June 2006

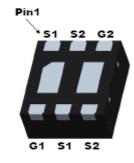
FAIRCHILD

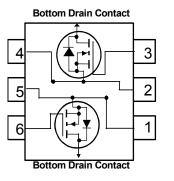
SEMICONDUCTOR®

FDMJ1028N N-Channel 2.5V Specified PowerTrench[®] MOSFET 20V, 3.2A, 90mΩ

Features

- Max $r_{DS(on)}$ = 90m Ω at V_{GS} = 4.5V
- Max r_{DS(on)} = 130mΩ at V_{GS} = 2.5V
- Low gate charge
- High performance trench technology for extremely low ^rDS(on)
- RoHS Compliant



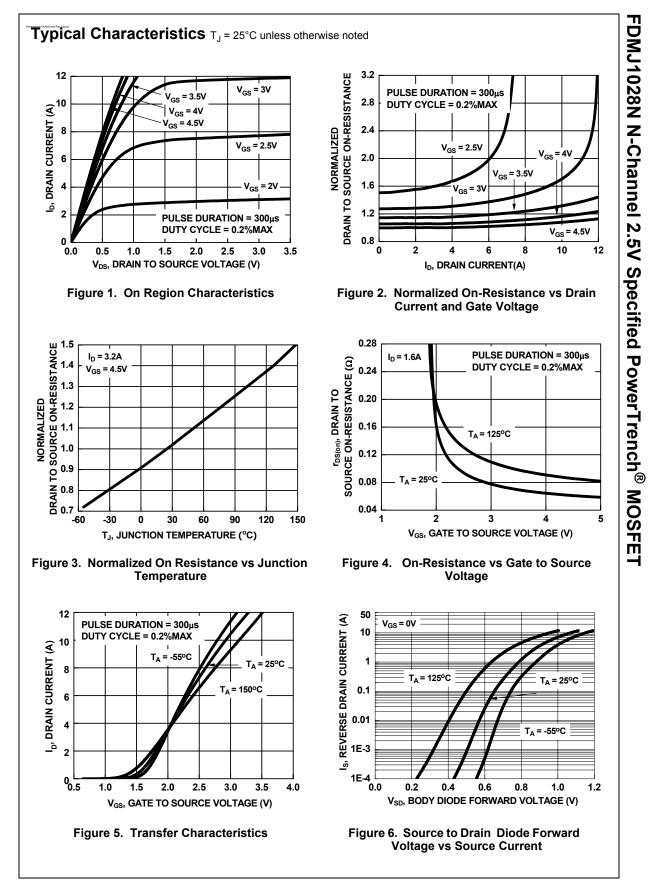

General Description

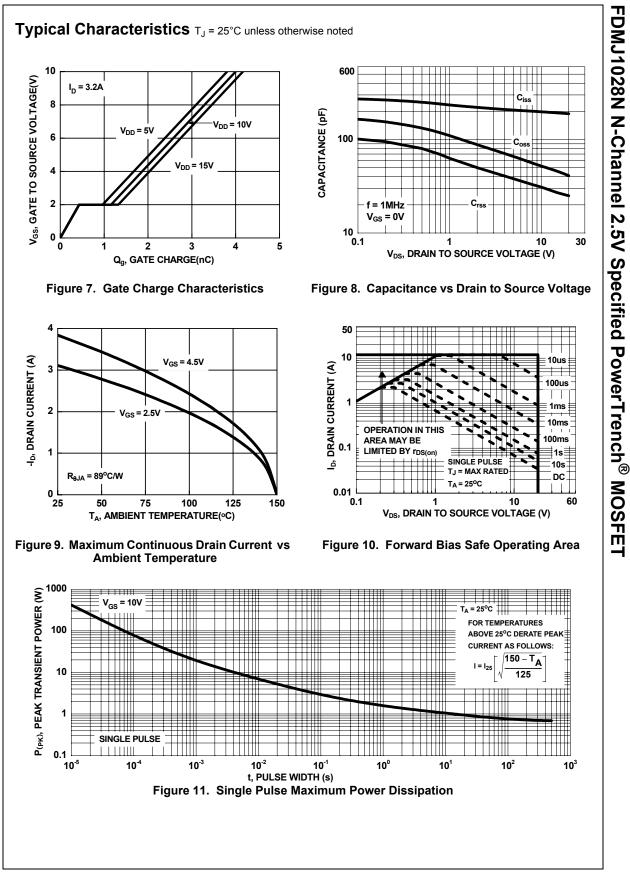
This dual N-Channel 2.5V specified MOSFET uses Fairchild's advanced low voltage PowerTrench process. The $r_{DS(on)}$ and thermal properties of the device are optimized for battery power management applications.

