ON Semiconductor

Is Now

To learn more about onsemi[™], please visit our website at www.onsemi.com

onsemi and ONSEMI. and other names, marks, and brands are registered and/or common law trademarks of Semiconductor Components Industries, LLC dba "onsemi" or its affiliates and/or subsidiaries in the United States and/or other countries. onsemi owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of onsemi product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. onsemi reserves the right to make changes at any time to any products or information herein is provided "as-is" and onsemi makes no warranty, representation or guarantee regarding the accuracy of the information, product features, availability, functionality, or suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using onsemi products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by onsemi. "Typical" parameters which may be provided in onsemi data sheets and/ or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. onsemi does not convey any license under any of its intellectual property rights nor the rights of others. onsemi products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use onsemi products for any such unintended or unauthorized application,

Octal D Flip-Flop with 3-State Outputs

The MC74AC574/74ACT574 is a high–speed, low power octal flip–flop with a buffered common Clock (CP) and a buffered common Output Enable (\overline{OE}). The information presented to the D inputs is stored in the flip–flops on the LOW–to–HIGH Clock (CP) transition. The MC74AC574/74ACT574 is functionally identical to the MC74AC374/74ACT374 except for the pinouts.

Features

- Inputs and Outputs on Opposite Sides of Package Allowing Easy Interface with Microprocessors
- Useful as Input or Output Port for Microprocessors
- Functionally Identical to MC74AC374/74ACT374
- 3-State Outputs for Bus-Oriented Applications
- Outputs Source/Sink 24 mA
- 'ACT574 Has TTL Compatible Inputs
- Pb-Free Packages are Available

Figure 1. Pinout: 20-Lead Packages Conductors
(Top View)

PIN ASSIGNMENT

PIN	FUNCTION
D ₀ –D ₇	Data Inputs
СР	Clock Pulse Input
ŌĒ	3-State Output Enable Input
O ₀ -O ₇	3-State Outputs

ON Semiconductor®

http://onsemi.com

PDIP-20 N SUFFIX CASE 738

SOIC-20W DW SUFFIX CASE 751D

TSSOP-20 DT SUFFIX CASE 948E

SOEIAJ-20 M SUFFIX CASE 967

DEVICE MARKING INFORMATION

See general marking information in the device marking section on page 6 of this data sheet.

ORDERING INFORMATION

See detailed ordering and shipping information in the package dimensions section on page 7 of this data sheet.

Figure 2. Logic Symbol

FUNCTIONAL DESCRIPTION

The MC74AC574/74ACT574 consists of eight edge-triggered flip-flops with individual D-type inputs and 3-state true outputs. The buffered clock and buffered Output Enable are common to all flip-flops. The eight flip-flops will store the state of their individual D inputs that meet the setup and hold time requirements on the LOW-to-HIGH Clock (CP) transition. With the Output Enable (\overline{OE}) LOW, the contents of the eight flip-flops are available at the outputs. When \overline{OE} is HIGH, the outputs go to the high impedance state. Operation of the \overline{OE} input does not affect the state of the flip-flops.

FUNCTION TABLE

	Inputs		Internal	Outputs	Function
ŌĒ	СР	D	Q	O _n	runction
Н	Н	L	NC	Z	Hold
Н	Н	Н	NC	Z	Hold
Н	丁	L	L	Z	Load
Н	」	Н	Н	Z	Load
L	」	L	L	L	Data Available
L	厶	Н	Н	Н	Data Available
L	Н	L	NC	NC	No Change in Data
L	Н	Н	NC	NC	No Change in Data

H = HIGH Voltage Level

L = LOW Voltage Level

X = Immaterial

Z = High Impedance

NC = No Change

NOTE: This diagram is provided only for the understanding of logic operations and should not be used to estimate propagation delays.

