0V	5.0V ± 10%

3514 tbl 04

Recommended DC Operating Conditions

Symbol	Parameter	Min.	Тур.	Max.	Unit
Vcc	Supply Voltage	4.5	5.0	5.5	٧
GND	Ground	0	0	0	٧
ViH	Input High Voltage	2.2		Vcc +0.5	٧
VIL	Input Low Voltage	-0.5 ⁽¹⁾		0.8	٧

3514 tbl 05

DC Electrical Characteristics

(Vcc = 5.0V ± 10%, Commercial and Industrial Temperature Ranges)

Symbol	Parameter	Test Conditions	Min.	Max.	Unit
lu	Input Leakage Current	Vcc = Max., Vin = GND to Vcc	_	5	μΑ
ILO	Output Leakage Current	Vcc = Max., $\overline{\text{CS}}$ = ViH, VouT = GND to Vcc	_	5	μΑ
Vol	Output Low Voltage	IOL = 8mA, VCC = Min.	_	0.4	V
Vон	Output High Voltage	IOH = -4mA, VCC = Min.	2.4	_	V

3514 tbl 06

DC Electrical Characteristics(1)

 $(VCC = 5.0V \pm 10\%, VLC = 0.2V, VHC = VCC - 0.2V)$

		71124S12	71124S15		71124S20		
Symbol	Parameter	Com'l.	Com'l.	Ind.	Com'l.	Ind.	Unit
lcc	Dynamic Operating Current $\overline{\text{CS}} \leq \text{V}_{\text{IL}}, \text{ Outputs Open, Vcc} = \text{Max., f} = \text{fmax}^{(2)}$	160	155	155	140	140	mA
lsв	Standby Power Supply Current (TTL Level) $\overline{\text{CS}} \geq \text{ViH}, \text{ Outputs Open, Vcc} = \text{Max.}, \text{ f} = \text{fmax}^{(2)}$	40	40	40	40	40	mA
ISB1	Full Standby Power Supply Current (CMOS Level) $\overline{CS} \geq \text{VHc, Outputs Open, Vcc} = \text{Max., f} = 0^{(2)}$ $\text{Vin} \leq \text{VLc or Vin} \geq \text{VHc}$	10	10	10	10	10	mA

NOTES: 3514 tbl 07

- 1. All values are maximum guaranteed values.
- 2. $f_{MAX} = 1/t_{RC}$ (all address inputs are cycling at f_{MAX}); f = 0 means no address input lines are changing.

AC Test Conditions

Input Pulse Levels	GND to 3.0V
Input Rise/Fall Times	3ns
Input Timing Reference Levels	1.5V
Output Reference Levels	1.5V
AC Test Load	See Figure 1 and 2

3514 tbl 08

AC Test Loads

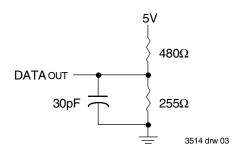
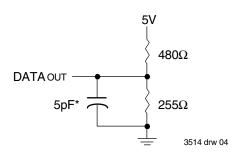



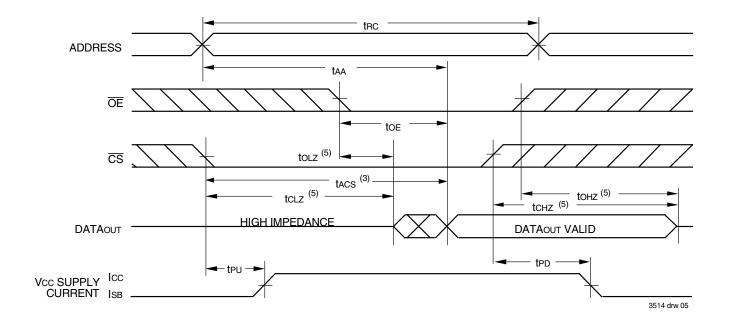
Figure 1. AC Test Load

*Including jig and scope capacitance.