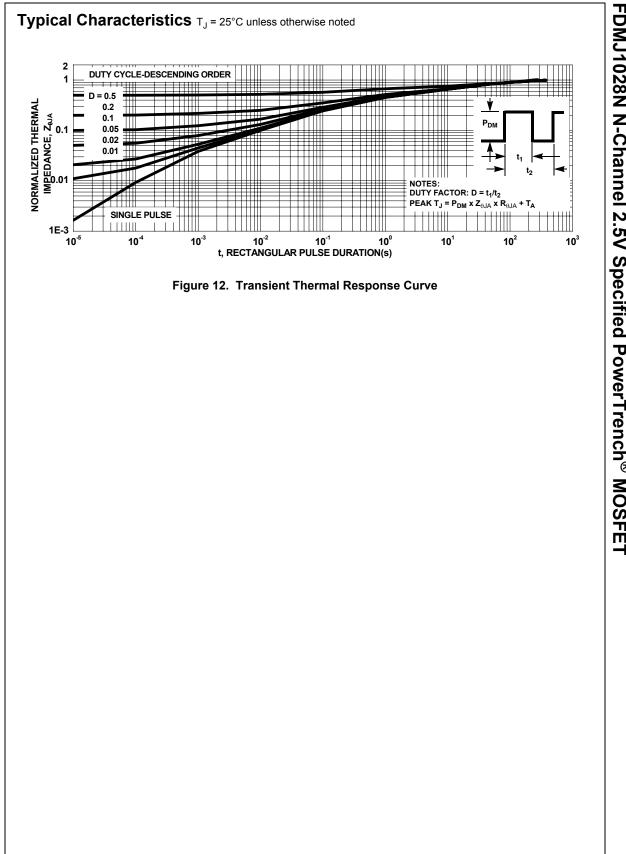
Applications

- Battery management
- Baseband Switches

MOSFET Maximum Ratings T_A = 25°C unless otherwise noted

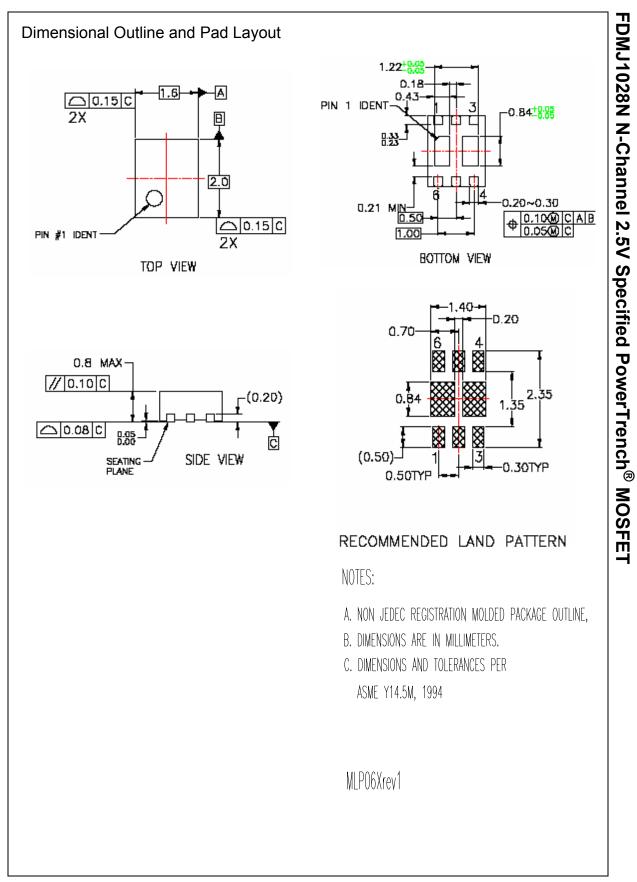

Symbol		F	Ratings	Units			
V _{DS}	Drain to S	Source Voltage	20	V			
V _{GS}	Gate to S	ource Voltage	±12	V			
	Drain Cur	Drain Current -Continuous				•	
D		-Pulsed				— A	
P _D	Power Dis	Power Dissipation for Single Operation (Note 1a)			1.4	w	
	(Note 1b				0.8	V	
				```			
Therma	l Chara	and Storage Temper			-55 to +150	0°C	
R _{θJA}	Thermal F	cteristics Resistance , Junction	to Ambient	(Note 1a)	-55 to +150 89	°C/W	
Therma _{R_{θJA}}	I Chara Thermal F	cteristics Resistance , Junction		, ,		°C/W	