Figure 3. Logic Diagram

MAXIMUM RATINGS

Symbol	Parameter	Value	Unit
V _{CC}	DC Supply Voltage (Referenced to GND)	-0.5 to +7.0	V
V_{IN}	DC Input Voltage (Referenced to GND)	-0.5 to V _{CC} +0.5	V
V _{OUT}	DC Output Voltage (Referenced to GND)	-0.5 to V _{CC} +0.5	V
I _{IN}	DC Input Current, per Pin	±20	mA
I _{OUT}	DC Output Sink/Source Current, per Pin	±50	mA
I _{CC}	DC V _{CC} or GND Current per Output Pin	±50	mA
T _{stg}	Storage Temperature	-65 to +150	°C

Stresses exceeding Maximum Ratings may damage the device. Maximum Ratings are stress ratings only. Functional operation above the Recommended Operating Conditions is not implied. Extended exposure to stresses above the Recommended Operating Conditions may affect device reliability.

RECOMMENDED OPERATING CONDITIONS

Symbol	Parameter		Min	Тур	Max	Unit
	Complex Voltage	'AC	2.0	5.0	6.0	
V _{CC}	Supply Voltage	'ACT	4.5	5.0	5.5	V
V _{IN} , V _{OUT}	DC Input Voltage, Output Voltage (Ref. to GND)		0	_	V _{CC}	V
			_	150	-	
t _r , t _f	Input Rise and Fall Time (Note 1) 'AC Devices except Schmitt Inputs	V _{CC} @ 4.5 V	_	40	-	ns/V
	No Bevices except commit inputs	V _{CC} @ 5.5 V	_	25	-	
	Input Rise and Fall Time (Note 2)	V _{CC} @ 4.5 V	-	10	-	0/
t _r , t _f	'ACT Devices except Schmitt Inputs	V _{CC} @ 5.5 V	-	8.0	-	ns/V
TJ	Junction Temperature (PDIP)	•	-	-	140	°C
T _A	Operating Ambient Temperature Range	-40	25	85	°C	
I _{OH}	Output Current - High	-	_	-24	mA	
I _{OL}	Output Current – Low		_	_	24	mA

V_{IN} from 30% to 70% V_{CC}; see individual Data Sheets for devices that differ from the typical input rise and fall times.
 V_{IN} from 0.8 V to 2.0 V; see individual Data Sheets for devices that differ from the typical input rise and fall times.

