

AP3768

LOW-POWER OFF-LINE PRIMARY SIDE REGULATION CONTROLLER

Description

The AP3768 is a high performance AC/DC power supply controller for battery charger and adapter applications. The device uses Pulse Frequency Modulation (PFM) method to build discontinuous conduction mode (DCM) flyback power supplies.

The AP3768 provides accurate constant voltage, constant current (CV/CC) regulation without requiring an opto-coupler and secondary control circuitry. It also eliminates the need of loop compensation circuitry while maintaining stability. The AP3768 achieves excellent regulation and high average efficiency, yet meets the requirement for no-load consumption less than 30mW.

The AP3768 has the built-in programmable cable voltage drop compensation function, which makes it flexible to accommodate various cables with different gauges and lengths.

The AP3768 is available in SO-8 package.

Features

- Primary Side Control for Eliminating Opto-coupler and Secondary CV/CC Control Circuitry
- 30mW No-load Input Power
- Programmable Output Cable Voltage Drop Compensation
- Proprietary CC Tightening Technique to Achieve Vertical CC Profile
- Compensation for External Component Temperature Variations
- Flyback Topology in DCM Operation
- Random Frequency Adjustment to Reduce System EMI
- Built-in Soft Start
- Over Voltage Protection
- Short Circuit Protection
- SO-8 Package
- Totally Lead-free & Fully RoHS Compliant (Notes 1 & 2)
- Halogen and Antimony Free. "Green" Device (Note 3)

Notes:

- 1. No purposely added lead. Fully EU Directive 2002/95/EC (RoHS) & 2011/65/EU (RoHS 2) compliant.
- 2. See http://www.diodes.com/quality/lead_free.html for more information about Diodes Incorporated's definitions of Halogen- and Antimony-free, "Green" and Lead-free.
- 3. Halogen- and Antimony-free "Green" products are defined as those which contain <900ppm bromine, <900ppm chlorine (<1500ppm total Br + Cl) and <1000ppm antimony compounds.

Pin Assignments

SO-8

Applications

- Adapter/Chargers for Cell/Cordless Phones, PDAs, MP3 and Other Portable Apparatus
- LED Driver
- Standby and Auxiliary Power Supplies

Typical Applications Circuit

5V/0.7A Output for Battery Charger of Mobile Phone

Pin Descriptions

Pin Number	Pin Name	Function			
1	CS	The primary current sense			
2	VCC	Supply voltage			
3	OUT	This pin drives the base of external power NPN switch			
4	GND	Ground			
5	CPC	This pin connects a capacitor for output cable compensation			
6	FB	The voltage feedback from the auxiliary winding			
7	CPR	Connects a resistor to FB pin for adjustable output cable compensation			
8	BIAS	This pin sets the bias current inside AP3768 with an external resistor to GND			

Functional Block Diagram

Absolute Maximum Ratings (Note 4)

Parameter	Rating	Unit
Voltage at VCC Pin to GND	-0.3 to 36	V
Voltage at CS, OUT to GND	-0.3 to 7	V
FB Input	-40 to 10	V
Output Current at OUT	Internally limited	А
Operating Junction Temperature	+150	°C
Storage Temperature	-65 to +150	°C
Lead Temperature (Soldering, 10s)	+300	°C
Thermal Resistance Junction-to-Ambient	190	°C/W
ESD (Machine Model)	200	V
ESD (Human Body Model)	2000	V

Note 4: Stresses greater than those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under "Recommended Operating Conditions" is not implied. Exposure to "Absolute Maximum Ratings" for extended periods may affect device reliability.

Recommended Operating Conditions

Symbol	Parameter	Min	Max	Unit
Vcc	Power Supply Voltage	12	30	V
T _A	Ambient Temperature	-40	+85	°C

Electrical Characteristics (V_{CC}=15V, T_A=-40 to +85°C, unless otherwise specified.)