Symbol	Parameter	Test Conditions	Min	Тур	Max	Units	
Off Chara	octeristics						
BV _{DSS}	Drain to Source Breakdown Voltage	I _D = 250μA, V _{GS} = 0V	20			V	
$\Delta BV_{DSS}$ $\Delta T_J$	Breakdown Voltage Temperature Coefficient	$I_D = 250\mu$ A, referenced to $25^{\circ}$ C		13		mV/°C	
IDSS	Zero Gate Voltage Drain Current	V _{DS} = 16, V _{GS} = 0V			1	μA	
I _{GSS}	Gate to Source Leakage Current	$V_{GS} = \pm 12V, V_{DS} = 0V$			±100	nA	
On Chara	cteristics (Note 2)						
V _{GS(th)}	Gate to Source Threshold Voltage	V _{GS} = V _{DS} , I _D = 250μA	0.6	1.0	1.5	V	
$\Delta V_{GS(th)}$ $\Delta T_J$	Gate to Source Threshold Voltage Temperature Coefficient	$I_D = 250 \mu$ A, referenced to $25^{\circ}$ C		-3		mV/°C	
J	•	V _{GS} = 4.5V, I _D = 3.2A		76	90		
r _{DS(on)}	Drain to Source On Resistance	V _{GS} = 2.5V, I _D = 2.5A		106	130	mΩ	
		$V_{GS}$ = 4.5V, $I_D$ = 3.2A, $T_J$ =125°C		89	132	- 1115.2	
9 _{FS}	Forward Transconductance	V _{GS} = 5V, I _D = 3.2A		7.5		S	
	Input Capacitance	$V_{} = 10V_{} V_{} = 0V_{}$		200		pF	
		V _{DS} =10V, V _{GS} = 0V,		200 50			
C _{iss} C _{oss} C _{rss}	Output Capacitance Reverse Transfer Capacitance	f = 1MHz		50 30		pF pF	
C _{oss} C _{rss}	Output Capacitance			50		pF	
C _{oss} C _{rss} R _G	Output Capacitance Reverse Transfer Capacitance	f = 1MHz		50 30		pF pF	
C _{oss} C _{rss} R _G	Output Capacitance Reverse Transfer Capacitance Gate Resistance	f = 1MHz f = 1MHz		50 30	14	pF pF	
C _{oss} C _{rss} R _G Switching	Output Capacitance Reverse Transfer Capacitance Gate Resistance Characteristics (Note 2)	f = 1MHz f = 1MHz V _{DD} = 10V, I _D = 1A		50 30 1	14	pF pF Ω	
C _{oss} C _{rss} R _G Switching	Output Capacitance Reverse Transfer Capacitance Gate Resistance g Characteristics (Note 2) Turn-On Delay Time	f = 1MHz f = 1MHz		50 30 1 7		pF pF Ω ns	
$C_{oss}$ $C_{rss}$ $R_G$ <b>Switching</b> $t_{d(on)}$ $t_r$	Output Capacitance Reverse Transfer Capacitance Gate Resistance <b>Characteristics (Note 2)</b> Turn-On Delay Time Rise Time	f = 1MHz f = 1MHz V _{DD} = 10V, I _D = 1A		50 30 1 7 8	16	pF pF Ω ns	
$\begin{array}{c} C_{oss} \\ \hline \\ C_{rss} \\ \hline \\ R_G \\ \hline \\ \textbf{Switching} \\ \hline \\ \textbf{t}_{d(on)} \\ \hline \\ t_r \\ \hline \\ t_{d(off)} \\ \hline \\ t_f \\ \hline \end{array}$	Output Capacitance         Reverse Transfer Capacitance         Gate Resistance <b>Characteristics (Note 2)</b> Turn-On Delay Time         Rise Time         Turn-Off Delay Time	f = 1MHz f = 1MHz V _{DD} = 10V, I _D = 1A V _{GS} = 4.5V, R _{GS} = 6Ω		50 30 1 7 8 11	16 20	pF pF Ω ns ns ns	
$\begin{array}{c} C_{oss} \\ C_{rss} \\ R_G \\ \hline \\ \textbf{Switching} \\ \hline \\ t_{d(on)} \\ t_r \\ t_{d(off)} \\ t_f \\ \hline \end{array}$	Output Capacitance Reverse Transfer Capacitance Gate Resistance <b>Characteristics (Note 2)</b> Turn-On Delay Time Rise Time Turn-Off Delay Time Fall Time	$f = 1MHz$ $f = 1MHz$ $V_{DD} = 10V, I_{D} = 1A$ $V_{GS} = 4.5V, R_{GS} = 6\Omega$ $V_{DD} = 15V, V_{GS} = 3.2V,$		50 30 1 7 8 11 2	16 20 4	pF pF Ω ns ns ns ns	