DC CHARACTERISTICS

	_		74AC				
Parameter		T _A = +25°C		$T_A = -40^{\circ}C \text{ to } +85^{\circ}C$	Unit	Conditions	
	(v)	Тур	G	uaranteed Limits			
Minimum High Level	3.0	1.5	2.1	2.1		V _{OUT} = 0.1 V	
Input Voltage	4.5	2.25	3.15	3.15	V	or V _{CC} – 0.1 V	
	5.5	2.75	3.85	3.85			
Maximum Low Level	3.0	1.5	0.9	0.9		V _{OUT} = 0.1 V	
Input Voltage	4.5	2.25	1.35	1.35	V	or V _{CC} – 0.1 V	
	5.5	2.75	1.65	1.65			
Minimum High Level	3.0	2.99	2.9	2.9		$I_{OUT} = -50 \mu A$	
Output Voltage	4.5	4.49	4.4	4.4	V		
	5.5	5.49	5.4	5.4			
						$*V_{IN} = V_{IL} \text{ or } V_{IH}$	
	3.0	_	2.56	2.46	.,	–12 mA	
	4.5	_	3.86	3.76	V	I _{OH} –24 mA	
	5.5	_	4.86	4.76		–24 mA	
Maximum Low Level	3.0	0.002	0.1	0.1		I _{OUT} = 50 μA	
Output Voltage	4.5	0.001	0.1	0.1	V		
	5.5	0.001	0.1	0.1			
						$*V_{IN} = V_{IL} \text{ or } V_{IH}$	
	3.0	_	0.36	0.44	.,	12 mA	
	4.5	_	0.36	0.44	V	I _{OL} 24 mA	
	5.5	_	0.36	0.44		24 mA	
Maximum Input Leakage Current	5.5	-	±0.1	±1.0	μΑ	$V_I = V_{CC}$, GND	
†Minimum Dynamic	5.5	_	_	75	mA	V _{OLD} = 1.65 V Max	
Output Current	5.5	_	-	-75	mA	V _{OHD} = 3.85 V Mir	
Maximum Quiescent Supply Current	5.5	_	8.0	80	μΑ	V _{IN} = V _{CC} or GND	
	Minimum High Level Input Voltage Maximum Low Level Input Voltage Minimum High Level Output Voltage Maximum Low Level Output Voltage Maximum Low Level Output Voltage Maximum Input Leakage Current †Minimum Dynamic Output Current	Minimum High Level 3.0 4.5 5.5 Maximum Low Level 3.0 4.5 5.5 Minimum High Level 3.0 4.5 5.5 Minimum High Level 3.0 4.5 5.5	Name	Name	Vac (V) T _A = +25°C T _A = -40°C to +85°C Typ Guaranteed Limits Minimum High Level Input Voltage 3.0 1.5 2.1 2.1 Input Voltage 4.5 2.25 3.15 3.15 Maximum Low Level Input Voltage 3.0 1.5 0.9 0.9 Input Voltage 4.5 2.25 1.35 1.35 Minimum High Level 3.0 2.99 2.9 2.9 Output Voltage 4.5 4.49 4.4 4.4 4.5 - 3.86 3.76 5.5 - 4.86 4.76 Maximum Low Level 3.0 0.002 0.1 0.1 Output Voltage 4.5 0.001 0.1 0.1 5.5 - 4.86 4.76 Maximum Low Level 3.0 - 0.36 0.44 0.0 - 0.36 0.44 4.5 - 0.36 0.44 4	Parameter V _{CC} (V) T _A = +25°C T _A = -40°C to +85°C Unit Minimum High Level Input Voltage 3.0 1.5 2.1 2.1 2.1 1.2 1.5 2.5 3.15 3.15 V V 5.5 2.75 3.85 1.35 V V 5.5 2.75 1.65	

^{*} All outputs loaded; thresholds on input associated with output under test. †Maximum test duration 2.0 ms, one output loaded at a time.

NOTE: Note: I_{IN} and I_{CC} @ 3.0 V are guaranteed to be less than or equal to the respective limit @ 5.5 V V_{CC} .

AC CHARACTERISTICS (For Figures and Waveforms – See AND8277/D at www.onsemi.com)

				74AC		74.	AC		
Symbol	Parameter	V _{CC} * (V)		Γ _A = +25°(C _L = 50 pl			C to +85°C 50 pF	Unit	Fig. No.
			Min	Тур	Max	Min	Max		
f _{max}	Maximum Clock Frequency	3.3 5.0	75 95	-	_ _	60 85	- -	MHz	3–3
t _{PLH}	Propagation Delay CP to O _n	3.3 5.0	3.5 2.0	-	13.5 9.5	3.5 2.0	15 11	ns	3–6
t _{PHL}	Propagation Delay CP to O _n	3.3 5.0	3.5 2.0	- -	12 8.5	3.5 2.0	13.5 9.5	ns	3–6
t _{PZH}	Output Enable Time	3.3 5.0	2.5 2.0	-	11 8.5	2.5 2.0	12 9.0	ns	3–7
t _{PZL}	Output Enable Time	3.3 5.0	3.0 1.5	-	10.5 8.0	3.5 2.0	11.5 9.0	ns	3–8
t _{PHZ}	Output Disable Time	3.3 5.0	4.0 2.0	-	12 9.5	4.5 2.0	13 10.5	ns	3–7
t _{PLZ}	Output Disable Time	3.3 5.0	2.0 1.5	-	9.0 7.5	2.5 1.5	10 8.5	ns	3–8

^{*} Voltage Range 3.3 V is 3.3 V ± 0.3 V. Voltage Range 5.0 V is 5.0 V ± 0.5 V.