Symbol	Parameter		Conditions	Min	Тур	Max	Unit	
UVLO SECTION								
V _{TH (ST)}	Start-up Threshold		-	17	18.5	21	V	
V _{OPR} (min)	Minimal Operating Voltage		-	8.2	9.2	10.2	V	
REFERENCE VOLT	AGE							
V _{BIAS}	BIAS Pin Voltage		R_{BIAS} =200k Ω , After Turn On	1.0	1.1	1.2	V	
STANDBY CURREN	STANDBY CURRENT SECTION							
Ist	Start-up Current		$V_{CC}=V_{TH (ST)}$ -0.5V, $R_{BIAS}=200k\Omega$, Before start-up	-	-	0.6	μA	
I _{CC(OPR)}	Operating Current		R _{BIAS} =200kΩ	_	390	480	μA	
DRIVE OUTPUT SECTION								
lout	OUT Maximum Current	Source	R _{BIAS} =200kΩ	28	36	44	mA	
CURRENT SENSE S	CURRENT SENSE SECTION							
V _{CS}	Current Sense Threshold		-	490	513	535	mV	
V _{CS} (PRE)	Pre-Current Sense		-	390	413	435	mV	
_	Leading Edge Blanking		-	-	500	-	ns	
FEEDBACK INPUT	SECTION							
I _{FB}	Feedback Pin Input Leakage Current		V _{FB} =4V	1.8	2.4	3.0	μA	
V _{FB}	Feedback Threshold		-	3.97	4.03	4.09	V	
$V_{FB(EN)}$	Enable Turn-on Voltage		-	-2.0	-1.7	-1.4	V	
OUTPUT VOLTAGE COMPENSATION SECTION								
V _{CPR}	CPR Voltage		D_{ONS} (t_{ONS}/t): from 55% to 0.02%	1.5	-	3.5	V	
I _{CPR}	CPR Sink Current		-	-	-	200	μA	
PROTECTION SECT	ION							
VFB(OVP)	Over Voltage Protection		-	7	8	9	V	

Performance Characteristics

Start-up Voltage vs. Ambient Temperature

Operating Current vs. Ambient Temperature

Minimal Operating Voltage vs. Ambient Temperature

VBIAS vs. Ambient Temperature

IFB vs. Ambient Temperature

Ambient Temperature (°C)

AP3768 Document number: DS37715 Rev. 2 - 2

Performance Characteristics (Cont.)

Ordering Information

Package	Temperature Range	Part Number	Marking ID	Packing
SO-8 -40 to +85°C	40 ·	AP3768M-G1	3768M-G1	50/Tube
	-40 to +85°C	AP3768MTR-G1	3768M-G1	4000/Tape & Reel

Marking Information

First and Second Lines: Logo and Marking ID Third Line: Date Code Y: Year WW: Work Week of Molding A: Assembly House Code XX: 7th and 8th Digits of Batch No.

Package Outline Dimensions (All dimensions in mm(inch).)

(1) Package Type: SO-8

Note: Eject hole, oriented hole and mold mark is optional.

Suggested Pad Layout

(1) Package Type: SO-8

Dimensions	Z	G	X	Y	E
	(mm)/(inch)	(mm)/(inch)	(mm)/(inch)	(mm)/(inch)	(mm)/(inch)
Value	6.900/0.272	3.900/0.154	0.650/0.026	1.500/0.059	1.270/0.050

IMPORTANT NOTICE

DIODES INCORPORATED MAKES NO WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, WITH REGARDS TO THIS DOCUMENT, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE (AND THEIR EQUIVALENTS UNDER THE LAWS OF ANY JURISDICTION).

Diodes Incorporated and its subsidiaries reserve the right to make modifications, enhancements, improvements, corrections or other changes without further notice to this document and any product described herein. Diodes Incorporated does not assume any liability arising out of the application or use of this document or any product described herein; neither does Diodes Incorporated convey any license under its patent or trademark rights, nor the rights of others. Any Customer or user of this document or products described herein in such applications shall assume all risks of such use and will agree to hold Diodes Incorporated and all the companies whose products are represented on Diodes Incorporated website, harmless against all damages.

Diodes Incorporated does not warrant or accept any liability whatsoever in respect of any products purchased through unauthorized sales channel. Should Customers purchase or use Diodes Incorporated products for any unintended or unauthorized application, Customers shall indemnify and hold Diodes Incorporated and its representatives harmless against all claims, damages, expenses, and attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized application.

Products described herein may be covered by one or more United States, international or foreign patents pending. Product names and markings noted herein may also be covered by one or more United States, international or foreign trademarks.

This document is written in English but may be translated into multiple languages for reference. Only the English version of this document is the final and determinative format released by Diodes Incorporated.

LIFE SUPPORT

Diodes Incorporated products are specifically not authorized for use as critical components in life support devices or systems without the express written approval of the Chief Executive Officer of Diodes Incorporated. As used herein:

- A. Life support devices or systems are devices or systems which:
 - 1. are intended to implant into the body, or
 - 2. support or sustain life and whose failure to perform when properly used in accordance with instructions for use provided in the labeling can be reasonably expected to result in significant injury to the user.
- B. A critical component is any component in a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or to affect its safety or effectiveness.

Customers represent that they have all necessary expertise in the safety and regulatory ramifications of their life support devices or systems, and acknowledge and agree that they are solely responsible for all legal, regulatory and safety-related requirements concerning their products and any use of Diodes Incorporated products in such safety-critical, life support devices or systems, notwithstanding any devices- or systems-related information or support that may be provided by Diodes Incorporated. Further, Customers must fully indemnify Diodes Incorporated and its representatives against any damages arising out of the use of Diodes Incorporated products in such safety-critical, life support devices or systems.

Copyright © 2017, Diodes Incorporated

www.diodes.com