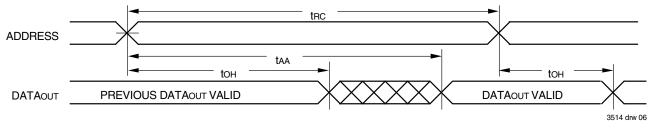
Figure 2. AC Test Load (for tclz, tclz, tchz, tchz, tow, and twhz) $\,$

AC Electrical Characteristics

(Vcc = 5.0V ± 10%, Commercial and Industrial Temperature Ranges)

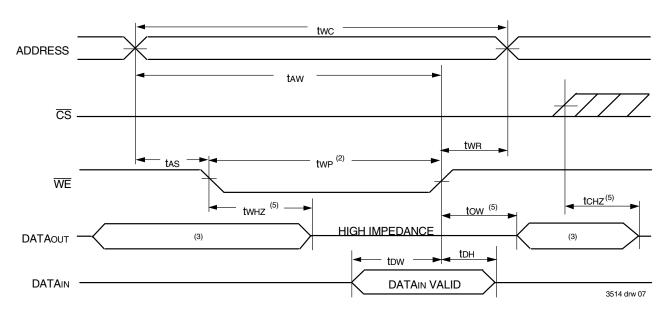

	Parameter		4S12 ⁽²⁾	7112	24S15	71124S20		
Symbol			Max.	Min.	Max.	Min.	Max.	Unit
READ CYCLE	E							
trc	Read Cycle Time	12	_	15		20	_	ns
taa	Address Access Time		12		15		20	ns
tacs	Chip Select Access Time		12		15		20	ns
tcLZ ⁽¹⁾	Chip Select to Output in Low-Z	3		3		3		ns
tcHZ ⁽¹⁾	Chip Deselect to Output in High-Z	0	6	0	7	0	8	ns
toE	Output Enable to Output Valid	_	6		7		8	ns
toLZ ⁽¹⁾	Output Enable to Output in Low-Z	0		0		0		ns
toHz ⁽¹⁾	Output Disable to Output in High-Z	0	5	0	5	0	7	ns
toн	Output Hold from Address Change	4	_	4		4		ns
tPU ⁽¹⁾	Chip Select to Power-Up Time	0	_	0		0		ns
tPD ⁽¹⁾	Chip Deselect to Power-Down Time		12		15		20	ns
WRITE CYCL	E							
twc	Write Cycle Time	12	_	15		20		ns
taw	Address Valid to End of Write	8		12		15		ns
tcw	Chip Select to End of Write	8		12		15		ns
tas	Address Set-up Time	0	_	0		0	_	ns
twp	Write Pulse Width	8	_	12	_	15	_	ns
twr	Write Recovery Time	0	_	0		0	_	ns
tow	Data Valid to End-of-Write	6		8		9		ns
tDH	Data Hold Time	0		0		0	_	ns
tow ⁽¹⁾	Output active from End-of-Write	3	_	3	_	4	_	ns
twHz ⁽¹⁾	Write Enable to Output in High-Z	0	5	0	5	0	8	ns

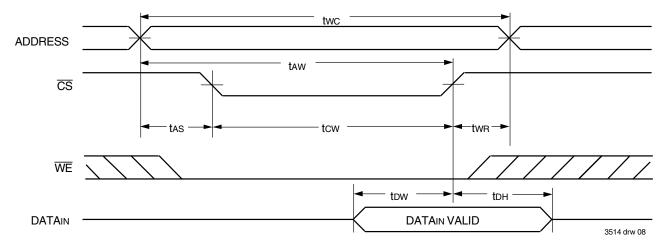
NOTE:


3514 tbl 09

- 1. This parameter guaranteed with the AC load (Figure 2) by device characterization, but is not production tested.
- 2. There is no industrial temperature offering for the 12ns speed grade.