AC OPERATING REQUIREMENTS

			74AC		74AC		
Symbol	Parameter	V _{CC} * (V)	T _A = +25°C C _L = 50 pF		T _A = -40°C to +85°C C _L = 50 pF	Unit	Fig. No.
			Тур	Gua	ranteed Minimum		
t _s	Setup Time, HIGH or LOW D _n to CP	3.3 5.0	-	2.5 1.5	3.0 2.0	ns	3–9
t _h	Hold Time, HIGH or LOW D _n to CP	3.3 5.0	-	1.5 1.5	1.5 1.5	ns	3–9
t _w	CP Pulse Width HIGH or LOW	3.3 5.0	1 1	6.0 4.0	7.0 5.0	ns	3–6

^{*}Voltage Range 3.3 V is 3.3 V \pm 0.3 V. Voltage Range 5.0 V is 5.0 V \pm 0.5 V.

DC CHARACTERISTICS

			V_{CC} $T_{A} = +25^{\circ}C$		74ACT		
Symbol	Parameter	V _{CC} (V)			$T_A = -40^{\circ}C$ to $+85^{\circ}C$	Unit	Conditions
		(*)	Тур	Typ Guaranteed Limits			
V _{IH}	Minimum High Level Input Voltage	4.5 5.5	1.5 1.5	2.0 2.0	2.0 2.0	V	V _{OUT} = 0.1 V or V _{CC} – 0.1 V
V _{IL}	Maximum Low Level Input Voltage	4.5 5.5	1.5 1.5	0.8 0.8	0.8 0.8	V	V _{OUT} = 0.1 V or V _{CC} – 0.1 V
V _{OH}	Minimum High Level Output Voltage	4.5 5.5	4.49 5.49	4.4 5.4	4.4 5.4	٧	I _{OUT} = -50 μA
		4.5 5.5	- -	3.86 4.86	3.76 4.76	V	$^*V_{IN} = V_{IL} \text{ or } V_{IH}$ I_{OH} -24 mA -24 mA
V _{OL}	Maximum Low Level Output Voltage	4.5 5.5	0.001 0.001	0.1 0.1	0.1 0.1	V	I _{OUT} = 50 μA
		4.5 5.5	- -	0.36 0.36	0.44 0.44	V	$^*V_{IN} = V_{IL} \text{ or } V_{IH}$ $^{24} \text{ mA}$ ^{1}OL $^{24} \text{ mA}$
I _{IN}	Maximum Input Leakage Current	5.5	-	±0.1	±1.0	μΑ	$V_I = V_{CC}$, GND
ΔI_{CCT}	Additional Max. I _{CC} /Input	5.5	0.6		1.5	mA	$V_{I} = V_{CC} - 2.1 \text{ V}$
I _{OZ}	Maximum 3-State Current	5.5	-	±0.5	±5.0	μΑ	$\begin{aligned} &V_{I}\left(OE\right) = V_{IL}, V_{IH} \\ &V_{I} = V_{CC}, GND \\ &V_{O} = V_{CC}, GND \end{aligned}$
I _{OLD}	†Minimum Dynamic	5.5	-	-	75	mA	V _{OLD} = 1.65 V Max
I _{OHD}	Output Current	5.5	-	-	-75	mA	V _{OHD} = 3.85 V Min
I _{CC}	Maximum Quiescent Supply Current	5.5	_	8.0	80	μΑ	V _{IN} = V _{CC} or GND

^{*}All outputs loaded; thresholds on input associated with output under test. †Maximum test duration 2.0 ms, one output loaded at a time.