$\begin{array}{c} C_{oss} \\ \hline C_{rss} \\ \hline R_G \\ \hline \textbf{Switching} \\ \hline \textbf{t}_{d(on)} \\ \hline t_r \\ \hline t_{d(off)} \\ \hline t_f \\ \hline \textbf{Q}_{g(tot)} \\ \hline \end{array}$	Output Capacitance         Reverse Transfer Capacitance         Gate Resistance <b>Characteristics (Note 2)</b> Turn-On Delay Time         Rise Time         Turn-Off Delay Time         Fall Time         Total Gate Charge at 10V	f = 1MHz f = 1MHz V _{DD} = 10V, I _D = 1A V _{GS} = 4.5V, R _{GS} = 6Ω		50 30 1 7 8 11 2 2	16 20 4	pF pF Ω ns ns ns ns nc	
$\begin{array}{c} C_{oss} \\ \hline C_{rss} \\ \hline R_G \\ \hline \textbf{Switching} \\ \hline \textbf{t}_{d(on)} \\ \hline t_r \\ \hline t_{d(off)} \\ \hline t_f \\ \hline \textbf{Q}_{g(tot)} \\ \hline \textbf{Q}_{gs} \\ \hline \textbf{Q}_{gd} \\ \hline \end{array}$	Output Capacitance         Reverse Transfer Capacitance         Gate Resistance <b>Characteristics (Note 2)</b> Turn-On Delay Time         Rise Time         Turn-Off Delay Time         Fall Time         Total Gate Charge at 10V         Gate to Source Gate Charge         Gate to Drain Charge	$f = 1MHz$ $f = 1MHz$ $V_{DD} = 10V, I_{D} = 1A$ $V_{GS} = 4.5V, R_{GS} = 6\Omega$ $V_{DD} = 15V, V_{GS} = 3.2V,$		50 30 1 7 8 11 2 2 0.4	16 20 4	pF pF Ω ns ns ns nc nC	
$\frac{C_{oss}}{C_{rss}}$ $R_{G}$ Switching $\frac{t_{d(on)}}{t_{r}}$ $\frac{t_{d(off)}}{t_{f}}$ $Q_{g(tot)}$ $Q_{gs}$ $Q_{gd}$ Drain-Sou	Output Capacitance         Reverse Transfer Capacitance         Gate Resistance <b>Characteristics (Note 2)</b> Turn-On Delay Time         Rise Time         Turn-Off Delay Time         Fall Time         Total Gate Charge at 10V         Gate to Source Gate Charge	$f = 1MHz$ $f = 1MHz$ $V_{DD} = 10V, I_{D} = 1A$ $V_{GS} = 4.5V, R_{GS} = 6\Omega$ $V_{DD} = 15V, V_{GS} = 3.2V,$ $V_{GS} = 4.5V$		50 30 1 7 8 11 2 2 0.4	16 20 4	pF pF Ω ns ns ns nc nC	
$\begin{array}{c} C_{oss} \\ \hline C_{rss} \\ \hline R_G \\ \hline \textbf{Switching} \\ \hline \textbf{t}_{d(on)} \\ t_r \\ \hline t_d(off) \\ t_f \\ \hline \textbf{Q}_{g(tot)} \\ \hline \textbf{Q}_{gs} \\ \hline \textbf{Q}_{gd} \\ \hline \hline \textbf{Drain-Sou} \\ \hline \textbf{V}_{SD} \\ \hline \end{array}$	Output Capacitance         Reverse Transfer Capacitance         Gate Resistance <b>Delay Characteristics (Note 2)</b> Turn-On Delay Time         Rise Time         Turn-Off Delay Time         Fall Time         Total Gate Charge at 10V         Gate to Source Gate Charge         Gate to Drain Charge	$f = 1MHz$ $f = 1MHz$ $V_{DD} = 10V, I_{D} = 1A$ $V_{GS} = 4.5V, R_{GS} = 6\Omega$ $V_{DD} = 15V, V_{GS} = 3.2V,$ $V_{GS} = 4.5V$ $V_{GS} = 0V, I_{S} = 1.16A$		50 30 1 7 8 11 2 2 0.4 1.0	16 20 4 3	pF pF Ω ns ns ns nC nC	
$\frac{C_{oss}}{C_{rss}}$ $R_{G}$ Switching $\frac{t_{d(on)}}{t_{r}}$ $\frac{t_{d(off)}}{t_{f}}$ $Q_{g(tot)}$ $Q_{gs}$ $Q_{gd}$ Drain-Sou	Output Capacitance         Reverse Transfer Capacitance         Gate Resistance <b>Characteristics (Note 2)</b> Turn-On Delay Time         Rise Time         Turn-Off Delay Time         Fall Time         Total Gate Charge at 10V         Gate to Source Gate Charge         Gate to Drain Charge <b>Urce Diode Characteristics</b> Drain-Source Diode Forward Voltage	$f = 1MHz$ $f = 1MHz$ $V_{DD} = 10V, I_{D} = 1A$ $V_{GS} = 4.5V, R_{GS} = 6\Omega$ $V_{DD} = 15V, V_{GS} = 3.2V,$ $V_{GS} = 4.5V$		50 30 1 7 8 11 2 2 0.4 1.0	16 20 4 3	pF pF Ω ns ns ns nC nC nC	