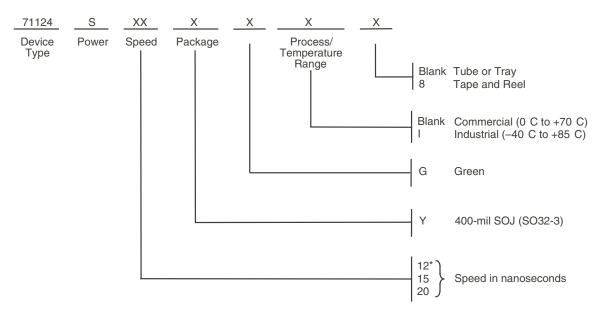
Timing Waveform of Read Cycle No. 1(1)


Timing Waveform of Read Cycle No. $2^{(1,2,4)}$


NOTES:

- 1. WE is HIGH for Read Cycle.
- 2. Device is continuously selected, \overline{CS} is LOW.
- 3. Address must be valid prior to or coincident with the later of $\overline{\text{CS}}$ transition LOW; otherwise taa is the limiting parameter.
- 4. \overline{OE} is LOW.
- 5. Transition is measured ±200mV from steady state.

Timing Waveform of Write Cycle No. 1 ($\overline{\textbf{WE}}$ Controlled Timing) $^{(1,2,4)}$


Timing Waveform of Write Cycle No. 2 (CS Controlled Timing)(1,4)

NOTES

- 1. A write occurs during the overlap of a LOW \overline{CS} and a LOW \overline{WE} .
- 2. \overline{OE} is continuously HiGH. During a \overline{WE} controlled write cycle with \overline{OE} LOW, twp must be greater than or equal to twHz+ tDW to allow the I/O drivers to turn off and data to be placed on the bus for the required tDW. If \overline{OE} is HiGH during a \overline{WE} controlled write cycle, this requirement does not apply and the minimum write pulse is the specified twp.
- 3. During this period, I/O pins are in the output state, and input signals must not be applied.
- 4. If the \overline{CS} LOW transition occurs simultaneously with or after the \overline{WE} LOW transition, the outputs remain in a high impedance state. \overline{CS} must be active during the tcw write period.
- 5. Transition is measured ±200mV from steady state.

Ordering Information

3514 drw 09

 $^{^{\}star}$ No industrial temp on 12ns speed

Datasheet Document History

08/05/99:		Updated to new format
	Pg. 3	Removed military entries on DC table
	Pg. 4	Removed Note 1 and renumbered footnotes
	Pg. 6	Revised footnotes on Write Cycle No. 1 diagram
08/13/99:	Pg. 8	Added Datasheet Document History
09/30/99:	Pg. 1, 3, 4, 7	Added 12ns, 15ns, and 20ns industrial temperature speed grade offerings
02/18/00:	Pg. 3	Revise ISB for Industrial Temperature offerings to meet commerical specifications
03/14/00:	Pg. 3	Revised ISB to accomidate speed functionality
04/01/00:	Pg.4	Tightened tAW, tCW, tWP and tDW within the AC Electrical Characteristics
08/09/00:		Not recommended for new designs
02/01/01:		Removed "Not recommended for new designs"
10/23/08:	Pg.7	Removed "IDT" from the orderable part number
04/02/13:	Pg.1	Removed 12ns speed from the Industrial temp offering. Removed IDT in reference to fabrication
	Pg.3	Removed the industrial 12ns speed grade information from the DC Electrical Chars table 07
	Pg.4	Added footnote 2 to AC Electrical Chars table 09 to indicate that there is no industrial 12ns speed
	Pg.7	Added Tape & Reel and Green designators to the ordering information. Added a footnote to the
		ordering information to indicate that there is no industrial 12ns speed offering

CORPORATE HEADQUARTERS 6024 Silver Creek Valley Road San Jose, CA 95138

for SALES: 800-345-7015 or 408-284-8200 fax: 408-284-2775 www.idt.com for Tech Support: sramhelp@idt.com 408-284-4532