AC CHARACTERISTICS (For Figures and Waveforms – See AND8277/D at www.onsemi.com)

				74ACT		74	CT		
Symbol	Parameter	V _{CC} * (V)		Γ _A = +25°(C _L = 50 pl		T _A = -40°C C _L =	C to +85°C 50 pF	Unit	Fig. No.
			Min	Тур	Max	Min	Max		
f _{max}	Maximum Clock Frequency	5.0	100	-	-	85	-	ns	3–3
t _{PLH}	Propagation Delay CP to O _n	5.0	2.5	-	11	2.0	12	ns	3–6
t _{PHL}	Propagation Delay CP to O _n	5.0	2.0	-	10	1.5	11	ns	3–6
t _{PZH}	Output Enable Time	5.0	2.0	_	9.5	1.5	10	ns	3–7
t _{PZL}	Output Enable Time	5.0	2.0	_	9.0	1.5	10	ns	3–8
t _{PHZ}	Output Disable Time	5.0	2.0	-	10.5	1.5	11.5	ns	3–7
t _{PLZ}	Output Disable Time	5.0	2.0	_	8.5	1.5	9.0	ns	3–8

^{*}Voltage Range 5.0 V is 5.0 V ±0.5 V.

AC OPERATING REQUIREMENTS

			$(V) \qquad \qquad C_{L} = 50 \text{ pF}$		74ACT				
Symbol	Parameter	V _{CC} * (V)			T _A = +25°C C _L = 50 pF		$T_A = -40$ °C to +85°C $C_L = 50$ pF	Unit	Fig. No.
					teed Minimum				
t _s	Setup Time, HIGH or LOW D _n to CP	5.0	-	2.5	2.5	ns	3–9		
t _h	Hold Time, HIGH or LOW D _n to CP	5.0	-	1.0	1.0	ns	3–9		
t _w	CP Pulse Width HIGH or LOW	5.0	-	3.0	4.0	ns	3–6		

^{*}Voltage Range 3.3 V is 3.3 V \pm 0.3 V. Voltage Range 5.0 V is 5.0 V \pm 0.5 V.

CAPACITANCE

Symbol	Parameter	Value Typ	Unit	Test Conditions
C _{IN}	Input Capacitance	4.5	pF	V _{CC} = 5.0 V
C _{PD}	Power Dissipation Capacitance	40	pF	V _{CC} = 5.0 V

MARKING DIAGRAMS

(Note: Microdot may be in either location)

ORDERING INFORMATION

Device	Package	Shipping [†]
MC74AC574N	PDIP-20	
MC74AC574NG	PDIP-20 (Pb-Free)	
MC74ACT574N	PDIP-20	18 Units / Rail
MC74ACT574NG	PDIP-20 (Pb-Free)	
MC74AC574DW	SOIC-20	
MC74AC574DWG	SOIC-20 (Pb-Free)	38 Units / Rail
MC74AC574DWR2	SOIC-20	
MC74AC574DWR2G	SOIC-20 (Pb-Free)	1000 / Tape & Reel
MC74ACT574DW	SOIC-20	
MC74ACT574DWG	SOIC-20 (Pb-Free)	38 Units / Rail
MC74ACT574DWR2	SOIC-20	
MC74ACT574DWR2G	SOIC-20 (Pb-Free)	1000 / Tape & Reel
MC74AC574DTR2	TSSOP-20*	0500 / T
MC74AC574DTR2G	TSSOP-20*	2500 / Tape & Reel
MC74ACT574DTR2	TSSOP-20*	OFOO / Tarre O Paral
MC74ACT574DTR2G	TSSOP-20*	2500 / Tape & Reel
MC74AC574M	SOEIAJ-20	
MC74AC574MG	SOEIAJ-20 (Pb-Free)	40 Units / Rail
MC74AC574MEL	SOEIAJ-20	
MC74AC574MELG	SOEIAJ-20 (Pb-Free)	2000 / Tape & Reel
MC74ACT574M	SOEIAJ-20	
MC74ACT574MG	SOEIAJ-20 (Pb-Free)	40 Units / Rail
MC74ACT574MEL	SOEIAJ-20	
MC74ACT574MELG	SOEIAJ-20 (Pb-Free)	2000 / Tape & Reel

[†]For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specifications Brochure, BRD8011/D.