Scale 1 : 1 on letter size paper 2: Pulse Test: Pulse Width <  $300\theta\mu s$ , Duty Cycle < 2.0%










FDMJ1028N N-Channel 2.5V Specified PowerTrench[®] MOSFET

www.fairchildsemi.com



### TRADEMARKS

The following are registered and unregistered trademarks Fairchild Semiconductor owns or is authorized to use and is not intended to be an exhaustive list of all such trademarks.

LittleFET™

MicroFET™

MicroPak™

MSXPro™

PACMAN™

Power247™

MSX™

OCX™

POP™

ACEx™ ActiveArray™ Bottomless[™] Build it Now[™] **CoolFET™** CROSSVOLT™ DOME™ **EcoSPARK™** E²CMOS™ EnSigna™ FACT™ FACT Quiet Series™

FAST® FASTr™ FPS™ FRFET™ GlobalOptoisolator™ GTO™ HiSeC™ I²C™ i-Lo™ ImpliedDisconnect[™] OCXPro[™] IntelliMAX™ Across the board. Around the world.™ The Power Franchise[®] Programmable Active Droop™

#### **ISOPLANAR™** PowerEdge™ PowerSaver™ MICROCOUPLER™ PowerTrench® **OFFT[®]** QS™ MICROWIRE™ QT Optoelectronics™ Quiet Series™ RapidConfigure[™] RapidConnect™ µSerDes™ **OPTOLOGIC**[®] ScalarPump™ SILENT SWITCHER® **OPTOPLANAR™** SMART START™ SPM™ Stealth™

SuperFET™ SuperSOT™-3 SuperSOT™-6 SuperSOT™-8 SyncFET™ TCM™ TinyLogic® TINYOPTO™ TruTranslation[™] UHC™ UltraFET[®] UniFET™ VCX™ Wire™

### DISCLAIMER

FAIRCHILD SEMICONDUCTOR RESERVES THE RIGHT TO MAKE CHANGES WITHOUT FURTHER NOTICE TO ANY PRODUCTS HEREIN TO IMPROVE RELIABILITY, FUNCTION OR DESIGN. FAIRCHILD DOES NOT ASSUME ANY LIABILITY ARISING OUT OF THE APPLICATION OR USE OF ANY PRODUCT OR CIRCUIT DESCRIBED HEREIN; NEITHER DOES IT CONVEY ANY LICENSE UNDER ITS PATENT RIGHTS, NOR THE RIGHTS OF OTHERS. THESE SPECIFICATIONS DO NOT EXPAND THE TERMS OF FAIRCHILD'S WORLDWIDE TERMS AND CONDITIONS, SPECIFICALLY THE WARRANTY THEREIN, WHICH COVERS THESE PRODUCTS.

#### LIFE SUPPORT POLICY

**PRODUCT STATUS DEFINITIONS** 

FAIRCHILD'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF FAIRCHILD SEMICONDUCTOR CORPORATION.

#### As used herein:

1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, or (c) whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in significant injury to the user.

2. A critical component is any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

Datasheet Identification	Product Status	Definition
Advance Information	Formative or In Design	This datasheet contains the design specifications for product development. Specifications may change in any manner without notice.
Preliminary	First Production	This datasheet contains preliminary data, and supplementary data will be published at a later date. Fairchild Semiconductor reserves the right to make changes at any time without notice in order to improve design.
No Identification Needed	Full Production	This datasheet contains final specifications. Fairchild Semiconductor reserves the right to make changes at any time without notice in order to improve design.
Obsolete	Not In Production	This datasheet contains specifications on a product that has been discontinued by Fairchild semiconductor The datasheet is printed for reference information only