^{*}These packages are inherently Pb-Free.

PACKAGE DIMENSIONS

PDIP-20 **N SUFFIX** PLASTIC DIP PACKAGE CASE 738-03 ISSUE E

- NOTES:

 1. DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 1982.

 2. CONTROLLING DIMENSION: INCH.

 3. DIMENSION L TO CENTER OF LEAD WHEN FORMED PARALLEL.
- DIMENSION B DOES NOT INCLUDE MOLD FLASH.

	INCHES		MILLIMETERS	
DIM	MIN	MAX	MIN	MAX
Α	1.010	1.070	25.66	27.17
В	0.240	0.260	6.10	6.60
С	0.150	0.180	3.81	4.57
D	0.015	0.022	0.39	0.55
E	0.050 BSC		1.27 BSC	
F	0.050	0.070	1.27	1.77
G	0.100 BSC		2.54 BSC	
J	0.008	0.015	0.21	0.38
K	0.110	0.140	2.80	3.55
L	0.300 BSC		7.62 BSC	
M	0°	15°	0°	15°
N	0.020	0.040	0.51	1.01

SOIC-20W **DW SUFFIX** CASE 751D-05 **ISSUE G**

- NOTES:
 1. DIMENSIONS ARE IN MILLIMETERS.
 2. INTERPRET DIMENSIONS AND TOLE
- DIMENSIONS ARE IN MILLIMET ERS.
 INTERPRET DIMENSIONS AND TOLERANCES
 PER ASME Y14.5M, 1994.
 DIMENSIONS D AND E DO NOT INCLUDE MOLD
 PROTRUSION.
- PROTRUSION.

 4. MAXIMUM MOLD PROTRUSION 0.15 PER SIDE.

 5. DIMENSION B DOES NOT INCLUDE DAMBAR PROTRUSION. ALLOWABLE PROTRUSION SHALL BE 0.13 TOTAL IN EXCESS OF B DIMENSION AT MAXIMUM MATERIAL CONDITION.

	MILLIMETERS		
DIM	MIN	MAX	
Α	2.35	2.65	
A1	0.10	0.25	
В	0.35	0.49	
C	0.23	0.32	
D	12.65	12.95	
Е	7.40	7.60	
e	1.27 BSC		
H	10.05	10.55	
h	0.25	0.75	
L	0.50	0.90	
θ	0 °	7 °	

PACKAGE DIMENSIONS

TSSOP-20 **DT SUFFIX** CASE 948E-02 **ISSUE C**

- NOTES: 1. DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 1982.

 - ANSI Y14.5M, 1982.
 2. CONTROLLING DIMENSION:
 MILLIMETER.
 3. DIMENSION A DOES NOT INCLUDE
 MOLD FLASH, PROTRUSIONS OR GATE
 BURRS. MOLD FLASH OR GATE BURRS
 SHALL NOT EXCEED 0.15 (0.006) PER SIDE.
 4. DIMENSION B DOES NOT INCLUDE
 INTERLEAD FLASH OR PROTRUSION.
 INTERLEAD FLASH OR PROTRUSION
 SHALL NOT EXCEED 0.25 (0.01) PER SIDE.

 - SHALL NOT EXCEED 0.25 (0.010) PER SIDE.
 5. DIMENSION K DOES NOT INCLUDE DAMBAR PROTRUSION. ALLOWABLE DAMBAR PROTRUSION SHALL BE 0.08 (0.003) TOTAL IN EXCESS OF THE K DIMENSION AT MAXIMUM MATERIAL
 - CONDITION.
 6. TERMINAL NUMBERS ARE SHOWN FOR REFERENCE ONLY.
 7. DIMENSION A AND B ARE TO BE DETERMINED AT DATUM PLANE –W.

	MILLIMETERS		INCHES	
DIM	MIN	MAX	MIN	MAX
Α	6.40	6.60	0.252	0.260
В	4.30	4.50	0.169	0.177
С		1.20		0.047
D	0.05	0.15	0.002	0.006
F	0.50	0.75	0.020	0.030
G	0.65 BSC		0.026 BSC	
Н	0.27	0.37	0.011	0.015
J	0.09	0.20	0.004	0.008
J1	0.09	0.16	0.004	0.006
K	0.19	0.30	0.007	0.012
K1	0.19	0.25	0.007	0.010
L	6.40 BSC		0.252 BSC	
M	0°	8°	0°	8°

SOLDERING FOOTPRINT*

*For additional information on our Pb-Free strategy and soldering details, please download the ON Semiconductor Soldering and Mounting Techniques Reference Manual, SOLDERRM/D.

PACKAGE DIMENSIONS

SOEIAJ-20 **M SUFFIX** CASE 967-01 **ISSUE A**

DETAIL P

NOTES:

- DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 1982.
- CONTROLLING DIMENSION: MILLIMETER
 DIMENSIONS D AND E DO NOT INCLUDE
- MOLD FLASH OR PROTRUSIONS AND ARE MEASURED AT THE PARTING LINE. MOLD FLASH OR PROTRUSIONS SHALL NOT EXCEED 0.15 (0.006) PER SIDE.
 . TERMINAL NUMBERS ARE SHOWN FOR
- REFERENCE ONLY
- THE LEAD WIDTH DIMENSION (b) DOES NOT INCLUDE DAMBAR PROTRUSION. ALLOWABLE DAMBAR PROTRUSION SHALL BE 0.08 (0.003) TOTAL IN EXCESS OF THE LEAD WIDTH
 DIMENSION AT MAXIMUM MATERIAL CONDITION. DAMBAR CANNOT BE LOCATED ON THE LOWER RADIUS OR THE FOOT. MINIMUM SPACE BETWEEN PROTRUSIONS AND ADJACENT LEAD TO BE 0.46 (0.018).

	MILLIMETERS		INCHES	
DIM	MIN	MAX	MIN	MAX
Α		2.05		0.081
A ₁	0.05	0.20	0.002	0.008
q	0.35	0.50	0.014	0.020
C	0.15	0.25	0.006	0.010
D	12.35	12.80	0.486	0.504
Е	5.10	5.45	0.201	0.215
е	1.27 BSC		0.050 BSC	
HE	7.40	8.20	0.291	0.323
L	0.50	0.85	0.020	0.033
F	1.10	1.50	0.043	0.059
М	0 °	10°	0°	10°
Q1	0.70	0.90	0.028	0.035
Z		0.81		0.032

ON Semiconductor and un are registered trademarks of Semiconductor Components Industries, LLC (SCILLC). SCILLC reserves the right to make changes without further notice to any products herein. SCILLC makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does SCILLC assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. "Typical" parameters which may be provided in SCILLC data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. SCILLC does not convey any license under its patent rights nor the rights of others. SCILLC products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the SCILLC product could create a situation where personal injury or death may occur. Should Buyer purchase or use SCILLC products for any such unintended or unauthorized application, Buyer shall indemnify and hold SCILLC and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that SCILLC was negligent regarding the design or manufacture of the part. SCILLC is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner.

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT:

Literature Distribution Center for ON Semiconductor P.O. Box 5163, Denver, Colorado 80217 USA

Phone: 303-675-2175 or 800-344-3860 Toll Free USA/Canada Fax: 303-675-2176 or 800-344-3867 Toll Free USA/Canada Email: orderlit@onsemi.com

N. American Technical Support: 800-282-9855 Toll Free USA/Canada

Europe, Middle East and Africa Technical Support: Phone: 421 33 790 2910

Japan Customer Focus Center Phone: 81-3-5773-3850

ON Semiconductor Website: www.onsemi.com

Order Literature: http://www.onsemi.com/orderlit

For additional information, please contact your local Sales Representative